/* * arch/ppc/platforms/chrp_time.c * * Copyright (C) 1991, 1992, 1995 Linus Torvalds * * Adapted for PowerPC (PReP) by Gary Thomas * Modified by Cort Dougan (cort@cs.nmt.edu). * Copied and modified from arch/i386/kernel/time.c * */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/kernel_stat.h> #include <linux/mc146818rtc.h> #include <linux/init.h> #include <linux/bcd.h> #include <asm/segment.h> #include <asm/io.h> #include <asm/nvram.h> #include <asm/prom.h> #include <asm/sections.h> #include <asm/time.h> extern spinlock_t rtc_lock; static int nvram_as1 = NVRAM_AS1; static int nvram_as0 = NVRAM_AS0; static int nvram_data = NVRAM_DATA; long __init chrp_time_init(void) { struct device_node *rtcs; int base; rtcs = find_compatible_devices("rtc", "pnpPNP,b00"); if (rtcs == NULL) rtcs = find_compatible_devices("rtc", "ds1385-rtc"); if (rtcs == NULL || rtcs->addrs == NULL) return 0; base = rtcs->addrs[0].address; nvram_as1 = 0; nvram_as0 = base; nvram_data = base + 1; return 0; } int __chrp chrp_cmos_clock_read(int addr) { if (nvram_as1 != 0) outb(addr>>8, nvram_as1); outb(addr, nvram_as0); return (inb(nvram_data)); } void __chrp chrp_cmos_clock_write(unsigned long val, int addr) { if (nvram_as1 != 0) outb(addr>>8, nvram_as1); outb(addr, nvram_as0); outb(val, nvram_data); return; } /* * Set the hardware clock. -- Cort */ int __chrp chrp_set_rtc_time(unsigned long nowtime) { unsigned char save_control, save_freq_select; struct rtc_time tm; spin_lock(&rtc_lock); to_tm(nowtime, &tm); save_control = chrp_cmos_clock_read(RTC_CONTROL); /* tell the clock it's being set */ chrp_cmos_clock_write((save_control|RTC_SET), RTC_CONTROL); save_freq_select = chrp_cmos_clock_read(RTC_FREQ_SELECT); /* stop and reset prescaler */ chrp_cmos_clock_write((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); tm.tm_year -= 1900; if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BIN_TO_BCD(tm.tm_sec); BIN_TO_BCD(tm.tm_min); BIN_TO_BCD(tm.tm_hour); BIN_TO_BCD(tm.tm_mon); BIN_TO_BCD(tm.tm_mday); BIN_TO_BCD(tm.tm_year); } chrp_cmos_clock_write(tm.tm_sec,RTC_SECONDS); chrp_cmos_clock_write(tm.tm_min,RTC_MINUTES); chrp_cmos_clock_write(tm.tm_hour,RTC_HOURS); chrp_cmos_clock_write(tm.tm_mon,RTC_MONTH); chrp_cmos_clock_write(tm.tm_mday,RTC_DAY_OF_MONTH); chrp_cmos_clock_write(tm.tm_year,RTC_YEAR); /* The following flags have to be released exactly in this order, * otherwise the DS12887 (popular MC146818A clone with integrated * battery and quartz) will not reset the oscillator and will not * update precisely 500 ms later. You won't find this mentioned in * the Dallas Semiconductor data sheets, but who believes data * sheets anyway ... -- Markus Kuhn */ chrp_cmos_clock_write(save_control, RTC_CONTROL); chrp_cmos_clock_write(save_freq_select, RTC_FREQ_SELECT); if ( (time_state == TIME_ERROR) || (time_state == TIME_BAD) ) time_state = TIME_OK; spin_unlock(&rtc_lock); return 0; } unsigned long __chrp chrp_get_rtc_time(void) { unsigned int year, mon, day, hour, min, sec; int uip, i; /* The Linux interpretation of the CMOS clock register contents: * When the Update-In-Progress (UIP) flag goes from 1 to 0, the * RTC registers show the second which has precisely just started. * Let's hope other operating systems interpret the RTC the same way. */ /* Since the UIP flag is set for about 2.2 ms and the clock * is typically written with a precision of 1 jiffy, trying * to obtain a precision better than a few milliseconds is * an illusion. Only consistency is interesting, this also * allows to use the routine for /dev/rtc without a potential * 1 second kernel busy loop triggered by any reader of /dev/rtc. */ for ( i = 0; i<1000000; i++) { uip = chrp_cmos_clock_read(RTC_FREQ_SELECT); sec = chrp_cmos_clock_read(RTC_SECONDS); min = chrp_cmos_clock_read(RTC_MINUTES); hour = chrp_cmos_clock_read(RTC_HOURS); day = chrp_cmos_clock_read(RTC_DAY_OF_MONTH); mon = chrp_cmos_clock_read(RTC_MONTH); year = chrp_cmos_clock_read(RTC_YEAR); uip |= chrp_cmos_clock_read(RTC_FREQ_SELECT); if ((uip & RTC_UIP)==0) break; } if (!(chrp_cmos_clock_read(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); } if ((year += 1900) < 1970) year += 100; return mktime(year, mon, day, hour, min, sec); } void __init chrp_calibrate_decr(void) { struct device_node *cpu; unsigned int freq, *fp; if (via_calibrate_decr()) return; /* * The cpu node should have a timebase-frequency property * to tell us the rate at which the decrementer counts. */ freq = 16666000; /* hardcoded default */ cpu = find_type_devices("cpu"); if (cpu != 0) { fp = (unsigned int *) get_property(cpu, "timebase-frequency", NULL); if (fp != 0) freq = *fp; } printk("time_init: decrementer frequency = %u.%.6u MHz\n", freq/1000000, freq%1000000); tb_ticks_per_jiffy = freq / HZ; tb_to_us = mulhwu_scale_factor(freq, 1000000); }