/*arch/ppc/platforms/mpc866ads_setup.c * * Platform setup for the Freescale mpc866ads board * * Vitaly Bordug <vbordug@ru.mvista.com> * * Copyright 2005-2006 MontaVista Software Inc. * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include <linux/init.h> #include <linux/module.h> #include <linux/param.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/device.h> #include <linux/fs_enet_pd.h> #include <linux/fs_uart_pd.h> #include <linux/mii.h> #include <linux/phy.h> #include <asm/delay.h> #include <asm/io.h> #include <asm/machdep.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/system.h> #include <asm/time.h> #include <asm/ppcboot.h> #include <asm/8xx_immap.h> #include <asm/cpm1.h> #include <asm/ppc_sys.h> #include <asm/mpc8xx.h> extern unsigned char __res[]; static void setup_fec1_ioports(struct fs_platform_info*); static void setup_scc1_ioports(struct fs_platform_info*); static void setup_smc1_ioports(struct fs_uart_platform_info*); static void setup_smc2_ioports(struct fs_uart_platform_info*); static struct fs_mii_fec_platform_info mpc8xx_mdio_fec_pdata; static struct fs_mii_fec_platform_info mpc8xx_mdio_fec_pdata; static struct fs_platform_info mpc8xx_enet_pdata[] = { [fsid_fec1] = { .rx_ring = 128, .tx_ring = 16, .rx_copybreak = 240, .use_napi = 1, .napi_weight = 17, .init_ioports = setup_fec1_ioports, .bus_id = "0:0f", .has_phy = 1, }, [fsid_scc1] = { .rx_ring = 64, .tx_ring = 8, .rx_copybreak = 240, .use_napi = 1, .napi_weight = 17, .init_ioports = setup_scc1_ioports, .bus_id = "fixed@100:1", }, }; static struct fs_uart_platform_info mpc866_uart_pdata[] = { [fsid_smc1_uart] = { .brg = 1, .fs_no = fsid_smc1_uart, .init_ioports = setup_smc1_ioports, .tx_num_fifo = 4, .tx_buf_size = 32, .rx_num_fifo = 4, .rx_buf_size = 32, }, [fsid_smc2_uart] = { .brg = 2, .fs_no = fsid_smc2_uart, .init_ioports = setup_smc2_ioports, .tx_num_fifo = 4, .tx_buf_size = 32, .rx_num_fifo = 4, .rx_buf_size = 32, }, }; void __init board_init(void) { volatile cpm8xx_t *cp = cpmp; unsigned *bcsr_io; bcsr_io = ioremap(BCSR1, sizeof(unsigned long)); if (bcsr_io == NULL) { printk(KERN_CRIT "Could not remap BCSR1\n"); return; } #ifdef CONFIG_SERIAL_CPM_SMC1 cp->cp_simode &= ~(0xe0000000 >> 17); /* brg1 */ clrbits32(bcsr_io,(0x80000000 >> 7)); cp->cp_smc[0].smc_smcm |= (SMCM_RX | SMCM_TX); cp->cp_smc[0].smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN); #else setbits32(bcsr_io,(0x80000000 >> 7)); cp->cp_pbpar &= ~(0x000000c0); cp->cp_pbdir |= 0x000000c0; cp->cp_smc[0].smc_smcmr = 0; cp->cp_smc[0].smc_smce = 0; #endif #ifdef CONFIG_SERIAL_CPM_SMC2 cp->cp_simode &= ~(0xe0000000 >> 1); cp->cp_simode |= (0x20000000 >> 1); /* brg2 */ clrbits32(bcsr_io,(0x80000000 >> 13)); cp->cp_smc[1].smc_smcm |= (SMCM_RX | SMCM_TX); cp->cp_smc[1].smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN); #else clrbits32(bcsr_io,(0x80000000 >> 13)); cp->cp_pbpar &= ~(0x00000c00); cp->cp_pbdir |= 0x00000c00; cp->cp_smc[1].smc_smcmr = 0; cp->cp_smc[1].smc_smce = 0; #endif iounmap(bcsr_io); } static void setup_fec1_ioports(struct fs_platform_info* pdata) { immap_t *immap = (immap_t *) IMAP_ADDR; setbits16(&immap->im_ioport.iop_pdpar, 0x1fff); setbits16(&immap->im_ioport.iop_pddir, 0x1fff); } static void setup_scc1_ioports(struct fs_platform_info* pdata) { immap_t *immap = (immap_t *) IMAP_ADDR; unsigned *bcsr_io; bcsr_io = ioremap(BCSR1, sizeof(unsigned long)); if (bcsr_io == NULL) { printk(KERN_CRIT "Could not remap BCSR1\n"); return; } /* Enable the PHY. */ clrbits32(bcsr_io,BCSR1_ETHEN); /* Configure port A pins for Txd and Rxd. */ /* Disable receive and transmit in case EPPC-Bug started it. */ setbits16(&immap->im_ioport.iop_papar, PA_ENET_RXD | PA_ENET_TXD); clrbits16(&immap->im_ioport.iop_padir, PA_ENET_RXD | PA_ENET_TXD); clrbits16(&immap->im_ioport.iop_paodr, PA_ENET_TXD); /* Configure port C pins to enable CLSN and RENA. */ clrbits16(&immap->im_ioport.iop_pcpar, PC_ENET_CLSN | PC_ENET_RENA); clrbits16(&immap->im_ioport.iop_pcdir, PC_ENET_CLSN | PC_ENET_RENA); setbits16(&immap->im_ioport.iop_pcso, PC_ENET_CLSN | PC_ENET_RENA); /* Configure port A for TCLK and RCLK. */ setbits16(&immap->im_ioport.iop_papar, PA_ENET_TCLK | PA_ENET_RCLK); clrbits16(&immap->im_ioport.iop_padir, PA_ENET_TCLK | PA_ENET_RCLK); clrbits32(&immap->im_cpm.cp_pbpar, PB_ENET_TENA); clrbits32(&immap->im_cpm.cp_pbdir, PB_ENET_TENA); /* Configure Serial Interface clock routing. * First, clear all SCC bits to zero, then set the ones we want. */ clrbits32(&immap->im_cpm.cp_sicr, SICR_ENET_MASK); setbits32(&immap->im_cpm.cp_sicr, SICR_ENET_CLKRT); /* In the original SCC enet driver the following code is placed at the end of the initialization */ setbits32(&immap->im_cpm.cp_pbpar, PB_ENET_TENA); setbits32(&immap->im_cpm.cp_pbdir, PB_ENET_TENA); } static void setup_smc1_ioports(struct fs_uart_platform_info* pdata) { immap_t *immap = (immap_t *) IMAP_ADDR; unsigned *bcsr_io; unsigned int iobits = 0x000000c0; bcsr_io = ioremap(BCSR1, sizeof(unsigned long)); if (bcsr_io == NULL) { printk(KERN_CRIT "Could not remap BCSR1\n"); return; } clrbits32(bcsr_io,BCSR1_RS232EN_1); iounmap(bcsr_io); setbits32(&immap->im_cpm.cp_pbpar, iobits); clrbits32(&immap->im_cpm.cp_pbdir, iobits); clrbits16(&immap->im_cpm.cp_pbodr, iobits); } static void setup_smc2_ioports(struct fs_uart_platform_info* pdata) { immap_t *immap = (immap_t *) IMAP_ADDR; unsigned *bcsr_io; unsigned int iobits = 0x00000c00; bcsr_io = ioremap(BCSR1, sizeof(unsigned long)); if (bcsr_io == NULL) { printk(KERN_CRIT "Could not remap BCSR1\n"); return; } clrbits32(bcsr_io,BCSR1_RS232EN_2); iounmap(bcsr_io); #ifndef CONFIG_SERIAL_CPM_ALT_SMC2 setbits32(&immap->im_cpm.cp_pbpar, iobits); clrbits32(&immap->im_cpm.cp_pbdir, iobits); clrbits16(&immap->im_cpm.cp_pbodr, iobits); #else setbits16(&immap->im_ioport.iop_papar, iobits); clrbits16(&immap->im_ioport.iop_padir, iobits); clrbits16(&immap->im_ioport.iop_paodr, iobits); #endif } static int ma_count = 0; static void mpc866ads_fixup_enet_pdata(struct platform_device *pdev, int fs_no) { struct fs_platform_info *fpi; volatile cpm8xx_t *cp; bd_t *bd = (bd_t *) __res; char *e; int i; /* Get pointer to Communication Processor */ cp = cpmp; if(fs_no >= ARRAY_SIZE(mpc8xx_enet_pdata)) { printk(KERN_ERR"No network-suitable #%d device on bus", fs_no); return; } fpi = &mpc8xx_enet_pdata[fs_no]; fpi->fs_no = fs_no; pdev->dev.platform_data = fpi; e = (unsigned char *)&bd->bi_enetaddr; for (i = 0; i < 6; i++) fpi->macaddr[i] = *e++; fpi->macaddr[5] += ma_count++; } static void mpc866ads_fixup_fec_enet_pdata(struct platform_device *pdev, int idx) { /* This is for FEC devices only */ if (!pdev || !pdev->name || (!strstr(pdev->name, "fsl-cpm-fec"))) return; mpc866ads_fixup_enet_pdata(pdev, fsid_fec1 + pdev->id - 1); } static void mpc866ads_fixup_scc_enet_pdata(struct platform_device *pdev, int idx) { /* This is for SCC devices only */ if (!pdev || !pdev->name || (!strstr(pdev->name, "fsl-cpm-scc"))) return; mpc866ads_fixup_enet_pdata(pdev, fsid_scc1 + pdev->id - 1); } static void __init mpc866ads_fixup_uart_pdata(struct platform_device *pdev, int idx) { bd_t *bd = (bd_t *) __res; struct fs_uart_platform_info *pinfo; int num = ARRAY_SIZE(mpc866_uart_pdata); int id = fs_uart_id_smc2fsid(idx); /* no need to alter anything if console */ if ((id < num) && (!pdev->dev.platform_data)) { pinfo = &mpc866_uart_pdata[id]; pinfo->uart_clk = bd->bi_intfreq; pdev->dev.platform_data = pinfo; } } static int mpc866ads_platform_notify(struct device *dev) { static const struct platform_notify_dev_map dev_map[] = { { .bus_id = "fsl-cpm-fec", .rtn = mpc866ads_fixup_fec_enet_pdata, }, { .bus_id = "fsl-cpm-scc", .rtn = mpc866ads_fixup_scc_enet_pdata, }, { .bus_id = "fsl-cpm-smc:uart", .rtn = mpc866ads_fixup_uart_pdata }, { .bus_id = NULL } }; platform_notify_map(dev_map,dev); return 0; } int __init mpc866ads_init(void) { bd_t *bd = (bd_t *) __res; struct fs_mii_fec_platform_info* fmpi; printk(KERN_NOTICE "mpc866ads: Init\n"); platform_notify = mpc866ads_platform_notify; ppc_sys_device_initfunc(); ppc_sys_device_disable_all(); #ifdef CONFIG_MPC8xx_SECOND_ETH_SCC1 ppc_sys_device_enable(MPC8xx_CPM_SCC1); #endif ppc_sys_device_enable(MPC8xx_CPM_FEC1); ppc_sys_device_enable(MPC8xx_MDIO_FEC); fmpi = ppc_sys_platform_devices[MPC8xx_MDIO_FEC].dev.platform_data = &mpc8xx_mdio_fec_pdata; fmpi->mii_speed = ((((bd->bi_intfreq + 4999999) / 2500000) / 2) & 0x3F) << 1; /* No PHY interrupt line here */ fmpi->irq[0xf] = PHY_POLL; /* Since either of the uarts could be used as console, they need to ready */ #ifdef CONFIG_SERIAL_CPM_SMC1 ppc_sys_device_enable(MPC8xx_CPM_SMC1); ppc_sys_device_setfunc(MPC8xx_CPM_SMC1, PPC_SYS_FUNC_UART); #endif #ifdef CONFIG_SERIAL_CPM_SMC2 ppc_sys_device_enable(MPC8xx_CPM_SMC2); ppc_sys_device_setfunc(MPC8xx_CPM_SMC2, PPC_SYS_FUNC_UART); #endif ppc_sys_device_enable(MPC8xx_MDIO_FEC); fmpi = ppc_sys_platform_devices[MPC8xx_MDIO_FEC].dev.platform_data = &mpc8xx_mdio_fec_pdata; fmpi->mii_speed = ((((bd->bi_intfreq + 4999999) / 2500000) / 2) & 0x3F) << 1; /* No PHY interrupt line here */ fmpi->irq[0xf] = PHY_POLL; return 0; } /* To prevent confusion, console selection is gross: by 0 assumed SMC1 and by 1 assumed SMC2 */ struct platform_device* early_uart_get_pdev(int index) { bd_t *bd = (bd_t *) __res; struct fs_uart_platform_info *pinfo; struct platform_device* pdev = NULL; if(index) { /*assume SMC2 here*/ pdev = &ppc_sys_platform_devices[MPC8xx_CPM_SMC2]; pinfo = &mpc866_uart_pdata[1]; } else { /*over SMC1*/ pdev = &ppc_sys_platform_devices[MPC8xx_CPM_SMC1]; pinfo = &mpc866_uart_pdata[0]; } pinfo->uart_clk = bd->bi_intfreq; pdev->dev.platform_data = pinfo; ppc_sys_fixup_mem_resource(pdev, IMAP_ADDR); return NULL; } arch_initcall(mpc866ads_init);