/* * Procedures for interfacing to the Open Firmware PROM on * Power Macintosh computers. * * In particular, we are interested in the device tree * and in using some of its services (exit, write to stdout). * * Paul Mackerras August 1996. * Copyright (C) 1996 Paul Mackerras. */ #include <stdarg.h> #include <linux/config.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/init.h> #include <linux/version.h> #include <linux/threads.h> #include <linux/spinlock.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/bitops.h> #include <asm/sections.h> #include <asm/prom.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/smp.h> #include <asm/bootx.h> #include <asm/system.h> #include <asm/mmu.h> #include <asm/pgtable.h> #include <asm/bootinfo.h> #include <asm/btext.h> #include <asm/pci-bridge.h> #include <asm/open_pic.h> struct pci_address { unsigned a_hi; unsigned a_mid; unsigned a_lo; }; struct pci_reg_property { struct pci_address addr; unsigned size_hi; unsigned size_lo; }; struct isa_reg_property { unsigned space; unsigned address; unsigned size; }; typedef unsigned long interpret_func(struct device_node *, unsigned long, int, int); static interpret_func interpret_pci_props; static interpret_func interpret_dbdma_props; static interpret_func interpret_isa_props; static interpret_func interpret_macio_props; static interpret_func interpret_root_props; extern char *klimit; /* Set for a newworld or CHRP machine */ int use_of_interrupt_tree; struct device_node *dflt_interrupt_controller; int num_interrupt_controllers; int pmac_newworld; extern unsigned int rtas_entry; /* physical pointer */ extern struct device_node *allnodes; static unsigned long finish_node(struct device_node *, unsigned long, interpret_func *, int, int); static unsigned long finish_node_interrupts(struct device_node *, unsigned long); static struct device_node *find_phandle(phandle); extern void enter_rtas(void *); void phys_call_rtas(int, int, int, ...); extern char cmd_line[512]; /* XXX */ extern boot_infos_t *boot_infos; unsigned long dev_tree_size; void __openfirmware phys_call_rtas(int service, int nargs, int nret, ...) { va_list list; union { unsigned long words[16]; double align; } u; void (*rtas)(void *, unsigned long); int i; u.words[0] = service; u.words[1] = nargs; u.words[2] = nret; va_start(list, nret); for (i = 0; i < nargs; ++i) u.words[i+3] = va_arg(list, unsigned long); va_end(list); rtas = (void (*)(void *, unsigned long)) rtas_entry; rtas(&u, rtas_data); } /* * finish_device_tree is called once things are running normally * (i.e. with text and data mapped to the address they were linked at). * It traverses the device tree and fills in the name, type, * {n_}addrs and {n_}intrs fields of each node. */ void __init finish_device_tree(void) { unsigned long mem = (unsigned long) klimit; struct device_node *np; /* All newworld pmac machines and CHRPs now use the interrupt tree */ for (np = allnodes; np != NULL; np = np->allnext) { if (get_property(np, "interrupt-parent", NULL)) { use_of_interrupt_tree = 1; break; } } if (_machine == _MACH_Pmac && use_of_interrupt_tree) pmac_newworld = 1; #ifdef CONFIG_BOOTX_TEXT if (boot_infos && pmac_newworld) { prom_print("WARNING ! BootX/miBoot booting is not supported on this machine\n"); prom_print(" You should use an Open Firmware bootloader\n"); } #endif /* CONFIG_BOOTX_TEXT */ if (use_of_interrupt_tree) { /* * We want to find out here how many interrupt-controller * nodes there are, and if we are booted from BootX, * we need a pointer to the first (and hopefully only) * such node. But we can't use find_devices here since * np->name has not been set yet. -- paulus */ int n = 0; char *name, *ic; int iclen; for (np = allnodes; np != NULL; np = np->allnext) { ic = get_property(np, "interrupt-controller", &iclen); name = get_property(np, "name", NULL); /* checking iclen makes sure we don't get a false match on /chosen.interrupt_controller */ if ((name != NULL && strcmp(name, "interrupt-controller") == 0) || (ic != NULL && iclen == 0 && strcmp(name, "AppleKiwi"))) { if (n == 0) dflt_interrupt_controller = np; ++n; } } num_interrupt_controllers = n; } mem = finish_node(allnodes, mem, NULL, 1, 1); dev_tree_size = mem - (unsigned long) allnodes; klimit = (char *) mem; } static unsigned long __init finish_node(struct device_node *np, unsigned long mem_start, interpret_func *ifunc, int naddrc, int nsizec) { struct device_node *child; int *ip; np->name = get_property(np, "name", NULL); np->type = get_property(np, "device_type", NULL); if (!np->name) np->name = "<NULL>"; if (!np->type) np->type = "<NULL>"; /* get the device addresses and interrupts */ if (ifunc != NULL) mem_start = ifunc(np, mem_start, naddrc, nsizec); if (use_of_interrupt_tree) mem_start = finish_node_interrupts(np, mem_start); /* Look for #address-cells and #size-cells properties. */ ip = (int *) get_property(np, "#address-cells", NULL); if (ip != NULL) naddrc = *ip; ip = (int *) get_property(np, "#size-cells", NULL); if (ip != NULL) nsizec = *ip; if (np->parent == NULL) ifunc = interpret_root_props; else if (np->type == 0) ifunc = NULL; else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci")) ifunc = interpret_pci_props; else if (!strcmp(np->type, "dbdma")) ifunc = interpret_dbdma_props; else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props) ifunc = interpret_macio_props; else if (!strcmp(np->type, "isa")) ifunc = interpret_isa_props; else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3")) ifunc = interpret_root_props; else if (!((ifunc == interpret_dbdma_props || ifunc == interpret_macio_props) && (!strcmp(np->type, "escc") || !strcmp(np->type, "media-bay")))) ifunc = NULL; /* if we were booted from BootX, convert the full name */ if (boot_infos && strncmp(np->full_name, "Devices:device-tree", 19) == 0) { if (np->full_name[19] == 0) { strcpy(np->full_name, "/"); } else if (np->full_name[19] == ':') { char *p = np->full_name + 19; np->full_name = p; for (; *p; ++p) if (*p == ':') *p = '/'; } } for (child = np->child; child != NULL; child = child->sibling) mem_start = finish_node(child, mem_start, ifunc, naddrc, nsizec); return mem_start; } /* * Find the interrupt parent of a node. */ static struct device_node * __init intr_parent(struct device_node *p) { phandle *parp; parp = (phandle *) get_property(p, "interrupt-parent", NULL); if (parp == NULL) return p->parent; p = find_phandle(*parp); if (p != NULL) return p; /* * On a powermac booted with BootX, we don't get to know the * phandles for any nodes, so find_phandle will return NULL. * Fortunately these machines only have one interrupt controller * so there isn't in fact any ambiguity. -- paulus */ if (num_interrupt_controllers == 1) p = dflt_interrupt_controller; return p; } /* * Find out the size of each entry of the interrupts property * for a node. */ static int __init prom_n_intr_cells(struct device_node *np) { struct device_node *p; unsigned int *icp; for (p = np; (p = intr_parent(p)) != NULL; ) { icp = (unsigned int *) get_property(p, "#interrupt-cells", NULL); if (icp != NULL) return *icp; if (get_property(p, "interrupt-controller", NULL) != NULL || get_property(p, "interrupt-map", NULL) != NULL) { printk("oops, node %s doesn't have #interrupt-cells\n", p->full_name); return 1; } } printk("prom_n_intr_cells failed for %s\n", np->full_name); return 1; } /* * Map an interrupt from a device up to the platform interrupt * descriptor. */ static int __init map_interrupt(unsigned int **irq, struct device_node **ictrler, struct device_node *np, unsigned int *ints, int nintrc) { struct device_node *p, *ipar; unsigned int *imap, *imask, *ip; int i, imaplen, match; int newintrc = 1, newaddrc = 1; unsigned int *reg; int naddrc; reg = (unsigned int *) get_property(np, "reg", NULL); naddrc = prom_n_addr_cells(np); p = intr_parent(np); while (p != NULL) { if (get_property(p, "interrupt-controller", NULL) != NULL) /* this node is an interrupt controller, stop here */ break; imap = (unsigned int *) get_property(p, "interrupt-map", &imaplen); if (imap == NULL) { p = intr_parent(p); continue; } imask = (unsigned int *) get_property(p, "interrupt-map-mask", NULL); if (imask == NULL) { printk("oops, %s has interrupt-map but no mask\n", p->full_name); return 0; } imaplen /= sizeof(unsigned int); match = 0; ipar = NULL; while (imaplen > 0 && !match) { /* check the child-interrupt field */ match = 1; for (i = 0; i < naddrc && match; ++i) match = ((reg[i] ^ imap[i]) & imask[i]) == 0; for (; i < naddrc + nintrc && match; ++i) match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0; imap += naddrc + nintrc; imaplen -= naddrc + nintrc; /* grab the interrupt parent */ ipar = find_phandle((phandle) *imap++); --imaplen; if (ipar == NULL && num_interrupt_controllers == 1) /* cope with BootX not giving us phandles */ ipar = dflt_interrupt_controller; if (ipar == NULL) { printk("oops, no int parent %x in map of %s\n", imap[-1], p->full_name); return 0; } /* find the parent's # addr and intr cells */ ip = (unsigned int *) get_property(ipar, "#interrupt-cells", NULL); if (ip == NULL) { printk("oops, no #interrupt-cells on %s\n", ipar->full_name); return 0; } newintrc = *ip; ip = (unsigned int *) get_property(ipar, "#address-cells", NULL); newaddrc = (ip == NULL)? 0: *ip; imap += newaddrc + newintrc; imaplen -= newaddrc + newintrc; } if (imaplen < 0) { printk("oops, error decoding int-map on %s, len=%d\n", p->full_name, imaplen); return 0; } if (!match) { printk("oops, no match in %s int-map for %s\n", p->full_name, np->full_name); return 0; } p = ipar; naddrc = newaddrc; nintrc = newintrc; ints = imap - nintrc; reg = ints - naddrc; } if (p == NULL) printk("hmmm, int tree for %s doesn't have ctrler\n", np->full_name); *irq = ints; *ictrler = p; return nintrc; } /* * New version of finish_node_interrupts. */ static unsigned long __init finish_node_interrupts(struct device_node *np, unsigned long mem_start) { unsigned int *ints; int intlen, intrcells; int i, j, n, offset; unsigned int *irq; struct device_node *ic; ints = (unsigned int *) get_property(np, "interrupts", &intlen); if (ints == NULL) return mem_start; intrcells = prom_n_intr_cells(np); intlen /= intrcells * sizeof(unsigned int); np->n_intrs = intlen; np->intrs = (struct interrupt_info *) mem_start; mem_start += intlen * sizeof(struct interrupt_info); for (i = 0; i < intlen; ++i) { np->intrs[i].line = 0; np->intrs[i].sense = 1; n = map_interrupt(&irq, &ic, np, ints, intrcells); if (n <= 0) continue; offset = 0; /* * On a CHRP we have an 8259 which is subordinate to * the openpic in the interrupt tree, but we want the * openpic's interrupt numbers offsetted, not the 8259's. * So we apply the offset if the controller is at the * root of the interrupt tree, i.e. has no interrupt-parent. * This doesn't cope with the general case of multiple * cascaded interrupt controllers, but then neither will * irq.c at the moment either. -- paulus * The G5 triggers that code, I add a machine test. On * those machines, we want to offset interrupts from the * second openpic by 128 -- BenH */ if (_machine != _MACH_Pmac && num_interrupt_controllers > 1 && ic != NULL && get_property(ic, "interrupt-parent", NULL) == NULL) offset = 16; else if (_machine == _MACH_Pmac && num_interrupt_controllers > 1 && ic != NULL && ic->parent != NULL) { char *name = get_property(ic->parent, "name", NULL); if (name && !strcmp(name, "u3")) offset = 128; } np->intrs[i].line = irq[0] + offset; if (n > 1) np->intrs[i].sense = irq[1]; if (n > 2) { printk("hmmm, got %d intr cells for %s:", n, np->full_name); for (j = 0; j < n; ++j) printk(" %d", irq[j]); printk("\n"); } ints += intrcells; } return mem_start; } /* * When BootX makes a copy of the device tree from the MacOS * Name Registry, it is in the format we use but all of the pointers * are offsets from the start of the tree. * This procedure updates the pointers. */ void __init relocate_nodes(void) { unsigned long base; struct device_node *np; struct property *pp; #define ADDBASE(x) (x = (typeof (x))((x)? ((unsigned long)(x) + base): 0)) base = (unsigned long) boot_infos + boot_infos->deviceTreeOffset; allnodes = (struct device_node *)(base + 4); for (np = allnodes; np != 0; np = np->allnext) { ADDBASE(np->full_name); ADDBASE(np->properties); ADDBASE(np->parent); ADDBASE(np->child); ADDBASE(np->sibling); ADDBASE(np->allnext); for (pp = np->properties; pp != 0; pp = pp->next) { ADDBASE(pp->name); ADDBASE(pp->value); ADDBASE(pp->next); } } } int prom_n_addr_cells(struct device_node* np) { int* ip; do { if (np->parent) np = np->parent; ip = (int *) get_property(np, "#address-cells", NULL); if (ip != NULL) return *ip; } while (np->parent); /* No #address-cells property for the root node, default to 1 */ return 1; } int prom_n_size_cells(struct device_node* np) { int* ip; do { if (np->parent) np = np->parent; ip = (int *) get_property(np, "#size-cells", NULL); if (ip != NULL) return *ip; } while (np->parent); /* No #size-cells property for the root node, default to 1 */ return 1; } static unsigned long __init map_addr(struct device_node *np, unsigned long space, unsigned long addr) { int na; unsigned int *ranges; int rlen = 0; unsigned int type; type = (space >> 24) & 3; if (type == 0) return addr; while ((np = np->parent) != NULL) { if (strcmp(np->type, "pci") != 0) continue; /* PCI bridge: map the address through the ranges property */ na = prom_n_addr_cells(np); ranges = (unsigned int *) get_property(np, "ranges", &rlen); while ((rlen -= (na + 5) * sizeof(unsigned int)) >= 0) { if (((ranges[0] >> 24) & 3) == type && ranges[2] <= addr && addr - ranges[2] < ranges[na+4]) { /* ok, this matches, translate it */ addr += ranges[na+2] - ranges[2]; break; } ranges += na + 5; } } return addr; } static unsigned long __init interpret_pci_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct address_range *adr; struct pci_reg_property *pci_addrs; int i, l, *ip; pci_addrs = (struct pci_reg_property *) get_property(np, "assigned-addresses", &l); if (pci_addrs != 0 && l >= sizeof(struct pci_reg_property)) { i = 0; adr = (struct address_range *) mem_start; while ((l -= sizeof(struct pci_reg_property)) >= 0) { adr[i].space = pci_addrs[i].addr.a_hi; adr[i].address = map_addr(np, pci_addrs[i].addr.a_hi, pci_addrs[i].addr.a_lo); adr[i].size = pci_addrs[i].size_lo; ++i; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "AAPL,interrupts", &l); if (ip == 0 && np->parent) ip = (int *) get_property(np->parent, "AAPL,interrupts", &l); if (ip == 0) ip = (int *) get_property(np, "interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / sizeof(int); mem_start += np->n_intrs * sizeof(struct interrupt_info); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = 1; } } return mem_start; } static unsigned long __init interpret_dbdma_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct reg_property *rp; struct address_range *adr; unsigned long base_address; int i, l, *ip; struct device_node *db; base_address = 0; for (db = np->parent; db != NULL; db = db->parent) { if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) { base_address = db->addrs[0].address; break; } } rp = (struct reg_property *) get_property(np, "reg", &l); if (rp != 0 && l >= sizeof(struct reg_property)) { i = 0; adr = (struct address_range *) mem_start; while ((l -= sizeof(struct reg_property)) >= 0) { adr[i].space = 2; adr[i].address = rp[i].address + base_address; adr[i].size = rp[i].size; ++i; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "AAPL,interrupts", &l); if (ip == 0) ip = (int *) get_property(np, "interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / sizeof(int); mem_start += np->n_intrs * sizeof(struct interrupt_info); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = 1; } } return mem_start; } static unsigned long __init interpret_macio_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct reg_property *rp; struct address_range *adr; unsigned long base_address; int i, l, *ip; struct device_node *db; base_address = 0; for (db = np->parent; db != NULL; db = db->parent) { if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) { base_address = db->addrs[0].address; break; } } rp = (struct reg_property *) get_property(np, "reg", &l); if (rp != 0 && l >= sizeof(struct reg_property)) { i = 0; adr = (struct address_range *) mem_start; while ((l -= sizeof(struct reg_property)) >= 0) { adr[i].space = 2; adr[i].address = rp[i].address + base_address; adr[i].size = rp[i].size; ++i; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "interrupts", &l); if (ip == 0) ip = (int *) get_property(np, "AAPL,interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / sizeof(int); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = 1; } mem_start += np->n_intrs * sizeof(struct interrupt_info); } return mem_start; } static unsigned long __init interpret_isa_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct isa_reg_property *rp; struct address_range *adr; int i, l, *ip; rp = (struct isa_reg_property *) get_property(np, "reg", &l); if (rp != 0 && l >= sizeof(struct isa_reg_property)) { i = 0; adr = (struct address_range *) mem_start; while ((l -= sizeof(struct reg_property)) >= 0) { adr[i].space = rp[i].space; adr[i].address = rp[i].address + (adr[i].space? 0: _ISA_MEM_BASE); adr[i].size = rp[i].size; ++i; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / (2 * sizeof(int)); mem_start += np->n_intrs * sizeof(struct interrupt_info); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = *ip++; } } return mem_start; } static unsigned long __init interpret_root_props(struct device_node *np, unsigned long mem_start, int naddrc, int nsizec) { struct address_range *adr; int i, l, *ip; unsigned int *rp; int rpsize = (naddrc + nsizec) * sizeof(unsigned int); rp = (unsigned int *) get_property(np, "reg", &l); if (rp != 0 && l >= rpsize) { i = 0; adr = (struct address_range *) mem_start; while ((l -= rpsize) >= 0) { adr[i].space = (naddrc >= 2? rp[naddrc-2]: 2); adr[i].address = rp[naddrc - 1]; adr[i].size = rp[naddrc + nsizec - 1]; ++i; rp += naddrc + nsizec; } np->addrs = adr; np->n_addrs = i; mem_start += i * sizeof(struct address_range); } if (use_of_interrupt_tree) return mem_start; ip = (int *) get_property(np, "AAPL,interrupts", &l); if (ip == 0) ip = (int *) get_property(np, "interrupts", &l); if (ip != 0) { np->intrs = (struct interrupt_info *) mem_start; np->n_intrs = l / sizeof(int); mem_start += np->n_intrs * sizeof(struct interrupt_info); for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ip++; np->intrs[i].sense = 1; } } return mem_start; } /* * Work out the sense (active-low level / active-high edge) * of each interrupt from the device tree. */ void __init prom_get_irq_senses(unsigned char *senses, int off, int max) { struct device_node *np; int i, j; /* default to level-triggered */ memset(senses, 1, max - off); if (!use_of_interrupt_tree) return; for (np = allnodes; np != 0; np = np->allnext) { for (j = 0; j < np->n_intrs; j++) { i = np->intrs[j].line; if (i >= off && i < max) { if (np->intrs[j].sense == 1) senses[i-off] = (IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE); else senses[i-off] = (IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE); } } } } /* * Construct and return a list of the device_nodes with a given name. */ struct device_node * find_devices(const char *name) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (np->name != 0 && strcasecmp(np->name, name) == 0) { *prevp = np; prevp = &np->next; } } *prevp = NULL; return head; } /* * Construct and return a list of the device_nodes with a given type. */ struct device_node * find_type_devices(const char *type) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (np->type != 0 && strcasecmp(np->type, type) == 0) { *prevp = np; prevp = &np->next; } } *prevp = NULL; return head; } /* * Returns all nodes linked together */ struct device_node * __openfirmware find_all_nodes(void) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { *prevp = np; prevp = &np->next; } *prevp = NULL; return head; } /* Checks if the given "compat" string matches one of the strings in * the device's "compatible" property */ int device_is_compatible(struct device_node *device, const char *compat) { const char* cp; int cplen, l; cp = (char *) get_property(device, "compatible", &cplen); if (cp == NULL) return 0; while (cplen > 0) { if (strncasecmp(cp, compat, strlen(compat)) == 0) return 1; l = strlen(cp) + 1; cp += l; cplen -= l; } return 0; } /* * Indicates whether the root node has a given value in its * compatible property. */ int machine_is_compatible(const char *compat) { struct device_node *root; root = find_path_device("/"); if (root == 0) return 0; return device_is_compatible(root, compat); } /* * Construct and return a list of the device_nodes with a given type * and compatible property. */ struct device_node * find_compatible_devices(const char *type, const char *compat) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (type != NULL && !(np->type != 0 && strcasecmp(np->type, type) == 0)) continue; if (device_is_compatible(np, compat)) { *prevp = np; prevp = &np->next; } } *prevp = NULL; return head; } /* * Find the device_node with a given full_name. */ struct device_node * find_path_device(const char *path) { struct device_node *np; for (np = allnodes; np != 0; np = np->allnext) if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) return np; return NULL; } /******* * * New implementation of the OF "find" APIs, return a refcounted * object, call of_node_put() when done. Currently, still lacks * locking as old implementation, this is beeing done for ppc64. * * Note that property management will need some locking as well, * this isn't dealt with yet * *******/ /** * of_find_node_by_name - Find a node by it's "name" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @name: The name string to match against * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_name(struct device_node *from, const char *name) { struct device_node *np = from ? from->allnext : allnodes; for (; np != 0; np = np->allnext) if (np->name != 0 && strcasecmp(np->name, name) == 0) break; if (from) of_node_put(from); return of_node_get(np); } /** * of_find_node_by_type - Find a node by it's "device_type" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @name: The type string to match against * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_type(struct device_node *from, const char *type) { struct device_node *np = from ? from->allnext : allnodes; for (; np != 0; np = np->allnext) if (np->type != 0 && strcasecmp(np->type, type) == 0) break; if (from) of_node_put(from); return of_node_get(np); } /** * of_find_compatible_node - Find a node based on type and one of the * tokens in it's "compatible" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @type: The type string to match "device_type" or NULL to ignore * @compatible: The string to match to one of the tokens in the device * "compatible" list. * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_compatible_node(struct device_node *from, const char *type, const char *compatible) { struct device_node *np = from ? from->allnext : allnodes; for (; np != 0; np = np->allnext) { if (type != NULL && !(np->type != 0 && strcasecmp(np->type, type) == 0)) continue; if (device_is_compatible(np, compatible)) break; } if (from) of_node_put(from); return of_node_get(np); } /** * of_find_node_by_path - Find a node matching a full OF path * @path: The full path to match * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_path(const char *path) { struct device_node *np = allnodes; for (; np != 0; np = np->allnext) if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) break; return of_node_get(np); } /** * of_find_all_nodes - Get next node in global list * @prev: Previous node or NULL to start iteration * of_node_put() will be called on it * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_all_nodes(struct device_node *prev) { return of_node_get(prev ? prev->allnext : allnodes); } /** * of_get_parent - Get a node's parent if any * @node: Node to get parent * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_get_parent(const struct device_node *node) { return node ? of_node_get(node->parent) : NULL; } /** * of_get_next_child - Iterate a node childs * @node: parent node * @prev: previous child of the parent node, or NULL to get first * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_get_next_child(const struct device_node *node, struct device_node *prev) { struct device_node *next = prev ? prev->sibling : node->child; for (; next != 0; next = next->sibling) if (of_node_get(next)) break; if (prev) of_node_put(prev); return next; } /** * of_node_get - Increment refcount of a node * @node: Node to inc refcount, NULL is supported to * simplify writing of callers * * Returns the node itself or NULL if gone. Current implementation * does nothing as we don't yet do dynamic node allocation on ppc32 */ struct device_node *of_node_get(struct device_node *node) { return node; } /** * of_node_put - Decrement refcount of a node * @node: Node to dec refcount, NULL is supported to * simplify writing of callers * * Current implementation does nothing as we don't yet do dynamic node * allocation on ppc32 */ void of_node_put(struct device_node *node) { } /* * Find the device_node with a given phandle. */ static struct device_node * __init find_phandle(phandle ph) { struct device_node *np; for (np = allnodes; np != 0; np = np->allnext) if (np->node == ph) return np; return NULL; } /* * Find a property with a given name for a given node * and return the value. */ unsigned char * get_property(struct device_node *np, const char *name, int *lenp) { struct property *pp; for (pp = np->properties; pp != 0; pp = pp->next) if (pp->name != NULL && strcmp(pp->name, name) == 0) { if (lenp != 0) *lenp = pp->length; return pp->value; } return NULL; } /* * Add a property to a node */ void __openfirmware prom_add_property(struct device_node* np, struct property* prop) { struct property **next = &np->properties; prop->next = NULL; while (*next) next = &(*next)->next; *next = prop; } /* I quickly hacked that one, check against spec ! */ static inline unsigned long __openfirmware bus_space_to_resource_flags(unsigned int bus_space) { u8 space = (bus_space >> 24) & 0xf; if (space == 0) space = 0x02; if (space == 0x02) return IORESOURCE_MEM; else if (space == 0x01) return IORESOURCE_IO; else { printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n", bus_space); return 0; } } static struct resource* __openfirmware find_parent_pci_resource(struct pci_dev* pdev, struct address_range *range) { unsigned long mask; int i; /* Check this one */ mask = bus_space_to_resource_flags(range->space); for (i=0; i<DEVICE_COUNT_RESOURCE; i++) { if ((pdev->resource[i].flags & mask) == mask && pdev->resource[i].start <= range->address && pdev->resource[i].end > range->address) { if ((range->address + range->size - 1) > pdev->resource[i].end) { /* Add better message */ printk(KERN_WARNING "PCI/OF resource overlap !\n"); return NULL; } break; } } if (i == DEVICE_COUNT_RESOURCE) return NULL; return &pdev->resource[i]; } /* * Request an OF device resource. Currently handles child of PCI devices, * or other nodes attached to the root node. Ultimately, put some * link to resources in the OF node. */ struct resource* __openfirmware request_OF_resource(struct device_node* node, int index, const char* name_postfix) { struct pci_dev* pcidev; u8 pci_bus, pci_devfn; unsigned long iomask; struct device_node* nd; struct resource* parent; struct resource *res = NULL; int nlen, plen; if (index >= node->n_addrs) goto fail; /* Sanity check on bus space */ iomask = bus_space_to_resource_flags(node->addrs[index].space); if (iomask & IORESOURCE_MEM) parent = &iomem_resource; else if (iomask & IORESOURCE_IO) parent = &ioport_resource; else goto fail; /* Find a PCI parent if any */ nd = node; pcidev = NULL; while(nd) { if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn)) pcidev = pci_find_slot(pci_bus, pci_devfn); if (pcidev) break; nd = nd->parent; } if (pcidev) parent = find_parent_pci_resource(pcidev, &node->addrs[index]); if (!parent) { printk(KERN_WARNING "request_OF_resource(%s), parent not found\n", node->name); goto fail; } res = __request_region(parent, node->addrs[index].address, node->addrs[index].size, NULL); if (!res) goto fail; nlen = strlen(node->name); plen = name_postfix ? strlen(name_postfix) : 0; res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL); if (res->name) { strcpy((char *)res->name, node->name); if (plen) strcpy((char *)res->name+nlen, name_postfix); } return res; fail: return NULL; } int __openfirmware release_OF_resource(struct device_node* node, int index) { struct pci_dev* pcidev; u8 pci_bus, pci_devfn; unsigned long iomask, start, end; struct device_node* nd; struct resource* parent; struct resource *res = NULL; if (index >= node->n_addrs) return -EINVAL; /* Sanity check on bus space */ iomask = bus_space_to_resource_flags(node->addrs[index].space); if (iomask & IORESOURCE_MEM) parent = &iomem_resource; else if (iomask & IORESOURCE_IO) parent = &ioport_resource; else return -EINVAL; /* Find a PCI parent if any */ nd = node; pcidev = NULL; while(nd) { if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn)) pcidev = pci_find_slot(pci_bus, pci_devfn); if (pcidev) break; nd = nd->parent; } if (pcidev) parent = find_parent_pci_resource(pcidev, &node->addrs[index]); if (!parent) { printk(KERN_WARNING "release_OF_resource(%s), parent not found\n", node->name); return -ENODEV; } /* Find us in the parent and its childs */ res = parent->child; start = node->addrs[index].address; end = start + node->addrs[index].size - 1; while (res) { if (res->start == start && res->end == end && (res->flags & IORESOURCE_BUSY)) break; if (res->start <= start && res->end >= end) res = res->child; else res = res->sibling; } if (!res) return -ENODEV; if (res->name) { kfree(res->name); res->name = NULL; } release_resource(res); kfree(res); return 0; } #if 0 void __openfirmware print_properties(struct device_node *np) { struct property *pp; char *cp; int i, n; for (pp = np->properties; pp != 0; pp = pp->next) { printk(KERN_INFO "%s", pp->name); for (i = strlen(pp->name); i < 16; ++i) printk(" "); cp = (char *) pp->value; for (i = pp->length; i > 0; --i, ++cp) if ((i > 1 && (*cp < 0x20 || *cp > 0x7e)) || (i == 1 && *cp != 0)) break; if (i == 0 && pp->length > 1) { /* looks like a string */ printk(" %s\n", (char *) pp->value); } else { /* dump it in hex */ n = pp->length; if (n > 64) n = 64; if (pp->length % 4 == 0) { unsigned int *p = (unsigned int *) pp->value; n /= 4; for (i = 0; i < n; ++i) { if (i != 0 && (i % 4) == 0) printk("\n "); printk(" %08x", *p++); } } else { unsigned char *bp = pp->value; for (i = 0; i < n; ++i) { if (i != 0 && (i % 16) == 0) printk("\n "); printk(" %02x", *bp++); } } printk("\n"); if (pp->length > 64) printk(" ... (length = %d)\n", pp->length); } } } #endif static DEFINE_SPINLOCK(rtas_lock); /* this can be called after setup -- Cort */ int __openfirmware call_rtas(const char *service, int nargs, int nret, unsigned long *outputs, ...) { va_list list; int i; unsigned long s; struct device_node *rtas; int *tokp; union { unsigned long words[16]; double align; } u; rtas = find_devices("rtas"); if (rtas == NULL) return -1; tokp = (int *) get_property(rtas, service, NULL); if (tokp == NULL) { printk(KERN_ERR "No RTAS service called %s\n", service); return -1; } u.words[0] = *tokp; u.words[1] = nargs; u.words[2] = nret; va_start(list, outputs); for (i = 0; i < nargs; ++i) u.words[i+3] = va_arg(list, unsigned long); va_end(list); /* * RTAS doesn't use floating point. * Or at least, according to the CHRP spec we enter RTAS * with FP disabled, and it doesn't change the FP registers. * -- paulus. */ spin_lock_irqsave(&rtas_lock, s); enter_rtas((void *)__pa(&u)); spin_unlock_irqrestore(&rtas_lock, s); if (nret > 1 && outputs != NULL) for (i = 0; i < nret-1; ++i) outputs[i] = u.words[i+nargs+4]; return u.words[nargs+3]; }