#ifndef __ASM_SH_IO_H #define __ASM_SH_IO_H /* * Convention: * read{b,w,l,q}/write{b,w,l,q} are for PCI, * while in{b,w,l}/out{b,w,l} are for ISA * * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p * and 'string' versions: ins{b,w,l}/outs{b,w,l} * * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers * automatically, there are also __raw versions, which do not. * * Historically, we have also had ctrl_in{b,w,l,q}/ctrl_out{b,w,l,q} for * SuperH specific I/O (raw I/O to on-chip CPU peripherals). In practice * these have the same semantics as the __raw variants, and as such, all * new code should be using the __raw versions. * * All ISA I/O routines are wrapped through the machine vector. If a * board does not provide overrides, a generic set that are copied in * from the default machine vector are used instead. These are largely * for old compat code for I/O offseting to SuperIOs, all of which are * better handled through the machvec ioport mapping routines these days. */ #include <asm/cache.h> #include <asm/system.h> #include <asm/addrspace.h> #include <asm/machvec.h> #include <asm/pgtable.h> #include <asm-generic/iomap.h> #ifdef __KERNEL__ /* * Depending on which platform we are running on, we need different * I/O functions. */ #define __IO_PREFIX generic #include <asm/io_generic.h> #include <asm/io_trapped.h> #define inb(p) sh_mv.mv_inb((p)) #define inw(p) sh_mv.mv_inw((p)) #define inl(p) sh_mv.mv_inl((p)) #define outb(x,p) sh_mv.mv_outb((x),(p)) #define outw(x,p) sh_mv.mv_outw((x),(p)) #define outl(x,p) sh_mv.mv_outl((x),(p)) #define inb_p(p) sh_mv.mv_inb_p((p)) #define inw_p(p) sh_mv.mv_inw_p((p)) #define inl_p(p) sh_mv.mv_inl_p((p)) #define outb_p(x,p) sh_mv.mv_outb_p((x),(p)) #define outw_p(x,p) sh_mv.mv_outw_p((x),(p)) #define outl_p(x,p) sh_mv.mv_outl_p((x),(p)) #define insb(p,b,c) sh_mv.mv_insb((p), (b), (c)) #define insw(p,b,c) sh_mv.mv_insw((p), (b), (c)) #define insl(p,b,c) sh_mv.mv_insl((p), (b), (c)) #define outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c)) #define outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c)) #define outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c)) #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v)) #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v)) #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v)) #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v)) #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a)) #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a)) #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a)) #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a)) #define readb(a) ({ u8 r_ = __raw_readb(a); mb(); r_; }) #define readw(a) ({ u16 r_ = __raw_readw(a); mb(); r_; }) #define readl(a) ({ u32 r_ = __raw_readl(a); mb(); r_; }) #define readq(a) ({ u64 r_ = __raw_readq(a); mb(); r_; }) #define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); }) #define writew(v,a) ({ __raw_writew((v),(a)); mb(); }) #define writel(v,a) ({ __raw_writel((v),(a)); mb(); }) #define writeq(v,a) ({ __raw_writeq((v),(a)); mb(); }) /* SuperH on-chip I/O functions */ #define ctrl_inb __raw_readb #define ctrl_inw __raw_readw #define ctrl_inl __raw_readl #define ctrl_inq __raw_readq #define ctrl_outb __raw_writeb #define ctrl_outw __raw_writew #define ctrl_outl __raw_writel #define ctrl_outq __raw_writeq static inline void ctrl_delay(void) { #ifdef P2SEG __raw_readw(P2SEG); #endif } #define __BUILD_MEMORY_STRING(bwlq, type) \ \ static inline void __raw_writes##bwlq(volatile void __iomem *mem, \ const void *addr, unsigned int count) \ { \ const volatile type *__addr = addr; \ \ while (count--) { \ __raw_write##bwlq(*__addr, mem); \ __addr++; \ } \ } \ \ static inline void __raw_reads##bwlq(volatile void __iomem *mem, \ void *addr, unsigned int count) \ { \ volatile type *__addr = addr; \ \ while (count--) { \ *__addr = __raw_read##bwlq(mem); \ __addr++; \ } \ } __BUILD_MEMORY_STRING(b, u8) __BUILD_MEMORY_STRING(w, u16) __BUILD_MEMORY_STRING(q, u64) void __raw_writesl(void __iomem *addr, const void *data, int longlen); void __raw_readsl(const void __iomem *addr, void *data, int longlen); #define writesb __raw_writesb #define writesw __raw_writesw #define writesl __raw_writesl #define readsb __raw_readsb #define readsw __raw_readsw #define readsl __raw_readsl #define readb_relaxed(a) readb(a) #define readw_relaxed(a) readw(a) #define readl_relaxed(a) readl(a) #define readq_relaxed(a) readq(a) /* Simple MMIO */ #define ioread8(a) __raw_readb(a) #define ioread16(a) __raw_readw(a) #define ioread16be(a) be16_to_cpu(__raw_readw((a))) #define ioread32(a) __raw_readl(a) #define ioread32be(a) be32_to_cpu(__raw_readl((a))) #define iowrite8(v,a) __raw_writeb((v),(a)) #define iowrite16(v,a) __raw_writew((v),(a)) #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a)) #define iowrite32(v,a) __raw_writel((v),(a)) #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a)) #define ioread8_rep(a, d, c) __raw_readsb((a), (d), (c)) #define ioread16_rep(a, d, c) __raw_readsw((a), (d), (c)) #define ioread32_rep(a, d, c) __raw_readsl((a), (d), (c)) #define iowrite8_rep(a, s, c) __raw_writesb((a), (s), (c)) #define iowrite16_rep(a, s, c) __raw_writesw((a), (s), (c)) #define iowrite32_rep(a, s, c) __raw_writesl((a), (s), (c)) /* synco on SH-4A, otherwise a nop */ #define mmiowb() wmb() #define IO_SPACE_LIMIT 0xffffffff extern unsigned long generic_io_base; /* * This function provides a method for the generic case where a * board-specific ioport_map simply needs to return the port + some * arbitrary port base. * * We use this at board setup time to implicitly set the port base, and * as a result, we can use the generic ioport_map. */ static inline void __set_io_port_base(unsigned long pbase) { generic_io_base = pbase; } #define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n)) /* We really want to try and get these to memcpy etc */ void memcpy_fromio(void *, const volatile void __iomem *, unsigned long); void memcpy_toio(volatile void __iomem *, const void *, unsigned long); void memset_io(volatile void __iomem *, int, unsigned long); /* Quad-word real-mode I/O, don't ask.. */ unsigned long long peek_real_address_q(unsigned long long addr); unsigned long long poke_real_address_q(unsigned long long addr, unsigned long long val); #if !defined(CONFIG_MMU) #define virt_to_phys(address) ((unsigned long)(address)) #define phys_to_virt(address) ((void *)(address)) #else #define virt_to_phys(address) (__pa(address)) #define phys_to_virt(address) (__va(address)) #endif /* * On 32-bit SH, we traditionally have the whole physical address space * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do * not need to do anything but place the address in the proper segment. * This is true for P1 and P2 addresses, as well as some P3 ones. * However, most of the P3 addresses and newer cores using extended * addressing need to map through page tables, so the ioremap() * implementation becomes a bit more complicated. * * See arch/sh/mm/ioremap.c for additional notes on this. * * We cheat a bit and always return uncachable areas until we've fixed * the drivers to handle caching properly. * * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply * doesn't exist, so everything must go through page tables. */ #ifdef CONFIG_MMU void __iomem *__ioremap(unsigned long offset, unsigned long size, unsigned long flags); void __iounmap(void __iomem *addr); static inline void __iomem * __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags) { #if defined(CONFIG_SUPERH32) && !defined(CONFIG_PMB_FIXED) unsigned long last_addr = offset + size - 1; #endif void __iomem *ret; ret = __ioremap_trapped(offset, size); if (ret) return ret; #if defined(CONFIG_SUPERH32) && !defined(CONFIG_PMB_FIXED) /* * For P1 and P2 space this is trivial, as everything is already * mapped. Uncached access for P1 addresses are done through P2. * In the P3 case or for addresses outside of the 29-bit space, * mapping must be done by the PMB or by using page tables. */ if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { if (unlikely(flags & _PAGE_CACHABLE)) return (void __iomem *)P1SEGADDR(offset); return (void __iomem *)P2SEGADDR(offset); } /* P4 above the store queues are always mapped. */ if (unlikely(offset >= P3_ADDR_MAX)) return (void __iomem *)P4SEGADDR(offset); #endif return __ioremap(offset, size, flags); } #else #define __ioremap_mode(offset, size, flags) ((void __iomem *)(offset)) #define __iounmap(addr) do { } while (0) #endif /* CONFIG_MMU */ #define ioremap(offset, size) \ __ioremap_mode((offset), (size), 0) #define ioremap_nocache(offset, size) \ __ioremap_mode((offset), (size), 0) #define ioremap_cache(offset, size) \ __ioremap_mode((offset), (size), _PAGE_CACHABLE) #define p3_ioremap(offset, size, flags) \ __ioremap((offset), (size), (flags)) #define ioremap_prot(offset, size, flags) \ __ioremap_mode((offset), (size), (flags)) #define iounmap(addr) \ __iounmap((addr)) #define maybebadio(port) \ printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \ __func__, __LINE__, (port), (u32)__builtin_return_address(0)) /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #define ARCH_HAS_VALID_PHYS_ADDR_RANGE int valid_phys_addr_range(unsigned long addr, size_t size); int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); #endif /* __KERNEL__ */ #endif /* __ASM_SH_IO_H */