/* * arch/sh/kernel/cpu/clock.c - SuperH clock framework * * Copyright (C) 2005 - 2009 Paul Mundt * * This clock framework is derived from the OMAP version by: * * Copyright (C) 2004 - 2008 Nokia Corporation * Written by Tuukka Tikkanen * * Modified for omap shared clock framework by Tony Lindgren * * With clkdev bits: * * Copyright (C) 2008 Russell King. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include static LIST_HEAD(clock_list); static DEFINE_SPINLOCK(clock_lock); static DEFINE_MUTEX(clock_list_sem); /* * Each subtype is expected to define the init routines for these clocks, * as each subtype (or processor family) will have these clocks at the * very least. These are all provided through the CPG, which even some of * the more quirky parts (such as ST40, SH4-202, etc.) still have. * * The processor-specific code is expected to register any additional * clock sources that are of interest. */ static struct clk master_clk = { .name = "master_clk", .flags = CLK_ENABLE_ON_INIT, .rate = CONFIG_SH_PCLK_FREQ, }; static struct clk module_clk = { .name = "module_clk", .parent = &master_clk, .flags = CLK_ENABLE_ON_INIT, }; static struct clk bus_clk = { .name = "bus_clk", .parent = &master_clk, .flags = CLK_ENABLE_ON_INIT, }; static struct clk cpu_clk = { .name = "cpu_clk", .parent = &master_clk, .flags = CLK_ENABLE_ON_INIT, }; /* * The ordering of these clocks matters, do not change it. */ static struct clk *onchip_clocks[] = { &master_clk, &module_clk, &bus_clk, &cpu_clk, }; /* Used for clocks that always have same value as the parent clock */ unsigned long followparent_recalc(struct clk *clk) { return clk->parent->rate; } int clk_reparent(struct clk *child, struct clk *parent) { list_del_init(&child->sibling); if (parent) list_add(&child->sibling, &parent->children); child->parent = parent; /* now do the debugfs renaming to reattach the child to the proper parent */ return 0; } /* Propagate rate to children */ void propagate_rate(struct clk *tclk) { struct clk *clkp; list_for_each_entry(clkp, &tclk->children, sibling) { if (clkp->ops->recalc) clkp->rate = clkp->ops->recalc(clkp); propagate_rate(clkp); } } static void __clk_disable(struct clk *clk) { if (clk->usecount == 0) { printk(KERN_ERR "Trying disable clock %s with 0 usecount\n", clk->name); WARN_ON(1); return; } if (!(--clk->usecount)) { if (likely(clk->ops && clk->ops->disable)) clk->ops->disable(clk); if (likely(clk->parent)) __clk_disable(clk->parent); } } void clk_disable(struct clk *clk) { unsigned long flags; if (!clk) return; spin_lock_irqsave(&clock_lock, flags); __clk_disable(clk); spin_unlock_irqrestore(&clock_lock, flags); } EXPORT_SYMBOL_GPL(clk_disable); static int __clk_enable(struct clk *clk) { int ret = 0; if (clk->usecount++ == 0) { if (clk->parent) { ret = __clk_enable(clk->parent); if (unlikely(ret)) goto err; } if (clk->ops && clk->ops->enable) { ret = clk->ops->enable(clk); if (ret) { if (clk->parent) __clk_disable(clk->parent); goto err; } } } return ret; err: clk->usecount--; return ret; } int clk_enable(struct clk *clk) { unsigned long flags; int ret; if (!clk) return -EINVAL; spin_lock_irqsave(&clock_lock, flags); ret = __clk_enable(clk); spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_enable); static LIST_HEAD(root_clks); /** * recalculate_root_clocks - recalculate and propagate all root clocks * * Recalculates all root clocks (clocks with no parent), which if the * clock's .recalc is set correctly, should also propagate their rates. * Called at init. */ void recalculate_root_clocks(void) { struct clk *clkp; list_for_each_entry(clkp, &root_clks, sibling) { if (clkp->ops->recalc) clkp->rate = clkp->ops->recalc(clkp); propagate_rate(clkp); } } int clk_register(struct clk *clk) { if (clk == NULL || IS_ERR(clk)) return -EINVAL; /* * trap out already registered clocks */ if (clk->node.next || clk->node.prev) return 0; mutex_lock(&clock_list_sem); INIT_LIST_HEAD(&clk->children); clk->usecount = 0; if (clk->parent) list_add(&clk->sibling, &clk->parent->children); else list_add(&clk->sibling, &root_clks); list_add(&clk->node, &clock_list); if (clk->ops->init) clk->ops->init(clk); mutex_unlock(&clock_list_sem); return 0; } EXPORT_SYMBOL_GPL(clk_register); void clk_unregister(struct clk *clk) { mutex_lock(&clock_list_sem); list_del(&clk->sibling); list_del(&clk->node); mutex_unlock(&clock_list_sem); } EXPORT_SYMBOL_GPL(clk_unregister); static void clk_enable_init_clocks(void) { struct clk *clkp; list_for_each_entry(clkp, &clock_list, node) if (clkp->flags & CLK_ENABLE_ON_INIT) clk_enable(clkp); } unsigned long clk_get_rate(struct clk *clk) { return clk->rate; } EXPORT_SYMBOL_GPL(clk_get_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { return clk_set_rate_ex(clk, rate, 0); } EXPORT_SYMBOL_GPL(clk_set_rate); int clk_set_rate_ex(struct clk *clk, unsigned long rate, int algo_id) { int ret = -EOPNOTSUPP; if (likely(clk->ops && clk->ops->set_rate)) { unsigned long flags; spin_lock_irqsave(&clock_lock, flags); ret = clk->ops->set_rate(clk, rate, algo_id); if (ret == 0) { if (clk->ops->recalc) clk->rate = clk->ops->recalc(clk); propagate_rate(clk); } spin_unlock_irqrestore(&clock_lock, flags); } return ret; } EXPORT_SYMBOL_GPL(clk_set_rate_ex); int clk_set_parent(struct clk *clk, struct clk *parent) { unsigned long flags; int ret = -EINVAL; if (!parent || !clk) return ret; if (clk->parent == parent) return 0; spin_lock_irqsave(&clock_lock, flags); if (clk->usecount == 0) { if (clk->ops->set_parent) ret = clk->ops->set_parent(clk, parent); else ret = clk_reparent(clk, parent); if (ret == 0) { pr_debug("clock: set parent of %s to %s (new rate %ld)\n", clk->name, clk->parent->name, clk->rate); if (clk->ops->recalc) clk->rate = clk->ops->recalc(clk); propagate_rate(clk); } } else ret = -EBUSY; spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_set_parent); struct clk *clk_get_parent(struct clk *clk) { return clk->parent; } EXPORT_SYMBOL_GPL(clk_get_parent); long clk_round_rate(struct clk *clk, unsigned long rate) { if (likely(clk->ops && clk->ops->round_rate)) { unsigned long flags, rounded; spin_lock_irqsave(&clock_lock, flags); rounded = clk->ops->round_rate(clk, rate); spin_unlock_irqrestore(&clock_lock, flags); return rounded; } return clk_get_rate(clk); } EXPORT_SYMBOL_GPL(clk_round_rate); /* * Find the correct struct clk for the device and connection ID. * We do slightly fuzzy matching here: * An entry with a NULL ID is assumed to be a wildcard. * If an entry has a device ID, it must match * If an entry has a connection ID, it must match * Then we take the most specific entry - with the following * order of precidence: dev+con > dev only > con only. */ static struct clk *clk_find(const char *dev_id, const char *con_id) { struct clk_lookup *p; struct clk *clk = NULL; int match, best = 0; list_for_each_entry(p, &clock_list, node) { match = 0; if (p->dev_id) { if (!dev_id || strcmp(p->dev_id, dev_id)) continue; match += 2; } if (p->con_id) { if (!con_id || strcmp(p->con_id, con_id)) continue; match += 1; } if (match == 0) continue; if (match > best) { clk = p->clk; best = match; } } return clk; } struct clk *clk_get_sys(const char *dev_id, const char *con_id) { struct clk *clk; mutex_lock(&clock_list_sem); clk = clk_find(dev_id, con_id); mutex_unlock(&clock_list_sem); return clk ? clk : ERR_PTR(-ENOENT); } EXPORT_SYMBOL_GPL(clk_get_sys); /* * Returns a clock. Note that we first try to use device id on the bus * and clock name. If this fails, we try to use clock name only. */ struct clk *clk_get(struct device *dev, const char *id) { const char *dev_id = dev ? dev_name(dev) : NULL; struct clk *p, *clk = ERR_PTR(-ENOENT); int idno; clk = clk_get_sys(dev_id, id); if (clk && !IS_ERR(clk)) return clk; if (dev == NULL || dev->bus != &platform_bus_type) idno = -1; else idno = to_platform_device(dev)->id; mutex_lock(&clock_list_sem); list_for_each_entry(p, &clock_list, node) { if (p->id == idno && strcmp(id, p->name) == 0 && try_module_get(p->owner)) { clk = p; goto found; } } list_for_each_entry(p, &clock_list, node) { if (strcmp(id, p->name) == 0 && try_module_get(p->owner)) { clk = p; break; } } found: mutex_unlock(&clock_list_sem); return clk; } EXPORT_SYMBOL_GPL(clk_get); void clk_put(struct clk *clk) { if (clk && !IS_ERR(clk)) module_put(clk->owner); } EXPORT_SYMBOL_GPL(clk_put); void __init __attribute__ ((weak)) arch_init_clk_ops(struct clk_ops **ops, int type) { } int __init __attribute__ ((weak)) arch_clk_init(void) { return 0; } static int show_clocks(char *buf, char **start, off_t off, int len, int *eof, void *data) { struct clk *clk; char *p = buf; list_for_each_entry_reverse(clk, &clock_list, node) { unsigned long rate = clk_get_rate(clk); p += sprintf(p, "%-12s\t: %ld.%02ldMHz\t%s\n", clk->name, rate / 1000000, (rate % 1000000) / 10000, (clk->usecount > 0) ? "enabled" : "disabled"); } return p - buf; } #ifdef CONFIG_PM static int clks_sysdev_suspend(struct sys_device *dev, pm_message_t state) { static pm_message_t prev_state; struct clk *clkp; switch (state.event) { case PM_EVENT_ON: /* Resumeing from hibernation */ if (prev_state.event != PM_EVENT_FREEZE) break; list_for_each_entry(clkp, &clock_list, node) { if (likely(clkp->ops)) { unsigned long rate = clkp->rate; if (likely(clkp->ops->set_parent)) clkp->ops->set_parent(clkp, clkp->parent); if (likely(clkp->ops->set_rate)) clkp->ops->set_rate(clkp, rate, NO_CHANGE); else if (likely(clkp->ops->recalc)) clkp->rate = clkp->ops->recalc(clkp); } } break; case PM_EVENT_FREEZE: break; case PM_EVENT_SUSPEND: break; } prev_state = state; return 0; } static int clks_sysdev_resume(struct sys_device *dev) { return clks_sysdev_suspend(dev, PMSG_ON); } static struct sysdev_class clks_sysdev_class = { .name = "clks", }; static struct sysdev_driver clks_sysdev_driver = { .suspend = clks_sysdev_suspend, .resume = clks_sysdev_resume, }; static struct sys_device clks_sysdev_dev = { .cls = &clks_sysdev_class, }; static int __init clk_sysdev_init(void) { sysdev_class_register(&clks_sysdev_class); sysdev_driver_register(&clks_sysdev_class, &clks_sysdev_driver); sysdev_register(&clks_sysdev_dev); return 0; } subsys_initcall(clk_sysdev_init); #endif int __init clk_init(void) { int i, ret = 0; BUG_ON(!master_clk.rate); for (i = 0; i < ARRAY_SIZE(onchip_clocks); i++) { struct clk *clk = onchip_clocks[i]; arch_init_clk_ops(&clk->ops, i); ret |= clk_register(clk); } ret |= arch_clk_init(); /* Kick the child clocks.. */ recalculate_root_clocks(); /* Enable the necessary init clocks */ clk_enable_init_clocks(); return ret; } static int __init clk_proc_init(void) { struct proc_dir_entry *p; p = create_proc_read_entry("clocks", S_IRUSR, NULL, show_clocks, NULL); if (unlikely(!p)) return -EINVAL; return 0; } subsys_initcall(clk_proc_init);