/* * iommu.c: IOMMU specific routines for memory management. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/highmem.h> /* pte_offset_map => kmap_atomic */ #include <linux/scatterlist.h> #include <linux/of.h> #include <linux/of_device.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/io.h> #include <asm/mxcc.h> #include <asm/mbus.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/bitext.h> #include <asm/iommu.h> #include <asm/dma.h> /* * This can be sized dynamically, but we will do this * only when we have a guidance about actual I/O pressures. */ #define IOMMU_RNGE IOMMU_RNGE_256MB #define IOMMU_START 0xF0000000 #define IOMMU_WINSIZE (256*1024*1024U) #define IOMMU_NPTES (IOMMU_WINSIZE/PAGE_SIZE) /* 64K PTEs, 265KB */ #define IOMMU_ORDER 6 /* 4096 * (1<<6) */ /* srmmu.c */ extern int viking_mxcc_present; BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long) #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page) extern int flush_page_for_dma_global; static int viking_flush; /* viking.S */ extern void viking_flush_page(unsigned long page); extern void viking_mxcc_flush_page(unsigned long page); /* * Values precomputed according to CPU type. */ static unsigned int ioperm_noc; /* Consistent mapping iopte flags */ static pgprot_t dvma_prot; /* Consistent mapping pte flags */ #define IOPERM (IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID) #define MKIOPTE(pfn, perm) (((((pfn)<<8) & IOPTE_PAGE) | (perm)) & ~IOPTE_WAZ) static void __init sbus_iommu_init(struct of_device *op) { struct iommu_struct *iommu; unsigned int impl, vers; unsigned long *bitmap; unsigned long tmp; iommu = kmalloc(sizeof(struct iommu_struct), GFP_ATOMIC); if (!iommu) { prom_printf("Unable to allocate iommu structure\n"); prom_halt(); } iommu->regs = of_ioremap(&op->resource[0], 0, PAGE_SIZE * 3, "iommu_regs"); if (!iommu->regs) { prom_printf("Cannot map IOMMU registers\n"); prom_halt(); } impl = (iommu->regs->control & IOMMU_CTRL_IMPL) >> 28; vers = (iommu->regs->control & IOMMU_CTRL_VERS) >> 24; tmp = iommu->regs->control; tmp &= ~(IOMMU_CTRL_RNGE); tmp |= (IOMMU_RNGE_256MB | IOMMU_CTRL_ENAB); iommu->regs->control = tmp; iommu_invalidate(iommu->regs); iommu->start = IOMMU_START; iommu->end = 0xffffffff; /* Allocate IOMMU page table */ /* Stupid alignment constraints give me a headache. We need 256K or 512K or 1M or 2M area aligned to its size and current gfp will fortunately give it to us. */ tmp = __get_free_pages(GFP_KERNEL, IOMMU_ORDER); if (!tmp) { prom_printf("Unable to allocate iommu table [0x%08x]\n", IOMMU_NPTES*sizeof(iopte_t)); prom_halt(); } iommu->page_table = (iopte_t *)tmp; /* Initialize new table. */ memset(iommu->page_table, 0, IOMMU_NPTES*sizeof(iopte_t)); flush_cache_all(); flush_tlb_all(); iommu->regs->base = __pa((unsigned long) iommu->page_table) >> 4; iommu_invalidate(iommu->regs); bitmap = kmalloc(IOMMU_NPTES>>3, GFP_KERNEL); if (!bitmap) { prom_printf("Unable to allocate iommu bitmap [%d]\n", (int)(IOMMU_NPTES>>3)); prom_halt(); } bit_map_init(&iommu->usemap, bitmap, IOMMU_NPTES); /* To be coherent on HyperSparc, the page color of DVMA * and physical addresses must match. */ if (srmmu_modtype == HyperSparc) iommu->usemap.num_colors = vac_cache_size >> PAGE_SHIFT; else iommu->usemap.num_colors = 1; printk(KERN_INFO "IOMMU: impl %d vers %d table 0x%p[%d B] map [%d b]\n", impl, vers, iommu->page_table, (int)(IOMMU_NPTES*sizeof(iopte_t)), (int)IOMMU_NPTES); op->dev.archdata.iommu = iommu; } static int __init iommu_init(void) { struct device_node *dp; for_each_node_by_name(dp, "iommu") { struct of_device *op = of_find_device_by_node(dp); sbus_iommu_init(op); of_propagate_archdata(op); } return 0; } subsys_initcall(iommu_init); /* This begs to be btfixup-ed by srmmu. */ /* Flush the iotlb entries to ram. */ /* This could be better if we didn't have to flush whole pages. */ static void iommu_flush_iotlb(iopte_t *iopte, unsigned int niopte) { unsigned long start; unsigned long end; start = (unsigned long)iopte; end = PAGE_ALIGN(start + niopte*sizeof(iopte_t)); start &= PAGE_MASK; if (viking_mxcc_present) { while(start < end) { viking_mxcc_flush_page(start); start += PAGE_SIZE; } } else if (viking_flush) { while(start < end) { viking_flush_page(start); start += PAGE_SIZE; } } else { while(start < end) { __flush_page_to_ram(start); start += PAGE_SIZE; } } } static u32 iommu_get_one(struct device *dev, struct page *page, int npages) { struct iommu_struct *iommu = dev->archdata.iommu; int ioptex; iopte_t *iopte, *iopte0; unsigned int busa, busa0; int i; /* page color = pfn of page */ ioptex = bit_map_string_get(&iommu->usemap, npages, page_to_pfn(page)); if (ioptex < 0) panic("iommu out"); busa0 = iommu->start + (ioptex << PAGE_SHIFT); iopte0 = &iommu->page_table[ioptex]; busa = busa0; iopte = iopte0; for (i = 0; i < npages; i++) { iopte_val(*iopte) = MKIOPTE(page_to_pfn(page), IOPERM); iommu_invalidate_page(iommu->regs, busa); busa += PAGE_SIZE; iopte++; page++; } iommu_flush_iotlb(iopte0, npages); return busa0; } static u32 iommu_get_scsi_one(struct device *dev, char *vaddr, unsigned int len) { unsigned long off; int npages; struct page *page; u32 busa; off = (unsigned long)vaddr & ~PAGE_MASK; npages = (off + len + PAGE_SIZE-1) >> PAGE_SHIFT; page = virt_to_page((unsigned long)vaddr & PAGE_MASK); busa = iommu_get_one(dev, page, npages); return busa + off; } static __u32 iommu_get_scsi_one_noflush(struct device *dev, char *vaddr, unsigned long len) { return iommu_get_scsi_one(dev, vaddr, len); } static __u32 iommu_get_scsi_one_gflush(struct device *dev, char *vaddr, unsigned long len) { flush_page_for_dma(0); return iommu_get_scsi_one(dev, vaddr, len); } static __u32 iommu_get_scsi_one_pflush(struct device *dev, char *vaddr, unsigned long len) { unsigned long page = ((unsigned long) vaddr) & PAGE_MASK; while(page < ((unsigned long)(vaddr + len))) { flush_page_for_dma(page); page += PAGE_SIZE; } return iommu_get_scsi_one(dev, vaddr, len); } static void iommu_get_scsi_sgl_noflush(struct device *dev, struct scatterlist *sg, int sz) { int n; while (sz != 0) { --sz; n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT; sg->dma_address = iommu_get_one(dev, sg_page(sg), n) + sg->offset; sg->dma_length = sg->length; sg = sg_next(sg); } } static void iommu_get_scsi_sgl_gflush(struct device *dev, struct scatterlist *sg, int sz) { int n; flush_page_for_dma(0); while (sz != 0) { --sz; n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT; sg->dma_address = iommu_get_one(dev, sg_page(sg), n) + sg->offset; sg->dma_length = sg->length; sg = sg_next(sg); } } static void iommu_get_scsi_sgl_pflush(struct device *dev, struct scatterlist *sg, int sz) { unsigned long page, oldpage = 0; int n, i; while(sz != 0) { --sz; n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT; /* * We expect unmapped highmem pages to be not in the cache. * XXX Is this a good assumption? * XXX What if someone else unmaps it here and races us? */ if ((page = (unsigned long) page_address(sg_page(sg))) != 0) { for (i = 0; i < n; i++) { if (page != oldpage) { /* Already flushed? */ flush_page_for_dma(page); oldpage = page; } page += PAGE_SIZE; } } sg->dma_address = iommu_get_one(dev, sg_page(sg), n) + sg->offset; sg->dma_length = sg->length; sg = sg_next(sg); } } static void iommu_release_one(struct device *dev, u32 busa, int npages) { struct iommu_struct *iommu = dev->archdata.iommu; int ioptex; int i; BUG_ON(busa < iommu->start); ioptex = (busa - iommu->start) >> PAGE_SHIFT; for (i = 0; i < npages; i++) { iopte_val(iommu->page_table[ioptex + i]) = 0; iommu_invalidate_page(iommu->regs, busa); busa += PAGE_SIZE; } bit_map_clear(&iommu->usemap, ioptex, npages); } static void iommu_release_scsi_one(struct device *dev, __u32 vaddr, unsigned long len) { unsigned long off; int npages; off = vaddr & ~PAGE_MASK; npages = (off + len + PAGE_SIZE-1) >> PAGE_SHIFT; iommu_release_one(dev, vaddr & PAGE_MASK, npages); } static void iommu_release_scsi_sgl(struct device *dev, struct scatterlist *sg, int sz) { int n; while(sz != 0) { --sz; n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT; iommu_release_one(dev, sg->dma_address & PAGE_MASK, n); sg->dma_address = 0x21212121; sg = sg_next(sg); } } #ifdef CONFIG_SBUS static int iommu_map_dma_area(struct device *dev, dma_addr_t *pba, unsigned long va, unsigned long addr, int len) { struct iommu_struct *iommu = dev->archdata.iommu; unsigned long page, end; iopte_t *iopte = iommu->page_table; iopte_t *first; int ioptex; BUG_ON((va & ~PAGE_MASK) != 0); BUG_ON((addr & ~PAGE_MASK) != 0); BUG_ON((len & ~PAGE_MASK) != 0); /* page color = physical address */ ioptex = bit_map_string_get(&iommu->usemap, len >> PAGE_SHIFT, addr >> PAGE_SHIFT); if (ioptex < 0) panic("iommu out"); iopte += ioptex; first = iopte; end = addr + len; while(addr < end) { page = va; { pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; if (viking_mxcc_present) viking_mxcc_flush_page(page); else if (viking_flush) viking_flush_page(page); else __flush_page_to_ram(page); pgdp = pgd_offset(&init_mm, addr); pmdp = pmd_offset(pgdp, addr); ptep = pte_offset_map(pmdp, addr); set_pte(ptep, mk_pte(virt_to_page(page), dvma_prot)); } iopte_val(*iopte++) = MKIOPTE(page_to_pfn(virt_to_page(page)), ioperm_noc); addr += PAGE_SIZE; va += PAGE_SIZE; } /* P3: why do we need this? * * DAVEM: Because there are several aspects, none of which * are handled by a single interface. Some cpus are * completely not I/O DMA coherent, and some have * virtually indexed caches. The driver DMA flushing * methods handle the former case, but here during * IOMMU page table modifications, and usage of non-cacheable * cpu mappings of pages potentially in the cpu caches, we have * to handle the latter case as well. */ flush_cache_all(); iommu_flush_iotlb(first, len >> PAGE_SHIFT); flush_tlb_all(); iommu_invalidate(iommu->regs); *pba = iommu->start + (ioptex << PAGE_SHIFT); return 0; } static void iommu_unmap_dma_area(struct device *dev, unsigned long busa, int len) { struct iommu_struct *iommu = dev->archdata.iommu; iopte_t *iopte = iommu->page_table; unsigned long end; int ioptex = (busa - iommu->start) >> PAGE_SHIFT; BUG_ON((busa & ~PAGE_MASK) != 0); BUG_ON((len & ~PAGE_MASK) != 0); iopte += ioptex; end = busa + len; while (busa < end) { iopte_val(*iopte++) = 0; busa += PAGE_SIZE; } flush_tlb_all(); iommu_invalidate(iommu->regs); bit_map_clear(&iommu->usemap, ioptex, len >> PAGE_SHIFT); } #endif static char *iommu_lockarea(char *vaddr, unsigned long len) { return vaddr; } static void iommu_unlockarea(char *vaddr, unsigned long len) { } void __init ld_mmu_iommu(void) { viking_flush = (BTFIXUPVAL_CALL(flush_page_for_dma) == (unsigned long)viking_flush_page); BTFIXUPSET_CALL(mmu_lockarea, iommu_lockarea, BTFIXUPCALL_RETO0); BTFIXUPSET_CALL(mmu_unlockarea, iommu_unlockarea, BTFIXUPCALL_NOP); if (!BTFIXUPVAL_CALL(flush_page_for_dma)) { /* IO coherent chip */ BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_noflush, BTFIXUPCALL_RETO0); BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_noflush, BTFIXUPCALL_NORM); } else if (flush_page_for_dma_global) { /* flush_page_for_dma flushes everything, no matter of what page is it */ BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_gflush, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_gflush, BTFIXUPCALL_NORM); } else { BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_pflush, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_pflush, BTFIXUPCALL_NORM); } BTFIXUPSET_CALL(mmu_release_scsi_one, iommu_release_scsi_one, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_release_scsi_sgl, iommu_release_scsi_sgl, BTFIXUPCALL_NORM); #ifdef CONFIG_SBUS BTFIXUPSET_CALL(mmu_map_dma_area, iommu_map_dma_area, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_unmap_dma_area, iommu_unmap_dma_area, BTFIXUPCALL_NORM); #endif if (viking_mxcc_present || srmmu_modtype == HyperSparc) { dvma_prot = __pgprot(SRMMU_CACHE | SRMMU_ET_PTE | SRMMU_PRIV); ioperm_noc = IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID; } else { dvma_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV); ioperm_noc = IOPTE_WRITE | IOPTE_VALID; } }