/* arch/sparc64/kernel/process.c * * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ /* * This file handles the architecture-dependent parts of process handling.. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define VERBOSE_SHOWREGS */ static void sparc64_yield(int cpu) { if (tlb_type != hypervisor) return; clear_thread_flag(TIF_POLLING_NRFLAG); smp_mb__after_clear_bit(); while (!need_resched() && !cpu_is_offline(cpu)) { unsigned long pstate; /* Disable interrupts. */ __asm__ __volatile__( "rdpr %%pstate, %0\n\t" "andn %0, %1, %0\n\t" "wrpr %0, %%g0, %%pstate" : "=&r" (pstate) : "i" (PSTATE_IE)); if (!need_resched() && !cpu_is_offline(cpu)) sun4v_cpu_yield(); /* Re-enable interrupts. */ __asm__ __volatile__( "rdpr %%pstate, %0\n\t" "or %0, %1, %0\n\t" "wrpr %0, %%g0, %%pstate" : "=&r" (pstate) : "i" (PSTATE_IE)); } set_thread_flag(TIF_POLLING_NRFLAG); } /* The idle loop on sparc64. */ void cpu_idle(void) { int cpu = smp_processor_id(); set_thread_flag(TIF_POLLING_NRFLAG); while(1) { tick_nohz_stop_sched_tick(1); while (!need_resched() && !cpu_is_offline(cpu)) sparc64_yield(cpu); tick_nohz_restart_sched_tick(); preempt_enable_no_resched(); #ifdef CONFIG_HOTPLUG_CPU if (cpu_is_offline(cpu)) cpu_play_dead(); #endif schedule(); preempt_disable(); } } void machine_halt(void) { sstate_halt(); prom_halt(); panic("Halt failed!"); } void machine_alt_power_off(void) { sstate_poweroff(); prom_halt_power_off(); panic("Power-off failed!"); } void machine_restart(char * cmd) { char *p; sstate_reboot(); p = strchr (reboot_command, '\n'); if (p) *p = 0; if (cmd) prom_reboot(cmd); if (*reboot_command) prom_reboot(reboot_command); prom_reboot(""); panic("Reboot failed!"); } #ifdef CONFIG_COMPAT static void show_regwindow32(struct pt_regs *regs) { struct reg_window32 __user *rw; struct reg_window32 r_w; mm_segment_t old_fs; __asm__ __volatile__ ("flushw"); rw = compat_ptr((unsigned)regs->u_regs[14]); old_fs = get_fs(); set_fs (USER_DS); if (copy_from_user (&r_w, rw, sizeof(r_w))) { set_fs (old_fs); return; } set_fs (old_fs); printk("l0: %08x l1: %08x l2: %08x l3: %08x " "l4: %08x l5: %08x l6: %08x l7: %08x\n", r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); printk("i0: %08x i1: %08x i2: %08x i3: %08x " "i4: %08x i5: %08x i6: %08x i7: %08x\n", r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); } #else #define show_regwindow32(regs) do { } while (0) #endif static void show_regwindow(struct pt_regs *regs) { struct reg_window __user *rw; struct reg_window *rwk; struct reg_window r_w; mm_segment_t old_fs; if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { __asm__ __volatile__ ("flushw"); rw = (struct reg_window __user *) (regs->u_regs[14] + STACK_BIAS); rwk = (struct reg_window *) (regs->u_regs[14] + STACK_BIAS); if (!(regs->tstate & TSTATE_PRIV)) { old_fs = get_fs(); set_fs (USER_DS); if (copy_from_user (&r_w, rw, sizeof(r_w))) { set_fs (old_fs); return; } rwk = &r_w; set_fs (old_fs); } } else { show_regwindow32(regs); return; } printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); if (regs->tstate & TSTATE_PRIV) printk("I7: <%pS>\n", (void *) rwk->ins[7]); } #ifdef CONFIG_SMP static DEFINE_SPINLOCK(regdump_lock); #endif void __show_regs(struct pt_regs * regs) { #ifdef CONFIG_SMP unsigned long flags; /* Protect against xcall ipis which might lead to livelock on the lock */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (flags) : "i" (PSTATE_IE)); spin_lock(®dump_lock); #endif printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, regs->tpc, regs->tnpc, regs->y, print_tainted()); printk("TPC: <%pS>\n", (void *) regs->tpc); printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], regs->u_regs[3]); printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], regs->u_regs[7]); printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], regs->u_regs[11]); printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], regs->u_regs[15]); printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); show_regwindow(regs); #ifdef CONFIG_SMP spin_unlock(®dump_lock); __asm__ __volatile__("wrpr %0, 0, %%pstate" : : "r" (flags)); #endif } #ifdef VERBOSE_SHOWREGS static void idump_from_user (unsigned int *pc) { int i; int code; if((((unsigned long) pc) & 3)) return; pc -= 3; for(i = -3; i < 6; i++) { get_user(code, pc); printk("%c%08x%c",i?' ':'<',code,i?' ':'>'); pc++; } printk("\n"); } #endif void show_regs(struct pt_regs *regs) { #ifdef VERBOSE_SHOWREGS extern long etrap, etraptl1; #endif __show_regs(regs); #if 0 #ifdef CONFIG_SMP { extern void smp_report_regs(void); smp_report_regs(); } #endif #endif #ifdef VERBOSE_SHOWREGS if (regs->tpc >= &etrap && regs->tpc < &etraptl1 && regs->u_regs[14] >= (long)current - PAGE_SIZE && regs->u_regs[14] < (long)current + 6 * PAGE_SIZE) { printk ("*********parent**********\n"); __show_regs((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF)); idump_from_user(((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF))->tpc); printk ("*********endpar**********\n"); } #endif } #ifdef CONFIG_MAGIC_SYSRQ struct global_reg_snapshot global_reg_snapshot[NR_CPUS]; static DEFINE_SPINLOCK(global_reg_snapshot_lock); static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, int this_cpu) { flushw_all(); global_reg_snapshot[this_cpu].tstate = regs->tstate; global_reg_snapshot[this_cpu].tpc = regs->tpc; global_reg_snapshot[this_cpu].tnpc = regs->tnpc; global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7]; if (regs->tstate & TSTATE_PRIV) { struct reg_window *rw; rw = (struct reg_window *) (regs->u_regs[UREG_FP] + STACK_BIAS); global_reg_snapshot[this_cpu].i7 = rw->ins[7]; } else global_reg_snapshot[this_cpu].i7 = 0; global_reg_snapshot[this_cpu].thread = tp; } /* In order to avoid hangs we do not try to synchronize with the * global register dump client cpus. The last store they make is to * the thread pointer, so do a short poll waiting for that to become * non-NULL. */ static void __global_reg_poll(struct global_reg_snapshot *gp) { int limit = 0; while (!gp->thread && ++limit < 100) { barrier(); udelay(1); } } static void sysrq_handle_globreg(int key, struct tty_struct *tty) { struct thread_info *tp = current_thread_info(); struct pt_regs *regs = get_irq_regs(); unsigned long flags; int this_cpu, cpu; if (!regs) regs = tp->kregs; spin_lock_irqsave(&global_reg_snapshot_lock, flags); memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); this_cpu = raw_smp_processor_id(); __global_reg_self(tp, regs, this_cpu); smp_fetch_global_regs(); for_each_online_cpu(cpu) { struct global_reg_snapshot *gp = &global_reg_snapshot[cpu]; struct thread_info *tp; __global_reg_poll(gp); tp = gp->thread; printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", (cpu == this_cpu ? '*' : ' '), cpu, gp->tstate, gp->tpc, gp->tnpc, ((tp && tp->task) ? tp->task->comm : "NULL"), ((tp && tp->task) ? tp->task->pid : -1)); if (gp->tstate & TSTATE_PRIV) { printk(" TPC[%pS] O7[%pS] I7[%pS]\n", (void *) gp->tpc, (void *) gp->o7, (void *) gp->i7); } else { printk(" TPC[%lx] O7[%lx] I7[%lx]\n", gp->tpc, gp->o7, gp->i7); } } memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); spin_unlock_irqrestore(&global_reg_snapshot_lock, flags); } static struct sysrq_key_op sparc_globalreg_op = { .handler = sysrq_handle_globreg, .help_msg = "Globalregs", .action_msg = "Show Global CPU Regs", }; static int __init sparc_globreg_init(void) { return register_sysrq_key('y', &sparc_globalreg_op); } core_initcall(sparc_globreg_init); #endif unsigned long thread_saved_pc(struct task_struct *tsk) { struct thread_info *ti = task_thread_info(tsk); unsigned long ret = 0xdeadbeefUL; if (ti && ti->ksp) { unsigned long *sp; sp = (unsigned long *)(ti->ksp + STACK_BIAS); if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && sp[14]) { unsigned long *fp; fp = (unsigned long *)(sp[14] + STACK_BIAS); if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) ret = fp[15]; } } return ret; } /* Free current thread data structures etc.. */ void exit_thread(void) { struct thread_info *t = current_thread_info(); if (t->utraps) { if (t->utraps[0] < 2) kfree (t->utraps); else t->utraps[0]--; } if (test_and_clear_thread_flag(TIF_PERFCTR)) { t->user_cntd0 = t->user_cntd1 = NULL; t->pcr_reg = 0; write_pcr(0); } } void flush_thread(void) { struct thread_info *t = current_thread_info(); struct mm_struct *mm; if (test_ti_thread_flag(t, TIF_ABI_PENDING)) { clear_ti_thread_flag(t, TIF_ABI_PENDING); if (test_ti_thread_flag(t, TIF_32BIT)) clear_ti_thread_flag(t, TIF_32BIT); else set_ti_thread_flag(t, TIF_32BIT); } mm = t->task->mm; if (mm) tsb_context_switch(mm); set_thread_wsaved(0); /* Turn off performance counters if on. */ if (test_and_clear_thread_flag(TIF_PERFCTR)) { t->user_cntd0 = t->user_cntd1 = NULL; t->pcr_reg = 0; write_pcr(0); } /* Clear FPU register state. */ t->fpsaved[0] = 0; if (get_thread_current_ds() != ASI_AIUS) set_fs(USER_DS); } /* It's a bit more tricky when 64-bit tasks are involved... */ static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) { unsigned long fp, distance, rval; if (!(test_thread_flag(TIF_32BIT))) { csp += STACK_BIAS; psp += STACK_BIAS; __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); fp += STACK_BIAS; } else __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); /* Now 8-byte align the stack as this is mandatory in the * Sparc ABI due to how register windows work. This hides * the restriction from thread libraries etc. -DaveM */ csp &= ~7UL; distance = fp - psp; rval = (csp - distance); if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) rval = 0; else if (test_thread_flag(TIF_32BIT)) { if (put_user(((u32)csp), &(((struct reg_window32 __user *)rval)->ins[6]))) rval = 0; } else { if (put_user(((u64)csp - STACK_BIAS), &(((struct reg_window __user *)rval)->ins[6]))) rval = 0; else rval = rval - STACK_BIAS; } return rval; } /* Standard stuff. */ static inline void shift_window_buffer(int first_win, int last_win, struct thread_info *t) { int i; for (i = first_win; i < last_win; i++) { t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; memcpy(&t->reg_window[i], &t->reg_window[i+1], sizeof(struct reg_window)); } } void synchronize_user_stack(void) { struct thread_info *t = current_thread_info(); unsigned long window; flush_user_windows(); if ((window = get_thread_wsaved()) != 0) { int winsize = sizeof(struct reg_window); int bias = 0; if (test_thread_flag(TIF_32BIT)) winsize = sizeof(struct reg_window32); else bias = STACK_BIAS; window -= 1; do { unsigned long sp = (t->rwbuf_stkptrs[window] + bias); struct reg_window *rwin = &t->reg_window[window]; if (!copy_to_user((char __user *)sp, rwin, winsize)) { shift_window_buffer(window, get_thread_wsaved() - 1, t); set_thread_wsaved(get_thread_wsaved() - 1); } } while (window--); } } static void stack_unaligned(unsigned long sp) { siginfo_t info; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRALN; info.si_addr = (void __user *) sp; info.si_trapno = 0; force_sig_info(SIGBUS, &info, current); } void fault_in_user_windows(void) { struct thread_info *t = current_thread_info(); unsigned long window; int winsize = sizeof(struct reg_window); int bias = 0; if (test_thread_flag(TIF_32BIT)) winsize = sizeof(struct reg_window32); else bias = STACK_BIAS; flush_user_windows(); window = get_thread_wsaved(); if (likely(window != 0)) { window -= 1; do { unsigned long sp = (t->rwbuf_stkptrs[window] + bias); struct reg_window *rwin = &t->reg_window[window]; if (unlikely(sp & 0x7UL)) stack_unaligned(sp); if (unlikely(copy_to_user((char __user *)sp, rwin, winsize))) goto barf; } while (window--); } set_thread_wsaved(0); return; barf: set_thread_wsaved(window + 1); do_exit(SIGILL); } asmlinkage long sparc_do_fork(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size) { int __user *parent_tid_ptr, *child_tid_ptr; unsigned long orig_i1 = regs->u_regs[UREG_I1]; long ret; #ifdef CONFIG_COMPAT if (test_thread_flag(TIF_32BIT)) { parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); } else #endif { parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; } ret = do_fork(clone_flags, stack_start, regs, stack_size, parent_tid_ptr, child_tid_ptr); /* If we get an error and potentially restart the system * call, we're screwed because copy_thread() clobbered * the parent's %o1. So detect that case and restore it * here. */ if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) regs->u_regs[UREG_I1] = orig_i1; return ret; } /* Copy a Sparc thread. The fork() return value conventions * under SunOS are nothing short of bletcherous: * Parent --> %o0 == childs pid, %o1 == 0 * Child --> %o0 == parents pid, %o1 == 1 */ int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct thread_info *t = task_thread_info(p); struct sparc_stackf *parent_sf; unsigned long child_stack_sz; char *child_trap_frame; int kernel_thread; kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0; parent_sf = ((struct sparc_stackf *) regs) - 1; /* Calculate offset to stack_frame & pt_regs */ child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) + (kernel_thread ? STACKFRAME_SZ : 0)); child_trap_frame = (task_stack_page(p) + (THREAD_SIZE - child_stack_sz)); memcpy(child_trap_frame, parent_sf, child_stack_sz); t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); t->new_child = 1; t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; t->kregs = (struct pt_regs *) (child_trap_frame + sizeof(struct sparc_stackf)); t->fpsaved[0] = 0; if (kernel_thread) { struct sparc_stackf *child_sf = (struct sparc_stackf *) (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ)); /* Zero terminate the stack backtrace. */ child_sf->fp = NULL; t->kregs->u_regs[UREG_FP] = ((unsigned long) child_sf) - STACK_BIAS; /* Special case, if we are spawning a kernel thread from * a userspace task (usermode helper, NFS or similar), we * must disable performance counters in the child because * the address space and protection realm are changing. */ if (t->flags & _TIF_PERFCTR) { t->user_cntd0 = t->user_cntd1 = NULL; t->pcr_reg = 0; t->flags &= ~_TIF_PERFCTR; } t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); t->kregs->u_regs[UREG_G6] = (unsigned long) t; t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; } else { if (t->flags & _TIF_32BIT) { sp &= 0x00000000ffffffffUL; regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; } t->kregs->u_regs[UREG_FP] = sp; t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); if (sp != regs->u_regs[UREG_FP]) { unsigned long csp; csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); if (!csp) return -EFAULT; t->kregs->u_regs[UREG_FP] = csp; } if (t->utraps) t->utraps[0]++; } /* Set the return value for the child. */ t->kregs->u_regs[UREG_I0] = current->pid; t->kregs->u_regs[UREG_I1] = 1; /* Set the second return value for the parent. */ regs->u_regs[UREG_I1] = 0; if (clone_flags & CLONE_SETTLS) t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; return 0; } /* * This is the mechanism for creating a new kernel thread. * * NOTE! Only a kernel-only process(ie the swapper or direct descendants * who haven't done an "execve()") should use this: it will work within * a system call from a "real" process, but the process memory space will * not be freed until both the parent and the child have exited. */ pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { long retval; /* If the parent runs before fn(arg) is called by the child, * the input registers of this function can be clobbered. * So we stash 'fn' and 'arg' into global registers which * will not be modified by the parent. */ __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ "mov %5, %%g3\n\t" /* Save ARG into global */ "mov %1, %%g1\n\t" /* Clone syscall nr. */ "mov %2, %%o0\n\t" /* Clone flags. */ "mov 0, %%o1\n\t" /* usp arg == 0 */ "t 0x6d\n\t" /* Linux/Sparc clone(). */ "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ " mov %%o0, %0\n\t" "jmpl %%g2, %%o7\n\t" /* Call the function. */ " mov %%g3, %%o0\n\t" /* Set arg in delay. */ "mov %3, %%g1\n\t" "t 0x6d\n\t" /* Linux/Sparc exit(). */ /* Notreached by child. */ "1:" : "=r" (retval) : "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), "i" (__NR_exit), "r" (fn), "r" (arg) : "g1", "g2", "g3", "o0", "o1", "memory", "cc"); return retval; } typedef struct { union { unsigned int pr_regs[32]; unsigned long pr_dregs[16]; } pr_fr; unsigned int __unused; unsigned int pr_fsr; unsigned char pr_qcnt; unsigned char pr_q_entrysize; unsigned char pr_en; unsigned int pr_q[64]; } elf_fpregset_t32; /* * fill in the fpu structure for a core dump. */ int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) { unsigned long *kfpregs = current_thread_info()->fpregs; unsigned long fprs = current_thread_info()->fpsaved[0]; if (test_thread_flag(TIF_32BIT)) { elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; if (fprs & FPRS_DL) memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, sizeof(unsigned int) * 32); else memset(&fpregs32->pr_fr.pr_regs[0], 0, sizeof(unsigned int) * 32); fpregs32->pr_qcnt = 0; fpregs32->pr_q_entrysize = 8; memset(&fpregs32->pr_q[0], 0, (sizeof(unsigned int) * 64)); if (fprs & FPRS_FEF) { fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; fpregs32->pr_en = 1; } else { fpregs32->pr_fsr = 0; fpregs32->pr_en = 0; } } else { if(fprs & FPRS_DL) memcpy(&fpregs->pr_regs[0], kfpregs, sizeof(unsigned int) * 32); else memset(&fpregs->pr_regs[0], 0, sizeof(unsigned int) * 32); if(fprs & FPRS_DU) memcpy(&fpregs->pr_regs[16], kfpregs+16, sizeof(unsigned int) * 32); else memset(&fpregs->pr_regs[16], 0, sizeof(unsigned int) * 32); if(fprs & FPRS_FEF) { fpregs->pr_fsr = current_thread_info()->xfsr[0]; fpregs->pr_gsr = current_thread_info()->gsr[0]; } else { fpregs->pr_fsr = fpregs->pr_gsr = 0; } fpregs->pr_fprs = fprs; } return 1; } /* * sparc_execve() executes a new program after the asm stub has set * things up for us. This should basically do what I want it to. */ asmlinkage int sparc_execve(struct pt_regs *regs) { int error, base = 0; char *filename; /* User register window flush is done by entry.S */ /* Check for indirect call. */ if (regs->u_regs[UREG_G1] == 0) base = 1; filename = getname((char __user *)regs->u_regs[base + UREG_I0]); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, (char __user * __user *) regs->u_regs[base + UREG_I1], (char __user * __user *) regs->u_regs[base + UREG_I2], regs); putname(filename); if (!error) { fprs_write(0); current_thread_info()->xfsr[0] = 0; current_thread_info()->fpsaved[0] = 0; regs->tstate &= ~TSTATE_PEF; } out: return error; } unsigned long get_wchan(struct task_struct *task) { unsigned long pc, fp, bias = 0; unsigned long thread_info_base; struct reg_window *rw; unsigned long ret = 0; int count = 0; if (!task || task == current || task->state == TASK_RUNNING) goto out; thread_info_base = (unsigned long) task_stack_page(task); bias = STACK_BIAS; fp = task_thread_info(task)->ksp + bias; do { /* Bogus frame pointer? */ if (fp < (thread_info_base + sizeof(struct thread_info)) || fp >= (thread_info_base + THREAD_SIZE)) break; rw = (struct reg_window *) fp; pc = rw->ins[7]; if (!in_sched_functions(pc)) { ret = pc; goto out; } fp = rw->ins[6] + bias; } while (++count < 16); out: return ret; }