/* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $ * arch/sparc64/mm/init.c * * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/init.h> #include <linux/bootmem.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/slab.h> #include <linux/initrd.h> #include <linux/swap.h> #include <linux/pagemap.h> #include <linux/poison.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/kprobes.h> #include <linux/cache.h> #include <linux/sort.h> #include <linux/percpu.h> #include <asm/head.h> #include <asm/system.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/iommu.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/mmu_context.h> #include <asm/tlbflush.h> #include <asm/dma.h> #include <asm/starfire.h> #include <asm/tlb.h> #include <asm/spitfire.h> #include <asm/sections.h> #include <asm/tsb.h> #include <asm/hypervisor.h> #include <asm/prom.h> #include <asm/sstate.h> #include <asm/mdesc.h> #define MAX_PHYS_ADDRESS (1UL << 42UL) #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL) #define KPTE_BITMAP_BYTES \ ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8) unsigned long kern_linear_pte_xor[2] __read_mostly; /* A bitmap, one bit for every 256MB of physical memory. If the bit * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else * if set we should use a 256MB page (via kern_linear_pte_xor[1]). */ unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)]; #ifndef CONFIG_DEBUG_PAGEALLOC /* A special kernel TSB for 4MB and 256MB linear mappings. * Space is allocated for this right after the trap table * in arch/sparc64/kernel/head.S */ extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; #endif #define MAX_BANKS 32 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata; static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; static int pavail_ents __initdata; static int pavail_rescan_ents __initdata; static int cmp_p64(const void *a, const void *b) { const struct linux_prom64_registers *x = a, *y = b; if (x->phys_addr > y->phys_addr) return 1; if (x->phys_addr < y->phys_addr) return -1; return 0; } static void __init read_obp_memory(const char *property, struct linux_prom64_registers *regs, int *num_ents) { int node = prom_finddevice("/memory"); int prop_size = prom_getproplen(node, property); int ents, ret, i; ents = prop_size / sizeof(struct linux_prom64_registers); if (ents > MAX_BANKS) { prom_printf("The machine has more %s property entries than " "this kernel can support (%d).\n", property, MAX_BANKS); prom_halt(); } ret = prom_getproperty(node, property, (char *) regs, prop_size); if (ret == -1) { prom_printf("Couldn't get %s property from /memory.\n"); prom_halt(); } /* Sanitize what we got from the firmware, by page aligning * everything. */ for (i = 0; i < ents; i++) { unsigned long base, size; base = regs[i].phys_addr; size = regs[i].reg_size; size &= PAGE_MASK; if (base & ~PAGE_MASK) { unsigned long new_base = PAGE_ALIGN(base); size -= new_base - base; if ((long) size < 0L) size = 0UL; base = new_base; } if (size == 0UL) { /* If it is empty, simply get rid of it. * This simplifies the logic of the other * functions that process these arrays. */ memmove(®s[i], ®s[i + 1], (ents - i - 1) * sizeof(regs[0])); i--; ents--; continue; } regs[i].phys_addr = base; regs[i].reg_size = size; } *num_ents = ents; sort(regs, ents, sizeof(struct linux_prom64_registers), cmp_p64, NULL); } unsigned long *sparc64_valid_addr_bitmap __read_mostly; /* Kernel physical address base and size in bytes. */ unsigned long kern_base __read_mostly; unsigned long kern_size __read_mostly; /* Initial ramdisk setup */ extern unsigned long sparc_ramdisk_image64; extern unsigned int sparc_ramdisk_image; extern unsigned int sparc_ramdisk_size; struct page *mem_map_zero __read_mostly; unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; unsigned long sparc64_kern_pri_context __read_mostly; unsigned long sparc64_kern_pri_nuc_bits __read_mostly; unsigned long sparc64_kern_sec_context __read_mostly; int bigkernel = 0; #ifdef CONFIG_DEBUG_DCFLUSH atomic_t dcpage_flushes = ATOMIC_INIT(0); #ifdef CONFIG_SMP atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); #endif #endif inline void flush_dcache_page_impl(struct page *page) { BUG_ON(tlb_type == hypervisor); #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes); #endif #ifdef DCACHE_ALIASING_POSSIBLE __flush_dcache_page(page_address(page), ((tlb_type == spitfire) && page_mapping(page) != NULL)); #else if (page_mapping(page) != NULL && tlb_type == spitfire) __flush_icache_page(__pa(page_address(page))); #endif } #define PG_dcache_dirty PG_arch_1 #define PG_dcache_cpu_shift 32UL #define PG_dcache_cpu_mask \ ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) #define dcache_dirty_cpu(page) \ (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) static inline void set_dcache_dirty(struct page *page, int this_cpu) { unsigned long mask = this_cpu; unsigned long non_cpu_bits; non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); __asm__ __volatile__("1:\n\t" "ldx [%2], %%g7\n\t" "and %%g7, %1, %%g1\n\t" "or %%g1, %0, %%g1\n\t" "casx [%2], %%g7, %%g1\n\t" "cmp %%g7, %%g1\n\t" "membar #StoreLoad | #StoreStore\n\t" "bne,pn %%xcc, 1b\n\t" " nop" : /* no outputs */ : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) : "g1", "g7"); } static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) { unsigned long mask = (1UL << PG_dcache_dirty); __asm__ __volatile__("! test_and_clear_dcache_dirty\n" "1:\n\t" "ldx [%2], %%g7\n\t" "srlx %%g7, %4, %%g1\n\t" "and %%g1, %3, %%g1\n\t" "cmp %%g1, %0\n\t" "bne,pn %%icc, 2f\n\t" " andn %%g7, %1, %%g1\n\t" "casx [%2], %%g7, %%g1\n\t" "cmp %%g7, %%g1\n\t" "membar #StoreLoad | #StoreStore\n\t" "bne,pn %%xcc, 1b\n\t" " nop\n" "2:" : /* no outputs */ : "r" (cpu), "r" (mask), "r" (&page->flags), "i" (PG_dcache_cpu_mask), "i" (PG_dcache_cpu_shift) : "g1", "g7"); } static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) { unsigned long tsb_addr = (unsigned long) ent; if (tlb_type == cheetah_plus || tlb_type == hypervisor) tsb_addr = __pa(tsb_addr); __tsb_insert(tsb_addr, tag, pte); } unsigned long _PAGE_ALL_SZ_BITS __read_mostly; unsigned long _PAGE_SZBITS __read_mostly; void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { struct mm_struct *mm; struct tsb *tsb; unsigned long tag, flags; unsigned long tsb_index, tsb_hash_shift; if (tlb_type != hypervisor) { unsigned long pfn = pte_pfn(pte); unsigned long pg_flags; struct page *page; if (pfn_valid(pfn) && (page = pfn_to_page(pfn), page_mapping(page)) && ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) { int cpu = ((pg_flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask); int this_cpu = get_cpu(); /* This is just to optimize away some function calls * in the SMP case. */ if (cpu == this_cpu) flush_dcache_page_impl(page); else smp_flush_dcache_page_impl(page, cpu); clear_dcache_dirty_cpu(page, cpu); put_cpu(); } } mm = vma->vm_mm; tsb_index = MM_TSB_BASE; tsb_hash_shift = PAGE_SHIFT; spin_lock_irqsave(&mm->context.lock, flags); #ifdef CONFIG_HUGETLB_PAGE if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) { if ((tlb_type == hypervisor && (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || (tlb_type != hypervisor && (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) { tsb_index = MM_TSB_HUGE; tsb_hash_shift = HPAGE_SHIFT; } } #endif tsb = mm->context.tsb_block[tsb_index].tsb; tsb += ((address >> tsb_hash_shift) & (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); tag = (address >> 22UL); tsb_insert(tsb, tag, pte_val(pte)); spin_unlock_irqrestore(&mm->context.lock, flags); } void flush_dcache_page(struct page *page) { struct address_space *mapping; int this_cpu; if (tlb_type == hypervisor) return; /* Do not bother with the expensive D-cache flush if it * is merely the zero page. The 'bigcore' testcase in GDB * causes this case to run millions of times. */ if (page == ZERO_PAGE(0)) return; this_cpu = get_cpu(); mapping = page_mapping(page); if (mapping && !mapping_mapped(mapping)) { int dirty = test_bit(PG_dcache_dirty, &page->flags); if (dirty) { int dirty_cpu = dcache_dirty_cpu(page); if (dirty_cpu == this_cpu) goto out; smp_flush_dcache_page_impl(page, dirty_cpu); } set_dcache_dirty(page, this_cpu); } else { /* We could delay the flush for the !page_mapping * case too. But that case is for exec env/arg * pages and those are %99 certainly going to get * faulted into the tlb (and thus flushed) anyways. */ flush_dcache_page_impl(page); } out: put_cpu(); } void __kprobes flush_icache_range(unsigned long start, unsigned long end) { /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ if (tlb_type == spitfire) { unsigned long kaddr; /* This code only runs on Spitfire cpus so this is * why we can assume _PAGE_PADDR_4U. */ for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { unsigned long paddr, mask = _PAGE_PADDR_4U; if (kaddr >= PAGE_OFFSET) paddr = kaddr & mask; else { pgd_t *pgdp = pgd_offset_k(kaddr); pud_t *pudp = pud_offset(pgdp, kaddr); pmd_t *pmdp = pmd_offset(pudp, kaddr); pte_t *ptep = pte_offset_kernel(pmdp, kaddr); paddr = pte_val(*ptep) & mask; } __flush_icache_page(paddr); } } } void show_mem(void) { unsigned long total = 0, reserved = 0; unsigned long shared = 0, cached = 0; pg_data_t *pgdat; printk(KERN_INFO "Mem-info:\n"); show_free_areas(); printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages << (PAGE_SHIFT-10)); for_each_online_pgdat(pgdat) { unsigned long i, flags; pgdat_resize_lock(pgdat, &flags); for (i = 0; i < pgdat->node_spanned_pages; i++) { struct page *page = pgdat_page_nr(pgdat, i); total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page) - 1; } pgdat_resize_unlock(pgdat, &flags); } printk(KERN_INFO "%lu pages of RAM\n", total); printk(KERN_INFO "%lu reserved pages\n", reserved); printk(KERN_INFO "%lu pages shared\n", shared); printk(KERN_INFO "%lu pages swap cached\n", cached); printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY)); printk(KERN_INFO "%lu pages writeback\n", global_page_state(NR_WRITEBACK)); printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED)); printk(KERN_INFO "%lu pages slab\n", global_page_state(NR_SLAB_RECLAIMABLE) + global_page_state(NR_SLAB_UNRECLAIMABLE)); printk(KERN_INFO "%lu pages pagetables\n", global_page_state(NR_PAGETABLE)); } void mmu_info(struct seq_file *m) { if (tlb_type == cheetah) seq_printf(m, "MMU Type\t: Cheetah\n"); else if (tlb_type == cheetah_plus) seq_printf(m, "MMU Type\t: Cheetah+\n"); else if (tlb_type == spitfire) seq_printf(m, "MMU Type\t: Spitfire\n"); else if (tlb_type == hypervisor) seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); else seq_printf(m, "MMU Type\t: ???\n"); #ifdef CONFIG_DEBUG_DCFLUSH seq_printf(m, "DCPageFlushes\t: %d\n", atomic_read(&dcpage_flushes)); #ifdef CONFIG_SMP seq_printf(m, "DCPageFlushesXC\t: %d\n", atomic_read(&dcpage_flushes_xcall)); #endif /* CONFIG_SMP */ #endif /* CONFIG_DEBUG_DCFLUSH */ } struct linux_prom_translation { unsigned long virt; unsigned long size; unsigned long data; }; /* Exported for kernel TLB miss handling in ktlb.S */ struct linux_prom_translation prom_trans[512] __read_mostly; unsigned int prom_trans_ents __read_mostly; /* Exported for SMP bootup purposes. */ unsigned long kern_locked_tte_data; /* The obp translations are saved based on 8k pagesize, since obp can * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> * HI_OBP_ADDRESS range are handled in ktlb.S. */ static inline int in_obp_range(unsigned long vaddr) { return (vaddr >= LOW_OBP_ADDRESS && vaddr < HI_OBP_ADDRESS); } static int cmp_ptrans(const void *a, const void *b) { const struct linux_prom_translation *x = a, *y = b; if (x->virt > y->virt) return 1; if (x->virt < y->virt) return -1; return 0; } /* Read OBP translations property into 'prom_trans[]'. */ static void __init read_obp_translations(void) { int n, node, ents, first, last, i; node = prom_finddevice("/virtual-memory"); n = prom_getproplen(node, "translations"); if (unlikely(n == 0 || n == -1)) { prom_printf("prom_mappings: Couldn't get size.\n"); prom_halt(); } if (unlikely(n > sizeof(prom_trans))) { prom_printf("prom_mappings: Size %Zd is too big.\n", n); prom_halt(); } if ((n = prom_getproperty(node, "translations", (char *)&prom_trans[0], sizeof(prom_trans))) == -1) { prom_printf("prom_mappings: Couldn't get property.\n"); prom_halt(); } n = n / sizeof(struct linux_prom_translation); ents = n; sort(prom_trans, ents, sizeof(struct linux_prom_translation), cmp_ptrans, NULL); /* Now kick out all the non-OBP entries. */ for (i = 0; i < ents; i++) { if (in_obp_range(prom_trans[i].virt)) break; } first = i; for (; i < ents; i++) { if (!in_obp_range(prom_trans[i].virt)) break; } last = i; for (i = 0; i < (last - first); i++) { struct linux_prom_translation *src = &prom_trans[i + first]; struct linux_prom_translation *dest = &prom_trans[i]; *dest = *src; } for (; i < ents; i++) { struct linux_prom_translation *dest = &prom_trans[i]; dest->virt = dest->size = dest->data = 0x0UL; } prom_trans_ents = last - first; if (tlb_type == spitfire) { /* Clear diag TTE bits. */ for (i = 0; i < prom_trans_ents; i++) prom_trans[i].data &= ~0x0003fe0000000000UL; } } static void __init hypervisor_tlb_lock(unsigned long vaddr, unsigned long pte, unsigned long mmu) { unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); if (ret != 0) { prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: " "errors with %lx\n", vaddr, 0, pte, mmu, ret); prom_halt(); } } static unsigned long kern_large_tte(unsigned long paddr); static void __init remap_kernel(void) { unsigned long phys_page, tte_vaddr, tte_data; int tlb_ent = sparc64_highest_locked_tlbent(); tte_vaddr = (unsigned long) KERNBASE; phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL; tte_data = kern_large_tte(phys_page); kern_locked_tte_data = tte_data; /* Now lock us into the TLBs via Hypervisor or OBP. */ if (tlb_type == hypervisor) { hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); if (bigkernel) { tte_vaddr += 0x400000; tte_data += 0x400000; hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); } } else { prom_dtlb_load(tlb_ent, tte_data, tte_vaddr); prom_itlb_load(tlb_ent, tte_data, tte_vaddr); if (bigkernel) { tlb_ent -= 1; prom_dtlb_load(tlb_ent, tte_data + 0x400000, tte_vaddr + 0x400000); prom_itlb_load(tlb_ent, tte_data + 0x400000, tte_vaddr + 0x400000); } sparc64_highest_unlocked_tlb_ent = tlb_ent - 1; } if (tlb_type == cheetah_plus) { sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | CTX_CHEETAH_PLUS_NUC); sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; } } static void __init inherit_prom_mappings(void) { read_obp_translations(); /* Now fixup OBP's idea about where we really are mapped. */ prom_printf("Remapping the kernel... "); remap_kernel(); prom_printf("done.\n"); } void prom_world(int enter) { if (!enter) set_fs((mm_segment_t) { get_thread_current_ds() }); __asm__ __volatile__("flushw"); } void __flush_dcache_range(unsigned long start, unsigned long end) { unsigned long va; if (tlb_type == spitfire) { int n = 0; for (va = start; va < end; va += 32) { spitfire_put_dcache_tag(va & 0x3fe0, 0x0); if (++n >= 512) break; } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { start = __pa(start); end = __pa(end); for (va = start; va < end; va += 32) __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (va), "i" (ASI_DCACHE_INVALIDATE)); } } /* get_new_mmu_context() uses "cache + 1". */ DEFINE_SPINLOCK(ctx_alloc_lock); unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; #define MAX_CTX_NR (1UL << CTX_NR_BITS) #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); /* Caller does TLB context flushing on local CPU if necessary. * The caller also ensures that CTX_VALID(mm->context) is false. * * We must be careful about boundary cases so that we never * let the user have CTX 0 (nucleus) or we ever use a CTX * version of zero (and thus NO_CONTEXT would not be caught * by version mis-match tests in mmu_context.h). * * Always invoked with interrupts disabled. */ void get_new_mmu_context(struct mm_struct *mm) { unsigned long ctx, new_ctx; unsigned long orig_pgsz_bits; unsigned long flags; int new_version; spin_lock_irqsave(&ctx_alloc_lock, flags); orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); ctx = (tlb_context_cache + 1) & CTX_NR_MASK; new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); new_version = 0; if (new_ctx >= (1 << CTX_NR_BITS)) { new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); if (new_ctx >= ctx) { int i; new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION; if (new_ctx == 1) new_ctx = CTX_FIRST_VERSION; /* Don't call memset, for 16 entries that's just * plain silly... */ mmu_context_bmap[0] = 3; mmu_context_bmap[1] = 0; mmu_context_bmap[2] = 0; mmu_context_bmap[3] = 0; for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { mmu_context_bmap[i + 0] = 0; mmu_context_bmap[i + 1] = 0; mmu_context_bmap[i + 2] = 0; mmu_context_bmap[i + 3] = 0; } new_version = 1; goto out; } } mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); out: tlb_context_cache = new_ctx; mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; spin_unlock_irqrestore(&ctx_alloc_lock, flags); if (unlikely(new_version)) smp_new_mmu_context_version(); } /* Find a free area for the bootmem map, avoiding the kernel image * and the initial ramdisk. */ static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn, unsigned long end_pfn) { unsigned long avoid_start, avoid_end, bootmap_size; int i; bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn); bootmap_size <<= PAGE_SHIFT; avoid_start = avoid_end = 0; #ifdef CONFIG_BLK_DEV_INITRD avoid_start = initrd_start; avoid_end = PAGE_ALIGN(initrd_end); #endif #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n", kern_base, PAGE_ALIGN(kern_base + kern_size), avoid_start, avoid_end); #endif for (i = 0; i < pavail_ents; i++) { unsigned long start, end; start = pavail[i].phys_addr; end = start + pavail[i].reg_size; while (start < end) { if (start >= kern_base && start < PAGE_ALIGN(kern_base + kern_size)) { start = PAGE_ALIGN(kern_base + kern_size); continue; } if (start >= avoid_start && start < avoid_end) { start = avoid_end; continue; } if ((end - start) < bootmap_size) break; if (start < kern_base && (start + bootmap_size) > kern_base) { start = PAGE_ALIGN(kern_base + kern_size); continue; } if (start < avoid_start && (start + bootmap_size) > avoid_start) { start = avoid_end; continue; } /* OK, it doesn't overlap anything, use it. */ #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n", start >> PAGE_SHIFT, start); #endif return start >> PAGE_SHIFT; } } prom_printf("Cannot find free area for bootmap, aborting.\n"); prom_halt(); } static void __init trim_pavail(unsigned long *cur_size_p, unsigned long *end_of_phys_p) { unsigned long to_trim = *cur_size_p - cmdline_memory_size; unsigned long avoid_start, avoid_end; int i; to_trim = PAGE_ALIGN(to_trim); avoid_start = avoid_end = 0; #ifdef CONFIG_BLK_DEV_INITRD avoid_start = initrd_start; avoid_end = PAGE_ALIGN(initrd_end); #endif /* Trim some pavail[] entries in order to satisfy the * requested "mem=xxx" kernel command line specification. * * We must not trim off the kernel image area nor the * initial ramdisk range (if any). Also, we must not trim * any pavail[] entry down to zero in order to preserve * the invariant that all pavail[] entries have a non-zero * size which is assumed by all of the code in here. */ for (i = 0; i < pavail_ents; i++) { unsigned long start, end, kern_end; unsigned long trim_low, trim_high, n; kern_end = PAGE_ALIGN(kern_base + kern_size); trim_low = start = pavail[i].phys_addr; trim_high = end = start + pavail[i].reg_size; if (kern_base >= start && kern_base < end) { trim_low = kern_base; if (kern_end >= end) continue; } if (kern_end >= start && kern_end < end) { trim_high = kern_end; } if (avoid_start && avoid_start >= start && avoid_start < end) { if (trim_low > avoid_start) trim_low = avoid_start; if (avoid_end >= end) continue; } if (avoid_end && avoid_end >= start && avoid_end < end) { if (trim_high < avoid_end) trim_high = avoid_end; } if (trim_high <= trim_low) continue; if (trim_low == start && trim_high == end) { /* Whole chunk is available for trimming. * Trim all except one page, in order to keep * entry non-empty. */ n = (end - start) - PAGE_SIZE; if (n > to_trim) n = to_trim; if (n) { pavail[i].phys_addr += n; pavail[i].reg_size -= n; to_trim -= n; } } else { n = (trim_low - start); if (n > to_trim) n = to_trim; if (n) { pavail[i].phys_addr += n; pavail[i].reg_size -= n; to_trim -= n; } if (to_trim) { n = end - trim_high; if (n > to_trim) n = to_trim; if (n) { pavail[i].reg_size -= n; to_trim -= n; } } } if (!to_trim) break; } /* Recalculate. */ *cur_size_p = 0UL; for (i = 0; i < pavail_ents; i++) { *end_of_phys_p = pavail[i].phys_addr + pavail[i].reg_size; *cur_size_p += pavail[i].reg_size; } } /* About pages_avail, this is the value we will use to calculate * the zholes_size[] argument given to free_area_init_node(). The * page allocator uses this to calculate nr_kernel_pages, * nr_all_pages and zone->present_pages. On NUMA it is used * to calculate zone->min_unmapped_pages and zone->min_slab_pages. * * So this number should really be set to what the page allocator * actually ends up with. This means: * 1) It should include bootmem map pages, we'll release those. * 2) It should not include the kernel image, except for the * __init sections which we will also release. * 3) It should include the initrd image, since we'll release * that too. */ static unsigned long __init bootmem_init(unsigned long *pages_avail, unsigned long phys_base) { unsigned long bootmap_size, end_pfn; unsigned long end_of_phys_memory = 0UL; unsigned long bootmap_pfn, bytes_avail, size; int i; #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("bootmem_init: Scan pavail, "); #endif bytes_avail = 0UL; for (i = 0; i < pavail_ents; i++) { end_of_phys_memory = pavail[i].phys_addr + pavail[i].reg_size; bytes_avail += pavail[i].reg_size; } /* Determine the location of the initial ramdisk before trying * to honor the "mem=xxx" command line argument. We must know * where the kernel image and the ramdisk image are so that we * do not trim those two areas from the physical memory map. */ #ifdef CONFIG_BLK_DEV_INITRD /* Now have to check initial ramdisk, so that bootmap does not overwrite it */ if (sparc_ramdisk_image || sparc_ramdisk_image64) { unsigned long ramdisk_image = sparc_ramdisk_image ? sparc_ramdisk_image : sparc_ramdisk_image64; ramdisk_image -= KERNBASE; initrd_start = ramdisk_image + phys_base; initrd_end = initrd_start + sparc_ramdisk_size; if (initrd_end > end_of_phys_memory) { printk(KERN_CRIT "initrd extends beyond end of memory " "(0x%016lx > 0x%016lx)\ndisabling initrd\n", initrd_end, end_of_phys_memory); initrd_start = 0; initrd_end = 0; } } #endif if (cmdline_memory_size && bytes_avail > cmdline_memory_size) trim_pavail(&bytes_avail, &end_of_phys_memory); *pages_avail = bytes_avail >> PAGE_SHIFT; end_pfn = end_of_phys_memory >> PAGE_SHIFT; /* Initialize the boot-time allocator. */ max_pfn = max_low_pfn = end_pfn; min_low_pfn = (phys_base >> PAGE_SHIFT); bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn); #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n", min_low_pfn, bootmap_pfn, max_low_pfn); #endif bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, min_low_pfn, end_pfn); /* Now register the available physical memory with the * allocator. */ for (i = 0; i < pavail_ents; i++) { #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n", i, pavail[i].phys_addr, pavail[i].reg_size); #endif free_bootmem(pavail[i].phys_addr, pavail[i].reg_size); } #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start) { size = initrd_end - initrd_start; /* Reserve the initrd image area. */ #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n", initrd_start, initrd_end); #endif reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT); initrd_start += PAGE_OFFSET; initrd_end += PAGE_OFFSET; } #endif /* Reserve the kernel text/data/bss. */ #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size); #endif reserve_bootmem(kern_base, kern_size, BOOTMEM_DEFAULT); *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT; /* Add back in the initmem pages. */ size = ((unsigned long)(__init_end) & PAGE_MASK) - PAGE_ALIGN((unsigned long)__init_begin); *pages_avail += size >> PAGE_SHIFT; /* Reserve the bootmem map. We do not account for it * in pages_avail because we will release that memory * in free_all_bootmem. */ size = bootmap_size; #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n", (bootmap_pfn << PAGE_SHIFT), size); #endif reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT); for (i = 0; i < pavail_ents; i++) { unsigned long start_pfn, end_pfn; start_pfn = pavail[i].phys_addr >> PAGE_SHIFT; end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT)); #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("memory_present(0, %lx, %lx)\n", start_pfn, end_pfn); #endif memory_present(0, start_pfn, end_pfn); } sparse_init(); return end_pfn; } static struct linux_prom64_registers pall[MAX_BANKS] __initdata; static int pall_ents __initdata; #ifdef CONFIG_DEBUG_PAGEALLOC static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot) { unsigned long vstart = PAGE_OFFSET + pstart; unsigned long vend = PAGE_OFFSET + pend; unsigned long alloc_bytes = 0UL; if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", vstart, vend); prom_halt(); } while (vstart < vend) { unsigned long this_end, paddr = __pa(vstart); pgd_t *pgd = pgd_offset_k(vstart); pud_t *pud; pmd_t *pmd; pte_t *pte; pud = pud_offset(pgd, vstart); if (pud_none(*pud)) { pmd_t *new; new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); alloc_bytes += PAGE_SIZE; pud_populate(&init_mm, pud, new); } pmd = pmd_offset(pud, vstart); if (!pmd_present(*pmd)) { pte_t *new; new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); alloc_bytes += PAGE_SIZE; pmd_populate_kernel(&init_mm, pmd, new); } pte = pte_offset_kernel(pmd, vstart); this_end = (vstart + PMD_SIZE) & PMD_MASK; if (this_end > vend) this_end = vend; while (vstart < this_end) { pte_val(*pte) = (paddr | pgprot_val(prot)); vstart += PAGE_SIZE; paddr += PAGE_SIZE; pte++; } } return alloc_bytes; } extern unsigned int kvmap_linear_patch[1]; #endif /* CONFIG_DEBUG_PAGEALLOC */ static void __init mark_kpte_bitmap(unsigned long start, unsigned long end) { const unsigned long shift_256MB = 28; const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL); const unsigned long size_256MB = (1UL << shift_256MB); while (start < end) { long remains; remains = end - start; if (remains < size_256MB) break; if (start & mask_256MB) { start = (start + size_256MB) & ~mask_256MB; continue; } while (remains >= size_256MB) { unsigned long index = start >> shift_256MB; __set_bit(index, kpte_linear_bitmap); start += size_256MB; remains -= size_256MB; } } } static void __init init_kpte_bitmap(void) { unsigned long i; for (i = 0; i < pall_ents; i++) { unsigned long phys_start, phys_end; phys_start = pall[i].phys_addr; phys_end = phys_start + pall[i].reg_size; mark_kpte_bitmap(phys_start, phys_end); } } static void __init kernel_physical_mapping_init(void) { #ifdef CONFIG_DEBUG_PAGEALLOC unsigned long i, mem_alloced = 0UL; for (i = 0; i < pall_ents; i++) { unsigned long phys_start, phys_end; phys_start = pall[i].phys_addr; phys_end = phys_start + pall[i].reg_size; mem_alloced += kernel_map_range(phys_start, phys_end, PAGE_KERNEL); } printk("Allocated %ld bytes for kernel page tables.\n", mem_alloced); kvmap_linear_patch[0] = 0x01000000; /* nop */ flushi(&kvmap_linear_patch[0]); __flush_tlb_all(); #endif } #ifdef CONFIG_DEBUG_PAGEALLOC void kernel_map_pages(struct page *page, int numpages, int enable) { unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); kernel_map_range(phys_start, phys_end, (enable ? PAGE_KERNEL : __pgprot(0))); flush_tsb_kernel_range(PAGE_OFFSET + phys_start, PAGE_OFFSET + phys_end); /* we should perform an IPI and flush all tlbs, * but that can deadlock->flush only current cpu. */ __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, PAGE_OFFSET + phys_end); } #endif unsigned long __init find_ecache_flush_span(unsigned long size) { int i; for (i = 0; i < pavail_ents; i++) { if (pavail[i].reg_size >= size) return pavail[i].phys_addr; } return ~0UL; } static void __init tsb_phys_patch(void) { struct tsb_ldquad_phys_patch_entry *pquad; struct tsb_phys_patch_entry *p; pquad = &__tsb_ldquad_phys_patch; while (pquad < &__tsb_ldquad_phys_patch_end) { unsigned long addr = pquad->addr; if (tlb_type == hypervisor) *(unsigned int *) addr = pquad->sun4v_insn; else *(unsigned int *) addr = pquad->sun4u_insn; wmb(); __asm__ __volatile__("flush %0" : /* no outputs */ : "r" (addr)); pquad++; } p = &__tsb_phys_patch; while (p < &__tsb_phys_patch_end) { unsigned long addr = p->addr; *(unsigned int *) addr = p->insn; wmb(); __asm__ __volatile__("flush %0" : /* no outputs */ : "r" (addr)); p++; } } /* Don't mark as init, we give this to the Hypervisor. */ #ifndef CONFIG_DEBUG_PAGEALLOC #define NUM_KTSB_DESCR 2 #else #define NUM_KTSB_DESCR 1 #endif static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; static void __init sun4v_ktsb_init(void) { unsigned long ktsb_pa; /* First KTSB for PAGE_SIZE mappings. */ ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); switch (PAGE_SIZE) { case 8 * 1024: default: ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; break; case 64 * 1024: ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; break; case 512 * 1024: ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; break; case 4 * 1024 * 1024: ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; break; }; ktsb_descr[0].assoc = 1; ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; ktsb_descr[0].ctx_idx = 0; ktsb_descr[0].tsb_base = ktsb_pa; ktsb_descr[0].resv = 0; #ifndef CONFIG_DEBUG_PAGEALLOC /* Second KTSB for 4MB/256MB mappings. */ ktsb_pa = (kern_base + ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB | HV_PGSZ_MASK_256MB); ktsb_descr[1].assoc = 1; ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; ktsb_descr[1].ctx_idx = 0; ktsb_descr[1].tsb_base = ktsb_pa; ktsb_descr[1].resv = 0; #endif } void __cpuinit sun4v_ktsb_register(void) { unsigned long pa, ret; pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); if (ret != 0) { prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " "errors with %lx\n", pa, ret); prom_halt(); } } /* paging_init() sets up the page tables */ extern void cheetah_ecache_flush_init(void); extern void sun4v_patch_tlb_handlers(void); extern void cpu_probe(void); extern void central_probe(void); static unsigned long last_valid_pfn; pgd_t swapper_pg_dir[2048]; static void sun4u_pgprot_init(void); static void sun4v_pgprot_init(void); /* Dummy function */ void __init setup_per_cpu_areas(void) { } void __init paging_init(void) { unsigned long end_pfn, pages_avail, shift, phys_base; unsigned long real_end, i; /* These build time checkes make sure that the dcache_dirty_cpu() * page->flags usage will work. * * When a page gets marked as dcache-dirty, we store the * cpu number starting at bit 32 in the page->flags. Also, * functions like clear_dcache_dirty_cpu use the cpu mask * in 13-bit signed-immediate instruction fields. */ BUILD_BUG_ON(FLAGS_RESERVED != 32); BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED); BUILD_BUG_ON(NR_CPUS > 4096); kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL; kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; sstate_booting(); /* Invalidate both kernel TSBs. */ memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); #ifndef CONFIG_DEBUG_PAGEALLOC memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); #endif if (tlb_type == hypervisor) sun4v_pgprot_init(); else sun4u_pgprot_init(); if (tlb_type == cheetah_plus || tlb_type == hypervisor) tsb_phys_patch(); if (tlb_type == hypervisor) { sun4v_patch_tlb_handlers(); sun4v_ktsb_init(); } /* Find available physical memory... */ read_obp_memory("available", &pavail[0], &pavail_ents); phys_base = 0xffffffffffffffffUL; for (i = 0; i < pavail_ents; i++) phys_base = min(phys_base, pavail[i].phys_addr); set_bit(0, mmu_context_bmap); shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); real_end = (unsigned long)_end; if ((real_end > ((unsigned long)KERNBASE + 0x400000))) bigkernel = 1; if ((real_end > ((unsigned long)KERNBASE + 0x800000))) { prom_printf("paging_init: Kernel > 8MB, too large.\n"); prom_halt(); } /* Set kernel pgd to upper alias so physical page computations * work. */ init_mm.pgd += ((shift) / (sizeof(pgd_t))); memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); /* Now can init the kernel/bad page tables. */ pud_set(pud_offset(&swapper_pg_dir[0], 0), swapper_low_pmd_dir + (shift / sizeof(pgd_t))); inherit_prom_mappings(); read_obp_memory("reg", &pall[0], &pall_ents); init_kpte_bitmap(); /* Ok, we can use our TLB miss and window trap handlers safely. */ setup_tba(); __flush_tlb_all(); if (tlb_type == hypervisor) sun4v_ktsb_register(); /* Setup bootmem... */ pages_avail = 0; last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base); max_mapnr = last_valid_pfn; kernel_physical_mapping_init(); real_setup_per_cpu_areas(); prom_build_devicetree(); if (tlb_type == hypervisor) sun4v_mdesc_init(); { unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; int znum; for (znum = 0; znum < MAX_NR_ZONES; znum++) zones_size[znum] = zholes_size[znum] = 0; zones_size[ZONE_NORMAL] = end_pfn; zholes_size[ZONE_NORMAL] = end_pfn - pages_avail; free_area_init_node(0, &contig_page_data, zones_size, __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size); } prom_printf("Booting Linux...\n"); central_probe(); cpu_probe(); } static void __init taint_real_pages(void) { int i; read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); /* Find changes discovered in the physmem available rescan and * reserve the lost portions in the bootmem maps. */ for (i = 0; i < pavail_ents; i++) { unsigned long old_start, old_end; old_start = pavail[i].phys_addr; old_end = old_start + pavail[i].reg_size; while (old_start < old_end) { int n; for (n = 0; n < pavail_rescan_ents; n++) { unsigned long new_start, new_end; new_start = pavail_rescan[n].phys_addr; new_end = new_start + pavail_rescan[n].reg_size; if (new_start <= old_start && new_end >= (old_start + PAGE_SIZE)) { set_bit(old_start >> 22, sparc64_valid_addr_bitmap); goto do_next_page; } } reserve_bootmem(old_start, PAGE_SIZE, BOOTMEM_DEFAULT); do_next_page: old_start += PAGE_SIZE; } } } int __init page_in_phys_avail(unsigned long paddr) { int i; paddr &= PAGE_MASK; for (i = 0; i < pavail_rescan_ents; i++) { unsigned long start, end; start = pavail_rescan[i].phys_addr; end = start + pavail_rescan[i].reg_size; if (paddr >= start && paddr < end) return 1; } if (paddr >= kern_base && paddr < (kern_base + kern_size)) return 1; #ifdef CONFIG_BLK_DEV_INITRD if (paddr >= __pa(initrd_start) && paddr < __pa(PAGE_ALIGN(initrd_end))) return 1; #endif return 0; } void __init mem_init(void) { unsigned long codepages, datapages, initpages; unsigned long addr, last; int i; i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6); i += 1; sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3); if (sparc64_valid_addr_bitmap == NULL) { prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); prom_halt(); } memset(sparc64_valid_addr_bitmap, 0, i << 3); addr = PAGE_OFFSET + kern_base; last = PAGE_ALIGN(kern_size) + addr; while (addr < last) { set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap); addr += PAGE_SIZE; } taint_real_pages(); high_memory = __va(last_valid_pfn << PAGE_SHIFT); #ifdef CONFIG_DEBUG_BOOTMEM prom_printf("mem_init: Calling free_all_bootmem().\n"); #endif /* We subtract one to account for the mem_map_zero page * allocated below. */ totalram_pages = num_physpages = free_all_bootmem() - 1; /* * Set up the zero page, mark it reserved, so that page count * is not manipulated when freeing the page from user ptes. */ mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); if (mem_map_zero == NULL) { prom_printf("paging_init: Cannot alloc zero page.\n"); prom_halt(); } SetPageReserved(mem_map_zero); codepages = (((unsigned long) _etext) - ((unsigned long) _start)); codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; datapages = (((unsigned long) _edata) - ((unsigned long) _etext)); datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin)); initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n", nr_free_pages() << (PAGE_SHIFT-10), codepages << (PAGE_SHIFT-10), datapages << (PAGE_SHIFT-10), initpages << (PAGE_SHIFT-10), PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT)); if (tlb_type == cheetah || tlb_type == cheetah_plus) cheetah_ecache_flush_init(); } void free_initmem(void) { unsigned long addr, initend; /* * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. */ addr = PAGE_ALIGN((unsigned long)(__init_begin)); initend = (unsigned long)(__init_end) & PAGE_MASK; for (; addr < initend; addr += PAGE_SIZE) { unsigned long page; struct page *p; page = (addr + ((unsigned long) __va(kern_base)) - ((unsigned long) KERNBASE)); memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); p = virt_to_page(page); ClearPageReserved(p); init_page_count(p); __free_page(p); num_physpages++; totalram_pages++; } } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { if (start < end) printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { struct page *p = virt_to_page(start); ClearPageReserved(p); init_page_count(p); __free_page(p); num_physpages++; totalram_pages++; } } #endif #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) pgprot_t PAGE_KERNEL __read_mostly; EXPORT_SYMBOL(PAGE_KERNEL); pgprot_t PAGE_KERNEL_LOCKED __read_mostly; pgprot_t PAGE_COPY __read_mostly; pgprot_t PAGE_SHARED __read_mostly; EXPORT_SYMBOL(PAGE_SHARED); pgprot_t PAGE_EXEC __read_mostly; unsigned long pg_iobits __read_mostly; unsigned long _PAGE_IE __read_mostly; EXPORT_SYMBOL(_PAGE_IE); unsigned long _PAGE_E __read_mostly; EXPORT_SYMBOL(_PAGE_E); unsigned long _PAGE_CACHE __read_mostly; EXPORT_SYMBOL(_PAGE_CACHE); #ifdef CONFIG_SPARSEMEM_VMEMMAP #define VMEMMAP_CHUNK_SHIFT 22 #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT) #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL) #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK) #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \ sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT) unsigned long vmemmap_table[VMEMMAP_SIZE]; int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node) { unsigned long vstart = (unsigned long) start; unsigned long vend = (unsigned long) (start + nr); unsigned long phys_start = (vstart - VMEMMAP_BASE); unsigned long phys_end = (vend - VMEMMAP_BASE); unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK; unsigned long end = VMEMMAP_ALIGN(phys_end); unsigned long pte_base; pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | _PAGE_W_4U); if (tlb_type == hypervisor) pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_W_4V); for (; addr < end; addr += VMEMMAP_CHUNK) { unsigned long *vmem_pp = vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT); void *block; if (!(*vmem_pp & _PAGE_VALID)) { block = vmemmap_alloc_block(1UL << 22, node); if (!block) return -ENOMEM; *vmem_pp = pte_base | __pa(block); printk(KERN_INFO "[%p-%p] page_structs=%lu " "node=%d entry=%lu/%lu\n", start, block, nr, node, addr >> VMEMMAP_CHUNK_SHIFT, VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT); } } return 0; } #endif /* CONFIG_SPARSEMEM_VMEMMAP */ static void prot_init_common(unsigned long page_none, unsigned long page_shared, unsigned long page_copy, unsigned long page_readonly, unsigned long page_exec_bit) { PAGE_COPY = __pgprot(page_copy); PAGE_SHARED = __pgprot(page_shared); protection_map[0x0] = __pgprot(page_none); protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); protection_map[0x4] = __pgprot(page_readonly); protection_map[0x5] = __pgprot(page_readonly); protection_map[0x6] = __pgprot(page_copy); protection_map[0x7] = __pgprot(page_copy); protection_map[0x8] = __pgprot(page_none); protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); protection_map[0xc] = __pgprot(page_readonly); protection_map[0xd] = __pgprot(page_readonly); protection_map[0xe] = __pgprot(page_shared); protection_map[0xf] = __pgprot(page_shared); } static void __init sun4u_pgprot_init(void) { unsigned long page_none, page_shared, page_copy, page_readonly; unsigned long page_exec_bit; PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | _PAGE_CACHE_4U | _PAGE_P_4U | __ACCESS_BITS_4U | __DIRTY_BITS_4U | _PAGE_EXEC_4U); PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | _PAGE_CACHE_4U | _PAGE_P_4U | __ACCESS_BITS_4U | __DIRTY_BITS_4U | _PAGE_EXEC_4U | _PAGE_L_4U); PAGE_EXEC = __pgprot(_PAGE_EXEC_4U); _PAGE_IE = _PAGE_IE_4U; _PAGE_E = _PAGE_E_4U; _PAGE_CACHE = _PAGE_CACHE_4U; pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | __ACCESS_BITS_4U | _PAGE_E_4U); #ifdef CONFIG_DEBUG_PAGEALLOC kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^ 0xfffff80000000000; #else kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 0xfffff80000000000; #endif kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | _PAGE_W_4U); /* XXX Should use 256MB on Panther. XXX */ kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; _PAGE_SZBITS = _PAGE_SZBITS_4U; _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | __ACCESS_BITS_4U | _PAGE_EXEC_4U); page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | __ACCESS_BITS_4U | _PAGE_EXEC_4U); page_exec_bit = _PAGE_EXEC_4U; prot_init_common(page_none, page_shared, page_copy, page_readonly, page_exec_bit); } static void __init sun4v_pgprot_init(void) { unsigned long page_none, page_shared, page_copy, page_readonly; unsigned long page_exec_bit; PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | _PAGE_CACHE_4V | _PAGE_P_4V | __ACCESS_BITS_4V | __DIRTY_BITS_4V | _PAGE_EXEC_4V); PAGE_KERNEL_LOCKED = PAGE_KERNEL; PAGE_EXEC = __pgprot(_PAGE_EXEC_4V); _PAGE_IE = _PAGE_IE_4V; _PAGE_E = _PAGE_E_4V; _PAGE_CACHE = _PAGE_CACHE_4V; #ifdef CONFIG_DEBUG_PAGEALLOC kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^ 0xfffff80000000000; #else kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 0xfffff80000000000; #endif kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_W_4V); #ifdef CONFIG_DEBUG_PAGEALLOC kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^ 0xfffff80000000000; #else kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 0xfffff80000000000; #endif kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_W_4V); pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | __ACCESS_BITS_4V | _PAGE_E_4V); _PAGE_SZBITS = _PAGE_SZBITS_4V; _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | __ACCESS_BITS_4V | _PAGE_EXEC_4V); page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | __ACCESS_BITS_4V | _PAGE_EXEC_4V); page_exec_bit = _PAGE_EXEC_4V; prot_init_common(page_none, page_shared, page_copy, page_readonly, page_exec_bit); } unsigned long pte_sz_bits(unsigned long sz) { if (tlb_type == hypervisor) { switch (sz) { case 8 * 1024: default: return _PAGE_SZ8K_4V; case 64 * 1024: return _PAGE_SZ64K_4V; case 512 * 1024: return _PAGE_SZ512K_4V; case 4 * 1024 * 1024: return _PAGE_SZ4MB_4V; }; } else { switch (sz) { case 8 * 1024: default: return _PAGE_SZ8K_4U; case 64 * 1024: return _PAGE_SZ64K_4U; case 512 * 1024: return _PAGE_SZ512K_4U; case 4 * 1024 * 1024: return _PAGE_SZ4MB_4U; }; } } pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) { pte_t pte; pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); pte_val(pte) |= (((unsigned long)space) << 32); pte_val(pte) |= pte_sz_bits(page_size); return pte; } static unsigned long kern_large_tte(unsigned long paddr) { unsigned long val; val = (_PAGE_VALID | _PAGE_SZ4MB_4U | _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); if (tlb_type == hypervisor) val = (_PAGE_VALID | _PAGE_SZ4MB_4V | _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_EXEC_4V | _PAGE_W_4V); return val | paddr; } /* If not locked, zap it. */ void __flush_tlb_all(void) { unsigned long pstate; int i; __asm__ __volatile__("flushw\n\t" "rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); if (tlb_type == hypervisor) { sun4v_mmu_demap_all(); } else if (tlb_type == spitfire) { for (i = 0; i < 64; i++) { /* Spitfire Errata #32 workaround */ /* NOTE: Always runs on spitfire, so no * cheetah+ page size encodings. */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); spitfire_put_dtlb_data(i, 0x0UL); } /* Spitfire Errata #32 workaround */ /* NOTE: Always runs on spitfire, so no * cheetah+ page size encodings. */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); spitfire_put_itlb_data(i, 0x0UL); } } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { cheetah_flush_dtlb_all(); cheetah_flush_itlb_all(); } __asm__ __volatile__("wrpr %0, 0, %%pstate" : : "r" (pstate)); } #ifdef CONFIG_MEMORY_HOTPLUG void online_page(struct page *page) { ClearPageReserved(page); init_page_count(page); __free_page(page); totalram_pages++; num_physpages++; } #endif /* CONFIG_MEMORY_HOTPLUG */