/* * Local APIC handling, local APIC timers * * (c) 1999, 2000 Ingo Molnar * * Fixes * Maciej W. Rozycki : Bits for genuine 82489DX APICs; * thanks to Eric Gilmore * and Rolf G. Tews * for testing these extensively. * Maciej W. Rozycki : Various updates and fixes. * Mikael Pettersson : Power Management for UP-APIC. * Pavel Machek and * Mikael Pettersson : PM converted to driver model. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Disable local APIC timer from the kernel commandline or via dmi quirk */ static int disable_apic_timer __cpuinitdata; static int apic_calibrate_pmtmr __initdata; int disable_apic; int disable_x2apic; int x2apic; /* x2apic enabled before OS handover */ int x2apic_preenabled; /* Local APIC timer works in C2 */ int local_apic_timer_c2_ok; EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); /* * Debug level, exported for io_apic.c */ unsigned int apic_verbosity; /* Have we found an MP table */ int smp_found_config; static struct resource lapic_resource = { .name = "Local APIC", .flags = IORESOURCE_MEM | IORESOURCE_BUSY, }; static unsigned int calibration_result; static int lapic_next_event(unsigned long delta, struct clock_event_device *evt); static void lapic_timer_setup(enum clock_event_mode mode, struct clock_event_device *evt); static void lapic_timer_broadcast(cpumask_t mask); static void apic_pm_activate(void); /* * The local apic timer can be used for any function which is CPU local. */ static struct clock_event_device lapic_clockevent = { .name = "lapic", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_DUMMY, .shift = 32, .set_mode = lapic_timer_setup, .set_next_event = lapic_next_event, .broadcast = lapic_timer_broadcast, .rating = 100, .irq = -1, }; static DEFINE_PER_CPU(struct clock_event_device, lapic_events); static unsigned long apic_phys; unsigned long mp_lapic_addr; /* * Get the LAPIC version */ static inline int lapic_get_version(void) { return GET_APIC_VERSION(apic_read(APIC_LVR)); } /* * Check, if the APIC is integrated or a separate chip */ static inline int lapic_is_integrated(void) { #ifdef CONFIG_X86_64 return 1; #else return APIC_INTEGRATED(lapic_get_version()); #endif } /* * Check, whether this is a modern or a first generation APIC */ static int modern_apic(void) { /* AMD systems use old APIC versions, so check the CPU */ if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 >= 0xf) return 1; return lapic_get_version() >= 0x14; } /* * Paravirt kernels also might be using these below ops. So we still * use generic apic_read()/apic_write(), which might be pointing to different * ops in PARAVIRT case. */ void xapic_wait_icr_idle(void) { while (apic_read(APIC_ICR) & APIC_ICR_BUSY) cpu_relax(); } u32 safe_xapic_wait_icr_idle(void) { u32 send_status; int timeout; timeout = 0; do { send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; if (!send_status) break; udelay(100); } while (timeout++ < 1000); return send_status; } void xapic_icr_write(u32 low, u32 id) { apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); apic_write(APIC_ICR, low); } u64 xapic_icr_read(void) { u32 icr1, icr2; icr2 = apic_read(APIC_ICR2); icr1 = apic_read(APIC_ICR); return icr1 | ((u64)icr2 << 32); } static struct apic_ops xapic_ops = { .read = native_apic_mem_read, .write = native_apic_mem_write, .icr_read = xapic_icr_read, .icr_write = xapic_icr_write, .wait_icr_idle = xapic_wait_icr_idle, .safe_wait_icr_idle = safe_xapic_wait_icr_idle, }; struct apic_ops __read_mostly *apic_ops = &xapic_ops; EXPORT_SYMBOL_GPL(apic_ops); static void x2apic_wait_icr_idle(void) { /* no need to wait for icr idle in x2apic */ return; } static u32 safe_x2apic_wait_icr_idle(void) { /* no need to wait for icr idle in x2apic */ return 0; } void x2apic_icr_write(u32 low, u32 id) { wrmsrl(APIC_BASE_MSR + (APIC_ICR >> 4), ((__u64) id) << 32 | low); } u64 x2apic_icr_read(void) { unsigned long val; rdmsrl(APIC_BASE_MSR + (APIC_ICR >> 4), val); return val; } static struct apic_ops x2apic_ops = { .read = native_apic_msr_read, .write = native_apic_msr_write, .icr_read = x2apic_icr_read, .icr_write = x2apic_icr_write, .wait_icr_idle = x2apic_wait_icr_idle, .safe_wait_icr_idle = safe_x2apic_wait_icr_idle, }; /** * enable_NMI_through_LVT0 - enable NMI through local vector table 0 */ void __cpuinit enable_NMI_through_LVT0(void) { unsigned int v; /* unmask and set to NMI */ v = APIC_DM_NMI; /* Level triggered for 82489DX (32bit mode) */ if (!lapic_is_integrated()) v |= APIC_LVT_LEVEL_TRIGGER; apic_write(APIC_LVT0, v); } /** * lapic_get_maxlvt - get the maximum number of local vector table entries */ int lapic_get_maxlvt(void) { unsigned int v; v = apic_read(APIC_LVR); /* * - we always have APIC integrated on 64bit mode * - 82489DXs do not report # of LVT entries */ return APIC_INTEGRATED(GET_APIC_VERSION(v)) ? GET_APIC_MAXLVT(v) : 2; } /* * Local APIC timer */ /* Clock divisor */ #ifdef CONFG_X86_64 #define APIC_DIVISOR 1 #else #define APIC_DIVISOR 16 #endif /* * This function sets up the local APIC timer, with a timeout of * 'clocks' APIC bus clock. During calibration we actually call * this function twice on the boot CPU, once with a bogus timeout * value, second time for real. The other (noncalibrating) CPUs * call this function only once, with the real, calibrated value. * * We do reads before writes even if unnecessary, to get around the * P5 APIC double write bug. */ static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) { unsigned int lvtt_value, tmp_value; lvtt_value = LOCAL_TIMER_VECTOR; if (!oneshot) lvtt_value |= APIC_LVT_TIMER_PERIODIC; if (!lapic_is_integrated()) lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); if (!irqen) lvtt_value |= APIC_LVT_MASKED; apic_write(APIC_LVTT, lvtt_value); /* * Divide PICLK by 16 */ tmp_value = apic_read(APIC_TDCR); apic_write(APIC_TDCR, (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | APIC_TDR_DIV_16); if (!oneshot) apic_write(APIC_TMICT, clocks / APIC_DIVISOR); } /* * Setup extended LVT, AMD specific (K8, family 10h) * * Vector mappings are hard coded. On K8 only offset 0 (APIC500) and * MCE interrupts are supported. Thus MCE offset must be set to 0. * * If mask=1, the LVT entry does not generate interrupts while mask=0 * enables the vector. See also the BKDGs. */ #define APIC_EILVT_LVTOFF_MCE 0 #define APIC_EILVT_LVTOFF_IBS 1 static void setup_APIC_eilvt(u8 lvt_off, u8 vector, u8 msg_type, u8 mask) { unsigned long reg = (lvt_off << 4) + APIC_EILVT0; unsigned int v = (mask << 16) | (msg_type << 8) | vector; apic_write(reg, v); } u8 setup_APIC_eilvt_mce(u8 vector, u8 msg_type, u8 mask) { setup_APIC_eilvt(APIC_EILVT_LVTOFF_MCE, vector, msg_type, mask); return APIC_EILVT_LVTOFF_MCE; } u8 setup_APIC_eilvt_ibs(u8 vector, u8 msg_type, u8 mask) { setup_APIC_eilvt(APIC_EILVT_LVTOFF_IBS, vector, msg_type, mask); return APIC_EILVT_LVTOFF_IBS; } EXPORT_SYMBOL_GPL(setup_APIC_eilvt_ibs); /* * Program the next event, relative to now */ static int lapic_next_event(unsigned long delta, struct clock_event_device *evt) { apic_write(APIC_TMICT, delta); return 0; } /* * Setup the lapic timer in periodic or oneshot mode */ static void lapic_timer_setup(enum clock_event_mode mode, struct clock_event_device *evt) { unsigned long flags; unsigned int v; /* Lapic used as dummy for broadcast ? */ if (evt->features & CLOCK_EVT_FEAT_DUMMY) return; local_irq_save(flags); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_ONESHOT: __setup_APIC_LVTT(calibration_result, mode != CLOCK_EVT_MODE_PERIODIC, 1); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: v = apic_read(APIC_LVTT); v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); apic_write(APIC_LVTT, v); break; case CLOCK_EVT_MODE_RESUME: /* Nothing to do here */ break; } local_irq_restore(flags); } /* * Local APIC timer broadcast function */ static void lapic_timer_broadcast(cpumask_t mask) { #ifdef CONFIG_SMP send_IPI_mask(mask, LOCAL_TIMER_VECTOR); #endif } /* * Setup the local APIC timer for this CPU. Copy the initilized values * of the boot CPU and register the clock event in the framework. */ static void setup_APIC_timer(void) { struct clock_event_device *levt = &__get_cpu_var(lapic_events); memcpy(levt, &lapic_clockevent, sizeof(*levt)); levt->cpumask = cpumask_of_cpu(smp_processor_id()); clockevents_register_device(levt); } /* * In this function we calibrate APIC bus clocks to the external * timer. Unfortunately we cannot use jiffies and the timer irq * to calibrate, since some later bootup code depends on getting * the first irq? Ugh. * * We want to do the calibration only once since we * want to have local timer irqs syncron. CPUs connected * by the same APIC bus have the very same bus frequency. * And we want to have irqs off anyways, no accidental * APIC irq that way. */ #define TICK_COUNT 100000000 static int __init calibrate_APIC_clock(void) { unsigned apic, apic_start; unsigned long tsc, tsc_start; int result; local_irq_disable(); /* * Put whatever arbitrary (but long enough) timeout * value into the APIC clock, we just want to get the * counter running for calibration. * * No interrupt enable ! */ __setup_APIC_LVTT(250000000, 0, 0); apic_start = apic_read(APIC_TMCCT); #ifdef CONFIG_X86_PM_TIMER if (apic_calibrate_pmtmr && pmtmr_ioport) { pmtimer_wait(5000); /* 5ms wait */ apic = apic_read(APIC_TMCCT); result = (apic_start - apic) * 1000L / 5; } else #endif { rdtscll(tsc_start); do { apic = apic_read(APIC_TMCCT); rdtscll(tsc); } while ((tsc - tsc_start) < TICK_COUNT && (apic_start - apic) < TICK_COUNT); result = (apic_start - apic) * 1000L * tsc_khz / (tsc - tsc_start); } local_irq_enable(); printk(KERN_DEBUG "APIC timer calibration result %d\n", result); printk(KERN_INFO "Detected %d.%03d MHz APIC timer.\n", result / 1000 / 1000, result / 1000 % 1000); /* Calculate the scaled math multiplication factor */ lapic_clockevent.mult = div_sc(result, NSEC_PER_SEC, lapic_clockevent.shift); lapic_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFF, &lapic_clockevent); lapic_clockevent.min_delta_ns = clockevent_delta2ns(0xF, &lapic_clockevent); calibration_result = (result * APIC_DIVISOR) / HZ; /* * Do a sanity check on the APIC calibration result */ if (calibration_result < (1000000 / HZ)) { printk(KERN_WARNING "APIC frequency too slow, disabling apic timer\n"); return -1; } return 0; } /* * Setup the boot APIC * * Calibrate and verify the result. */ void __init setup_boot_APIC_clock(void) { /* * The local apic timer can be disabled via the kernel * commandline or from the CPU detection code. Register the lapic * timer as a dummy clock event source on SMP systems, so the * broadcast mechanism is used. On UP systems simply ignore it. */ if (disable_apic_timer) { printk(KERN_INFO "Disabling APIC timer\n"); /* No broadcast on UP ! */ if (num_possible_cpus() > 1) { lapic_clockevent.mult = 1; setup_APIC_timer(); } return; } apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" "calibrating APIC timer ...\n"); if (calibrate_APIC_clock()) { /* No broadcast on UP ! */ if (num_possible_cpus() > 1) setup_APIC_timer(); return; } /* * If nmi_watchdog is set to IO_APIC, we need the * PIT/HPET going. Otherwise register lapic as a dummy * device. */ if (nmi_watchdog != NMI_IO_APIC) lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; else printk(KERN_WARNING "APIC timer registered as dummy," " due to nmi_watchdog=%d!\n", nmi_watchdog); /* Setup the lapic or request the broadcast */ setup_APIC_timer(); } void __cpuinit setup_secondary_APIC_clock(void) { setup_APIC_timer(); } /* * The guts of the apic timer interrupt */ static void local_apic_timer_interrupt(void) { int cpu = smp_processor_id(); struct clock_event_device *evt = &per_cpu(lapic_events, cpu); /* * Normally we should not be here till LAPIC has been initialized but * in some cases like kdump, its possible that there is a pending LAPIC * timer interrupt from previous kernel's context and is delivered in * new kernel the moment interrupts are enabled. * * Interrupts are enabled early and LAPIC is setup much later, hence * its possible that when we get here evt->event_handler is NULL. * Check for event_handler being NULL and discard the interrupt as * spurious. */ if (!evt->event_handler) { printk(KERN_WARNING "Spurious LAPIC timer interrupt on cpu %d\n", cpu); /* Switch it off */ lapic_timer_setup(CLOCK_EVT_MODE_SHUTDOWN, evt); return; } /* * the NMI deadlock-detector uses this. */ #ifdef CONFIG_X86_64 add_pda(apic_timer_irqs, 1); #else per_cpu(irq_stat, cpu).apic_timer_irqs++; #endif evt->event_handler(evt); } /* * Local APIC timer interrupt. This is the most natural way for doing * local interrupts, but local timer interrupts can be emulated by * broadcast interrupts too. [in case the hw doesn't support APIC timers] * * [ if a single-CPU system runs an SMP kernel then we call the local * interrupt as well. Thus we cannot inline the local irq ... ] */ void smp_apic_timer_interrupt(struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); /* * NOTE! We'd better ACK the irq immediately, * because timer handling can be slow. */ ack_APIC_irq(); /* * update_process_times() expects us to have done irq_enter(). * Besides, if we don't timer interrupts ignore the global * interrupt lock, which is the WrongThing (tm) to do. */ exit_idle(); irq_enter(); local_apic_timer_interrupt(); irq_exit(); set_irq_regs(old_regs); } int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } /* * Local APIC start and shutdown */ /** * clear_local_APIC - shutdown the local APIC * * This is called, when a CPU is disabled and before rebooting, so the state of * the local APIC has no dangling leftovers. Also used to cleanout any BIOS * leftovers during boot. */ void clear_local_APIC(void) { int maxlvt; u32 v; /* APIC hasn't been mapped yet */ if (!apic_phys) return; maxlvt = lapic_get_maxlvt(); /* * Masking an LVT entry can trigger a local APIC error * if the vector is zero. Mask LVTERR first to prevent this. */ if (maxlvt >= 3) { v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); } /* * Careful: we have to set masks only first to deassert * any level-triggered sources. */ v = apic_read(APIC_LVTT); apic_write(APIC_LVTT, v | APIC_LVT_MASKED); v = apic_read(APIC_LVT0); apic_write(APIC_LVT0, v | APIC_LVT_MASKED); v = apic_read(APIC_LVT1); apic_write(APIC_LVT1, v | APIC_LVT_MASKED); if (maxlvt >= 4) { v = apic_read(APIC_LVTPC); apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); } /* lets not touch this if we didn't frob it */ #if defined(CONFIG_X86_MCE_P4THERMAL) || defined(X86_MCE_INTEL) if (maxlvt >= 5) { v = apic_read(APIC_LVTTHMR); apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); } #endif /* * Clean APIC state for other OSs: */ apic_write(APIC_LVTT, APIC_LVT_MASKED); apic_write(APIC_LVT0, APIC_LVT_MASKED); apic_write(APIC_LVT1, APIC_LVT_MASKED); if (maxlvt >= 3) apic_write(APIC_LVTERR, APIC_LVT_MASKED); if (maxlvt >= 4) apic_write(APIC_LVTPC, APIC_LVT_MASKED); /* Integrated APIC (!82489DX) ? */ if (lapic_is_integrated()) { if (maxlvt > 3) /* Clear ESR due to Pentium errata 3AP and 11AP */ apic_write(APIC_ESR, 0); apic_read(APIC_ESR); } } /** * disable_local_APIC - clear and disable the local APIC */ void disable_local_APIC(void) { unsigned int value; clear_local_APIC(); /* * Disable APIC (implies clearing of registers * for 82489DX!). */ value = apic_read(APIC_SPIV); value &= ~APIC_SPIV_APIC_ENABLED; apic_write(APIC_SPIV, value); #ifdef CONFIG_X86_32 /* * When LAPIC was disabled by the BIOS and enabled by the kernel, * restore the disabled state. */ if (enabled_via_apicbase) { unsigned int l, h; rdmsr(MSR_IA32_APICBASE, l, h); l &= ~MSR_IA32_APICBASE_ENABLE; wrmsr(MSR_IA32_APICBASE, l, h); } #endif } /* * If Linux enabled the LAPIC against the BIOS default disable it down before * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and * not power-off. Additionally clear all LVT entries before disable_local_APIC * for the case where Linux didn't enable the LAPIC. */ void lapic_shutdown(void) { unsigned long flags; if (!cpu_has_apic) return; local_irq_save(flags); #ifdef CONFIG_X86_32 if (!enabled_via_apicbase) clear_local_APIC(); else #endif disable_local_APIC(); local_irq_restore(flags); } /* * This is to verify that we're looking at a real local APIC. * Check these against your board if the CPUs aren't getting * started for no apparent reason. */ int __init verify_local_APIC(void) { unsigned int reg0, reg1; /* * The version register is read-only in a real APIC. */ reg0 = apic_read(APIC_LVR); apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg0); apic_write(APIC_LVR, reg0 ^ APIC_LVR_MASK); reg1 = apic_read(APIC_LVR); apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg1); /* * The two version reads above should print the same * numbers. If the second one is different, then we * poke at a non-APIC. */ if (reg1 != reg0) return 0; /* * Check if the version looks reasonably. */ reg1 = GET_APIC_VERSION(reg0); if (reg1 == 0x00 || reg1 == 0xff) return 0; reg1 = lapic_get_maxlvt(); if (reg1 < 0x02 || reg1 == 0xff) return 0; /* * The ID register is read/write in a real APIC. */ reg0 = apic_read(APIC_ID); apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg0); apic_write(APIC_ID, reg0 ^ APIC_ID_MASK); reg1 = apic_read(APIC_ID); apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg1); apic_write(APIC_ID, reg0); if (reg1 != (reg0 ^ APIC_ID_MASK)) return 0; /* * The next two are just to see if we have sane values. * They're only really relevant if we're in Virtual Wire * compatibility mode, but most boxes are anymore. */ reg0 = apic_read(APIC_LVT0); apic_printk(APIC_DEBUG, "Getting LVT0: %x\n", reg0); reg1 = apic_read(APIC_LVT1); apic_printk(APIC_DEBUG, "Getting LVT1: %x\n", reg1); return 1; } /** * sync_Arb_IDs - synchronize APIC bus arbitration IDs */ void __init sync_Arb_IDs(void) { /* * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not * needed on AMD. */ if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) return; /* * Wait for idle. */ apic_wait_icr_idle(); apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG | APIC_DM_INIT); } /* * An initial setup of the virtual wire mode. */ void __init init_bsp_APIC(void) { unsigned int value; /* * Don't do the setup now if we have a SMP BIOS as the * through-I/O-APIC virtual wire mode might be active. */ if (smp_found_config || !cpu_has_apic) return; /* * Do not trust the local APIC being empty at bootup. */ clear_local_APIC(); /* * Enable APIC. */ value = apic_read(APIC_SPIV); value &= ~APIC_VECTOR_MASK; value |= APIC_SPIV_APIC_ENABLED; #ifdef CONFIG_X86_32 /* This bit is reserved on P4/Xeon and should be cleared */ if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 15)) value &= ~APIC_SPIV_FOCUS_DISABLED; else #endif value |= APIC_SPIV_FOCUS_DISABLED; value |= SPURIOUS_APIC_VECTOR; apic_write(APIC_SPIV, value); /* * Set up the virtual wire mode. */ apic_write(APIC_LVT0, APIC_DM_EXTINT); value = APIC_DM_NMI; if (!lapic_is_integrated()) /* 82489DX */ value |= APIC_LVT_LEVEL_TRIGGER; apic_write(APIC_LVT1, value); } static void __cpuinit lapic_setup_esr(void) { unsigned long oldvalue, value, maxlvt; if (lapic_is_integrated() && !esr_disable) { if (esr_disable) { /* * Something untraceable is creating bad interrupts on * secondary quads ... for the moment, just leave the * ESR disabled - we can't do anything useful with the * errors anyway - mbligh */ printk(KERN_INFO "Leaving ESR disabled.\n"); return; } /* !82489DX */ maxlvt = lapic_get_maxlvt(); if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); oldvalue = apic_read(APIC_ESR); /* enables sending errors */ value = ERROR_APIC_VECTOR; apic_write(APIC_LVTERR, value); /* * spec says clear errors after enabling vector. */ if (maxlvt > 3) apic_write(APIC_ESR, 0); value = apic_read(APIC_ESR); if (value != oldvalue) apic_printk(APIC_VERBOSE, "ESR value before enabling " "vector: 0x%08lx after: 0x%08lx\n", oldvalue, value); } else { printk(KERN_INFO "No ESR for 82489DX.\n"); } } /** * setup_local_APIC - setup the local APIC */ void __cpuinit setup_local_APIC(void) { unsigned int value; int i, j; preempt_disable(); value = apic_read(APIC_LVR); BUILD_BUG_ON((SPURIOUS_APIC_VECTOR & 0x0f) != 0x0f); /* * Double-check whether this APIC is really registered. * This is meaningless in clustered apic mode, so we skip it. */ if (!apic_id_registered()) BUG(); /* * Intel recommends to set DFR, LDR and TPR before enabling * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel * document number 292116). So here it goes... */ init_apic_ldr(); /* * Set Task Priority to 'accept all'. We never change this * later on. */ value = apic_read(APIC_TASKPRI); value &= ~APIC_TPRI_MASK; apic_write(APIC_TASKPRI, value); /* * After a crash, we no longer service the interrupts and a pending * interrupt from previous kernel might still have ISR bit set. * * Most probably by now CPU has serviced that pending interrupt and * it might not have done the ack_APIC_irq() because it thought, * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it * does not clear the ISR bit and cpu thinks it has already serivced * the interrupt. Hence a vector might get locked. It was noticed * for timer irq (vector 0x31). Issue an extra EOI to clear ISR. */ for (i = APIC_ISR_NR - 1; i >= 0; i--) { value = apic_read(APIC_ISR + i*0x10); for (j = 31; j >= 0; j--) { if (value & (1<> 1)); if (v & (1 << (SPURIOUS_APIC_VECTOR & 0x1f))) ack_APIC_irq(); add_pda(irq_spurious_count, 1); irq_exit(); } /* * This interrupt should never happen with our APIC/SMP architecture */ asmlinkage void smp_error_interrupt(void) { unsigned int v, v1; exit_idle(); irq_enter(); /* First tickle the hardware, only then report what went on. -- REW */ v = apic_read(APIC_ESR); apic_write(APIC_ESR, 0); v1 = apic_read(APIC_ESR); ack_APIC_irq(); atomic_inc(&irq_err_count); /* Here is what the APIC error bits mean: 0: Send CS error 1: Receive CS error 2: Send accept error 3: Receive accept error 4: Reserved 5: Send illegal vector 6: Received illegal vector 7: Illegal register address */ printk(KERN_DEBUG "APIC error on CPU%d: %02x(%02x)\n", smp_processor_id(), v , v1); irq_exit(); } /** * connect_bsp_APIC - attach the APIC to the interrupt system */ void __init connect_bsp_APIC(void) { #ifdef CONFIG_X86_32 if (pic_mode) { /* * Do not trust the local APIC being empty at bootup. */ clear_local_APIC(); /* * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's * local APIC to INT and NMI lines. */ apic_printk(APIC_VERBOSE, "leaving PIC mode, " "enabling APIC mode.\n"); outb(0x70, 0x22); outb(0x01, 0x23); } #endif enable_apic_mode(); } /** * disconnect_bsp_APIC - detach the APIC from the interrupt system * @virt_wire_setup: indicates, whether virtual wire mode is selected * * Virtual wire mode is necessary to deliver legacy interrupts even when the * APIC is disabled. */ void disconnect_bsp_APIC(int virt_wire_setup) { unsigned int value; #ifdef CONFIG_X86_32 if (pic_mode) { /* * Put the board back into PIC mode (has an effect only on * certain older boards). Note that APIC interrupts, including * IPIs, won't work beyond this point! The only exception are * INIT IPIs. */ apic_printk(APIC_VERBOSE, "disabling APIC mode, " "entering PIC mode.\n"); outb(0x70, 0x22); outb(0x00, 0x23); return; } #endif /* Go back to Virtual Wire compatibility mode */ /* For the spurious interrupt use vector F, and enable it */ value = apic_read(APIC_SPIV); value &= ~APIC_VECTOR_MASK; value |= APIC_SPIV_APIC_ENABLED; value |= 0xf; apic_write(APIC_SPIV, value); if (!virt_wire_setup) { /* * For LVT0 make it edge triggered, active high, * external and enabled */ value = apic_read(APIC_LVT0); value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); apic_write(APIC_LVT0, value); } else { /* Disable LVT0 */ apic_write(APIC_LVT0, APIC_LVT_MASKED); } /* * For LVT1 make it edge triggered, active high, * nmi and enabled */ value = apic_read(APIC_LVT1); value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); apic_write(APIC_LVT1, value); } void __cpuinit generic_processor_info(int apicid, int version) { int cpu; cpumask_t tmp_map; /* * Validate version */ if (version == 0x0) { printk(KERN_WARNING "BIOS bug, APIC version is 0 for CPU#%d! " "fixing up to 0x10. (tell your hw vendor)\n", version); version = 0x10; } apic_version[apicid] = version; if (num_processors >= NR_CPUS) { printk(KERN_WARNING "WARNING: NR_CPUS limit of %i reached." " Processor ignored.\n", NR_CPUS); return; } num_processors++; cpus_complement(tmp_map, cpu_present_map); cpu = first_cpu(tmp_map); physid_set(apicid, phys_cpu_present_map); if (apicid == boot_cpu_physical_apicid) { /* * x86_bios_cpu_apicid is required to have processors listed * in same order as logical cpu numbers. Hence the first * entry is BSP, and so on. */ cpu = 0; } if (apicid > max_physical_apicid) max_physical_apicid = apicid; #ifdef CONFIG_X86_32 /* * Would be preferable to switch to bigsmp when CONFIG_HOTPLUG_CPU=y * but we need to work other dependencies like SMP_SUSPEND etc * before this can be done without some confusion. * if (CPU_HOTPLUG_ENABLED || num_processors > 8) * - Ashok Raj */ if (max_physical_apicid >= 8) { switch (boot_cpu_data.x86_vendor) { case X86_VENDOR_INTEL: if (!APIC_XAPIC(version)) { def_to_bigsmp = 0; break; } /* If P4 and above fall through */ case X86_VENDOR_AMD: def_to_bigsmp = 1; } } #endif #if defined(CONFIG_X86_SMP) || defined(CONFIG_X86_64) /* are we being called early in kernel startup? */ if (early_per_cpu_ptr(x86_cpu_to_apicid)) { u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); u16 *bios_cpu_apicid = early_per_cpu_ptr(x86_bios_cpu_apicid); cpu_to_apicid[cpu] = apicid; bios_cpu_apicid[cpu] = apicid; } else { per_cpu(x86_cpu_to_apicid, cpu) = apicid; per_cpu(x86_bios_cpu_apicid, cpu) = apicid; } #endif cpu_set(cpu, cpu_possible_map); cpu_set(cpu, cpu_present_map); } int hard_smp_processor_id(void) { return read_apic_id(); } /* * Power management */ #ifdef CONFIG_PM static struct { /* * 'active' is true if the local APIC was enabled by us and * not the BIOS; this signifies that we are also responsible * for disabling it before entering apm/acpi suspend */ int active; /* r/w apic fields */ unsigned int apic_id; unsigned int apic_taskpri; unsigned int apic_ldr; unsigned int apic_dfr; unsigned int apic_spiv; unsigned int apic_lvtt; unsigned int apic_lvtpc; unsigned int apic_lvt0; unsigned int apic_lvt1; unsigned int apic_lvterr; unsigned int apic_tmict; unsigned int apic_tdcr; unsigned int apic_thmr; } apic_pm_state; static int lapic_suspend(struct sys_device *dev, pm_message_t state) { unsigned long flags; int maxlvt; if (!apic_pm_state.active) return 0; maxlvt = lapic_get_maxlvt(); apic_pm_state.apic_id = apic_read(APIC_ID); apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); apic_pm_state.apic_ldr = apic_read(APIC_LDR); apic_pm_state.apic_dfr = apic_read(APIC_DFR); apic_pm_state.apic_spiv = apic_read(APIC_SPIV); apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); if (maxlvt >= 4) apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); apic_pm_state.apic_tmict = apic_read(APIC_TMICT); apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); #if defined(CONFIG_X86_MCE_P4THERMAL) || defined(CONFIG_X86_MCE_INTEL) if (maxlvt >= 5) apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); #endif local_irq_save(flags); disable_local_APIC(); local_irq_restore(flags); return 0; } static int lapic_resume(struct sys_device *dev) { unsigned int l, h; unsigned long flags; int maxlvt; if (!apic_pm_state.active) return 0; maxlvt = lapic_get_maxlvt(); local_irq_save(flags); #ifdef CONFIG_X86_64 if (x2apic) enable_x2apic(); else #endif { /* * Make sure the APICBASE points to the right address * * FIXME! This will be wrong if we ever support suspend on * SMP! We'll need to do this as part of the CPU restore! */ rdmsr(MSR_IA32_APICBASE, l, h); l &= ~MSR_IA32_APICBASE_BASE; l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; wrmsr(MSR_IA32_APICBASE, l, h); } apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); apic_write(APIC_ID, apic_pm_state.apic_id); apic_write(APIC_DFR, apic_pm_state.apic_dfr); apic_write(APIC_LDR, apic_pm_state.apic_ldr); apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); apic_write(APIC_SPIV, apic_pm_state.apic_spiv); apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); #if defined(CONFIG_X86_MCE_P4THERMAL) || defined(CONFIG_X86_MCE_INTEL) if (maxlvt >= 5) apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); #endif if (maxlvt >= 4) apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); apic_write(APIC_TMICT, apic_pm_state.apic_tmict); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); local_irq_restore(flags); return 0; } /* * This device has no shutdown method - fully functioning local APICs * are needed on every CPU up until machine_halt/restart/poweroff. */ static struct sysdev_class lapic_sysclass = { .name = "lapic", .resume = lapic_resume, .suspend = lapic_suspend, }; static struct sys_device device_lapic = { .id = 0, .cls = &lapic_sysclass, }; static void __cpuinit apic_pm_activate(void) { apic_pm_state.active = 1; } static int __init init_lapic_sysfs(void) { int error; if (!cpu_has_apic) return 0; /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ error = sysdev_class_register(&lapic_sysclass); if (!error) error = sysdev_register(&device_lapic); return error; } device_initcall(init_lapic_sysfs); #else /* CONFIG_PM */ static void apic_pm_activate(void) { } #endif /* CONFIG_PM */ /* * apic_is_clustered_box() -- Check if we can expect good TSC * * Thus far, the major user of this is IBM's Summit2 series: * * Clustered boxes may have unsynced TSC problems if they are * multi-chassis. Use available data to take a good guess. * If in doubt, go HPET. */ __cpuinit int apic_is_clustered_box(void) { int i, clusters, zeros; unsigned id; u16 *bios_cpu_apicid; DECLARE_BITMAP(clustermap, NUM_APIC_CLUSTERS); /* * there is not this kind of box with AMD CPU yet. * Some AMD box with quadcore cpu and 8 sockets apicid * will be [4, 0x23] or [8, 0x27] could be thought to * vsmp box still need checking... */ if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && !is_vsmp_box()) return 0; bios_cpu_apicid = early_per_cpu_ptr(x86_bios_cpu_apicid); bitmap_zero(clustermap, NUM_APIC_CLUSTERS); for (i = 0; i < NR_CPUS; i++) { /* are we being called early in kernel startup? */ if (bios_cpu_apicid) { id = bios_cpu_apicid[i]; } else if (i < nr_cpu_ids) { if (cpu_present(i)) id = per_cpu(x86_bios_cpu_apicid, i); else continue; } else break; if (id != BAD_APICID) __set_bit(APIC_CLUSTERID(id), clustermap); } /* Problem: Partially populated chassis may not have CPUs in some of * the APIC clusters they have been allocated. Only present CPUs have * x86_bios_cpu_apicid entries, thus causing zeroes in the bitmap. * Since clusters are allocated sequentially, count zeros only if * they are bounded by ones. */ clusters = 0; zeros = 0; for (i = 0; i < NUM_APIC_CLUSTERS; i++) { if (test_bit(i, clustermap)) { clusters += 1 + zeros; zeros = 0; } else ++zeros; } /* ScaleMP vSMPowered boxes have one cluster per board and TSCs are * not guaranteed to be synced between boards */ if (is_vsmp_box() && clusters > 1) return 1; /* * If clusters > 2, then should be multi-chassis. * May have to revisit this when multi-core + hyperthreaded CPUs come * out, but AFAIK this will work even for them. */ return (clusters > 2); } static __init int setup_nox2apic(char *str) { disable_x2apic = 1; clear_cpu_cap(&boot_cpu_data, X86_FEATURE_X2APIC); return 0; } early_param("nox2apic", setup_nox2apic); /* * APIC command line parameters */ static int __init setup_disableapic(char *arg) { disable_apic = 1; setup_clear_cpu_cap(X86_FEATURE_APIC); return 0; } early_param("disableapic", setup_disableapic); /* same as disableapic, for compatibility */ static int __init setup_nolapic(char *arg) { return setup_disableapic(arg); } early_param("nolapic", setup_nolapic); static int __init parse_lapic_timer_c2_ok(char *arg) { local_apic_timer_c2_ok = 1; return 0; } early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); static int __init parse_disable_apic_timer(char *arg) { disable_apic_timer = 1; return 0; } early_param("noapictimer", parse_disable_apic_timer); static int __init parse_nolapic_timer(char *arg) { disable_apic_timer = 1; return 0; } early_param("nolapic_timer", parse_nolapic_timer); static __init int setup_apicpmtimer(char *s) { apic_calibrate_pmtmr = 1; notsc_setup(NULL); return 0; } __setup("apicpmtimer", setup_apicpmtimer); static int __init apic_set_verbosity(char *arg) { if (!arg) { #ifdef CONFIG_X86_64 skip_ioapic_setup = 0; ioapic_force = 1; return 0; #endif return -EINVAL; } if (strcmp("debug", arg) == 0) apic_verbosity = APIC_DEBUG; else if (strcmp("verbose", arg) == 0) apic_verbosity = APIC_VERBOSE; else { printk(KERN_WARNING "APIC Verbosity level %s not recognised" " use apic=verbose or apic=debug\n", arg); return -EINVAL; } return 0; } early_param("apic", apic_set_verbosity); static int __init lapic_insert_resource(void) { if (!apic_phys) return -1; /* Put local APIC into the resource map. */ lapic_resource.start = apic_phys; lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; insert_resource(&iomem_resource, &lapic_resource); return 0; } /* * need call insert after e820_reserve_resources() * that is using request_resource */ late_initcall(lapic_insert_resource);