#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_LOCAL_APIC #include #include #include #endif #include "cpu.h" DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = { [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } }, [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } }, [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } }, [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } }, /* * Segments used for calling PnP BIOS have byte granularity. * They code segments and data segments have fixed 64k limits, * the transfer segment sizes are set at run time. */ /* 32-bit code */ [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } }, /* 16-bit code */ [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } }, /* 16-bit data */ [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } }, /* 16-bit data */ [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } }, /* 16-bit data */ [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } }, /* * The APM segments have byte granularity and their bases * are set at run time. All have 64k limits. */ /* 32-bit code */ [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } }, /* 16-bit code */ [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } }, /* data */ [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } }, [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } }, [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } }, } }; EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata; static int cachesize_override __cpuinitdata = -1; static int disable_x86_serial_nr __cpuinitdata = 1; struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {}; static void __cpuinit default_init(struct cpuinfo_x86 * c) { /* Not much we can do here... */ /* Check if at least it has cpuid */ if (c->cpuid_level == -1) { /* No cpuid. It must be an ancient CPU */ if (c->x86 == 4) strcpy(c->x86_model_id, "486"); else if (c->x86 == 3) strcpy(c->x86_model_id, "386"); } } static struct cpu_dev __cpuinitdata default_cpu = { .c_init = default_init, .c_vendor = "Unknown", }; static struct cpu_dev * this_cpu __cpuinitdata = &default_cpu; static int __init cachesize_setup(char *str) { get_option (&str, &cachesize_override); return 1; } __setup("cachesize=", cachesize_setup); int __cpuinit get_model_name(struct cpuinfo_x86 *c) { unsigned int *v; char *p, *q; if (cpuid_eax(0x80000000) < 0x80000004) return 0; v = (unsigned int *) c->x86_model_id; cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); c->x86_model_id[48] = 0; /* Intel chips right-justify this string for some dumb reason; undo that brain damage */ p = q = &c->x86_model_id[0]; while ( *p == ' ' ) p++; if ( p != q ) { while ( *p ) *q++ = *p++; while ( q <= &c->x86_model_id[48] ) *q++ = '\0'; /* Zero-pad the rest */ } return 1; } void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c) { unsigned int n, dummy, ecx, edx, l2size; n = cpuid_eax(0x80000000); if (n >= 0x80000005) { cpuid(0x80000005, &dummy, &dummy, &ecx, &edx); printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n", edx>>24, edx&0xFF, ecx>>24, ecx&0xFF); c->x86_cache_size=(ecx>>24)+(edx>>24); } if (n < 0x80000006) /* Some chips just has a large L1. */ return; ecx = cpuid_ecx(0x80000006); l2size = ecx >> 16; /* do processor-specific cache resizing */ if (this_cpu->c_size_cache) l2size = this_cpu->c_size_cache(c,l2size); /* Allow user to override all this if necessary. */ if (cachesize_override != -1) l2size = cachesize_override; if ( l2size == 0 ) return; /* Again, no L2 cache is possible */ c->x86_cache_size = l2size; printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n", l2size, ecx & 0xFF); } /* Naming convention should be: [()] */ /* This table only is used unless init_() below doesn't set it; */ /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */ /* Look up CPU names by table lookup. */ static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c) { struct cpu_model_info *info; if ( c->x86_model >= 16 ) return NULL; /* Range check */ if (!this_cpu) return NULL; info = this_cpu->c_models; while (info && info->family) { if (info->family == c->x86) return info->model_names[c->x86_model]; info++; } return NULL; /* Not found */ } static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early) { char *v = c->x86_vendor_id; int i; static int printed; for (i = 0; i < X86_VENDOR_NUM; i++) { if (cpu_devs[i]) { if (!strcmp(v,cpu_devs[i]->c_ident[0]) || (cpu_devs[i]->c_ident[1] && !strcmp(v,cpu_devs[i]->c_ident[1]))) { c->x86_vendor = i; if (!early) this_cpu = cpu_devs[i]; return; } } } if (!printed) { printed++; printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n"); printk(KERN_ERR "CPU: Your system may be unstable.\n"); } c->x86_vendor = X86_VENDOR_UNKNOWN; this_cpu = &default_cpu; } static int __init x86_fxsr_setup(char * s) { setup_clear_cpu_cap(X86_FEATURE_FXSR); setup_clear_cpu_cap(X86_FEATURE_XMM); return 1; } __setup("nofxsr", x86_fxsr_setup); static int __init x86_sep_setup(char * s) { setup_clear_cpu_cap(X86_FEATURE_SEP); return 1; } __setup("nosep", x86_sep_setup); /* Standard macro to see if a specific flag is changeable */ static inline int flag_is_changeable_p(u32 flag) { u32 f1, f2; asm("pushfl\n\t" "pushfl\n\t" "popl %0\n\t" "movl %0,%1\n\t" "xorl %2,%0\n\t" "pushl %0\n\t" "popfl\n\t" "pushfl\n\t" "popl %0\n\t" "popfl\n\t" : "=&r" (f1), "=&r" (f2) : "ir" (flag)); return ((f1^f2) & flag) != 0; } /* Probe for the CPUID instruction */ static int __cpuinit have_cpuid_p(void) { return flag_is_changeable_p(X86_EFLAGS_ID); } void __init cpu_detect(struct cpuinfo_x86 *c) { /* Get vendor name */ cpuid(0x00000000, &c->cpuid_level, (int *)&c->x86_vendor_id[0], (int *)&c->x86_vendor_id[8], (int *)&c->x86_vendor_id[4]); c->x86 = 4; if (c->cpuid_level >= 0x00000001) { u32 junk, tfms, cap0, misc; cpuid(0x00000001, &tfms, &misc, &junk, &cap0); c->x86 = (tfms >> 8) & 15; c->x86_model = (tfms >> 4) & 15; if (c->x86 == 0xf) c->x86 += (tfms >> 20) & 0xff; if (c->x86 >= 0x6) c->x86_model += ((tfms >> 16) & 0xF) << 4; c->x86_mask = tfms & 15; if (cap0 & (1<<19)) c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8; } } static void __cpuinit early_get_cap(struct cpuinfo_x86 *c) { u32 tfms, xlvl; int ebx; memset(&c->x86_capability, 0, sizeof c->x86_capability); if (have_cpuid_p()) { /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { u32 capability, excap; cpuid(0x00000001, &tfms, &ebx, &excap, &capability); c->x86_capability[0] = capability; c->x86_capability[4] = excap; } /* AMD-defined flags: level 0x80000001 */ xlvl = cpuid_eax(0x80000000); if ((xlvl & 0xffff0000) == 0x80000000) { if (xlvl >= 0x80000001) { c->x86_capability[1] = cpuid_edx(0x80000001); c->x86_capability[6] = cpuid_ecx(0x80000001); } } } } /* Do minimum CPU detection early. Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment. The others are not touched to avoid unwanted side effects. WARNING: this function is only called on the BP. Don't add code here that is supposed to run on all CPUs. */ static void __init early_cpu_detect(void) { struct cpuinfo_x86 *c = &boot_cpu_data; c->x86_cache_alignment = 32; if (!have_cpuid_p()) return; cpu_detect(c); get_cpu_vendor(c, 1); switch (c->x86_vendor) { case X86_VENDOR_AMD: early_init_amd(c); break; case X86_VENDOR_INTEL: early_init_intel(c); break; } early_get_cap(c); } static void __cpuinit generic_identify(struct cpuinfo_x86 * c) { u32 tfms, xlvl; int ebx; if (have_cpuid_p()) { /* Get vendor name */ cpuid(0x00000000, &c->cpuid_level, (int *)&c->x86_vendor_id[0], (int *)&c->x86_vendor_id[8], (int *)&c->x86_vendor_id[4]); get_cpu_vendor(c, 0); /* Initialize the standard set of capabilities */ /* Note that the vendor-specific code below might override */ /* Intel-defined flags: level 0x00000001 */ if ( c->cpuid_level >= 0x00000001 ) { u32 capability, excap; cpuid(0x00000001, &tfms, &ebx, &excap, &capability); c->x86_capability[0] = capability; c->x86_capability[4] = excap; c->x86 = (tfms >> 8) & 15; c->x86_model = (tfms >> 4) & 15; if (c->x86 == 0xf) c->x86 += (tfms >> 20) & 0xff; if (c->x86 >= 0x6) c->x86_model += ((tfms >> 16) & 0xF) << 4; c->x86_mask = tfms & 15; #ifdef CONFIG_X86_HT c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0); #else c->apicid = (ebx >> 24) & 0xFF; #endif if (c->x86_capability[0] & (1<<19)) c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8; } else { /* Have CPUID level 0 only - unheard of */ c->x86 = 4; } /* AMD-defined flags: level 0x80000001 */ xlvl = cpuid_eax(0x80000000); if ( (xlvl & 0xffff0000) == 0x80000000 ) { if ( xlvl >= 0x80000001 ) { c->x86_capability[1] = cpuid_edx(0x80000001); c->x86_capability[6] = cpuid_ecx(0x80000001); } if ( xlvl >= 0x80000004 ) get_model_name(c); /* Default name */ } init_scattered_cpuid_features(c); } #ifdef CONFIG_X86_HT c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff; #endif } static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c) { if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) { /* Disable processor serial number */ unsigned long lo,hi; rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi); lo |= 0x200000; wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi); printk(KERN_NOTICE "CPU serial number disabled.\n"); clear_bit(X86_FEATURE_PN, c->x86_capability); /* Disabling the serial number may affect the cpuid level */ c->cpuid_level = cpuid_eax(0); } } static int __init x86_serial_nr_setup(char *s) { disable_x86_serial_nr = 0; return 1; } __setup("serialnumber", x86_serial_nr_setup); /* * This does the hard work of actually picking apart the CPU stuff... */ void __cpuinit identify_cpu(struct cpuinfo_x86 *c) { int i; c->loops_per_jiffy = loops_per_jiffy; c->x86_cache_size = -1; c->x86_vendor = X86_VENDOR_UNKNOWN; c->cpuid_level = -1; /* CPUID not detected */ c->x86_model = c->x86_mask = 0; /* So far unknown... */ c->x86_vendor_id[0] = '\0'; /* Unset */ c->x86_model_id[0] = '\0'; /* Unset */ c->x86_max_cores = 1; c->x86_clflush_size = 32; memset(&c->x86_capability, 0, sizeof c->x86_capability); if (!have_cpuid_p()) { /* First of all, decide if this is a 486 or higher */ /* It's a 486 if we can modify the AC flag */ if ( flag_is_changeable_p(X86_EFLAGS_AC) ) c->x86 = 4; else c->x86 = 3; } generic_identify(c); if (this_cpu->c_identify) this_cpu->c_identify(c); /* * Vendor-specific initialization. In this section we * canonicalize the feature flags, meaning if there are * features a certain CPU supports which CPUID doesn't * tell us, CPUID claiming incorrect flags, or other bugs, * we handle them here. * * At the end of this section, c->x86_capability better * indicate the features this CPU genuinely supports! */ if (this_cpu->c_init) this_cpu->c_init(c); /* Disable the PN if appropriate */ squash_the_stupid_serial_number(c); /* * The vendor-specific functions might have changed features. Now * we do "generic changes." */ /* If the model name is still unset, do table lookup. */ if ( !c->x86_model_id[0] ) { char *p; p = table_lookup_model(c); if ( p ) strcpy(c->x86_model_id, p); else /* Last resort... */ sprintf(c->x86_model_id, "%02x/%02x", c->x86, c->x86_model); } /* * On SMP, boot_cpu_data holds the common feature set between * all CPUs; so make sure that we indicate which features are * common between the CPUs. The first time this routine gets * executed, c == &boot_cpu_data. */ if ( c != &boot_cpu_data ) { /* AND the already accumulated flags with these */ for ( i = 0 ; i < NCAPINTS ; i++ ) boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; } /* Clear all flags overriden by options */ for (i = 0; i < NCAPINTS; i++) c->x86_capability[i] ^= cleared_cpu_caps[i]; /* Init Machine Check Exception if available. */ mcheck_init(c); select_idle_routine(c); } void __init identify_boot_cpu(void) { identify_cpu(&boot_cpu_data); sysenter_setup(); enable_sep_cpu(); } void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c) { BUG_ON(c == &boot_cpu_data); identify_cpu(c); enable_sep_cpu(); mtrr_ap_init(); } #ifdef CONFIG_X86_HT void __cpuinit detect_ht(struct cpuinfo_x86 *c) { u32 eax, ebx, ecx, edx; int index_msb, core_bits; cpuid(1, &eax, &ebx, &ecx, &edx); if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY)) return; smp_num_siblings = (ebx & 0xff0000) >> 16; if (smp_num_siblings == 1) { printk(KERN_INFO "CPU: Hyper-Threading is disabled\n"); } else if (smp_num_siblings > 1 ) { if (smp_num_siblings > NR_CPUS) { printk(KERN_WARNING "CPU: Unsupported number of the " "siblings %d", smp_num_siblings); smp_num_siblings = 1; return; } index_msb = get_count_order(smp_num_siblings); c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb); printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id); smp_num_siblings = smp_num_siblings / c->x86_max_cores; index_msb = get_count_order(smp_num_siblings) ; core_bits = get_count_order(c->x86_max_cores); c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) & ((1 << core_bits) - 1); if (c->x86_max_cores > 1) printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id); } } #endif static __init int setup_noclflush(char *arg) { setup_clear_cpu_cap(X86_FEATURE_CLFLSH); return 1; } __setup("noclflush", setup_noclflush); void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) { char *vendor = NULL; if (c->x86_vendor < X86_VENDOR_NUM) vendor = this_cpu->c_vendor; else if (c->cpuid_level >= 0) vendor = c->x86_vendor_id; if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor))) printk("%s ", vendor); if (!c->x86_model_id[0]) printk("%d86", c->x86); else printk("%s", c->x86_model_id); if (c->x86_mask || c->cpuid_level >= 0) printk(" stepping %02x\n", c->x86_mask); else printk("\n"); } static __init int setup_disablecpuid(char *arg) { int bit; if (get_option(&arg, &bit) && bit < NCAPINTS*32) setup_clear_cpu_cap(bit); else return 0; return 1; } __setup("clearcpuid=", setup_disablecpuid); cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE; /* This is hacky. :) * We're emulating future behavior. * In the future, the cpu-specific init functions will be called implicitly * via the magic of initcalls. * They will insert themselves into the cpu_devs structure. * Then, when cpu_init() is called, we can just iterate over that array. */ extern int intel_cpu_init(void); extern int cyrix_init_cpu(void); extern int nsc_init_cpu(void); extern int amd_init_cpu(void); extern int centaur_init_cpu(void); extern int transmeta_init_cpu(void); extern int nexgen_init_cpu(void); extern int umc_init_cpu(void); void __init early_cpu_init(void) { intel_cpu_init(); cyrix_init_cpu(); nsc_init_cpu(); amd_init_cpu(); centaur_init_cpu(); transmeta_init_cpu(); nexgen_init_cpu(); umc_init_cpu(); early_cpu_detect(); #ifdef CONFIG_DEBUG_PAGEALLOC /* pse is not compatible with on-the-fly unmapping, * disable it even if the cpus claim to support it. */ setup_clear_cpu_cap(X86_FEATURE_PSE); #endif } /* Make sure %fs is initialized properly in idle threads */ struct pt_regs * __devinit idle_regs(struct pt_regs *regs) { memset(regs, 0, sizeof(struct pt_regs)); regs->fs = __KERNEL_PERCPU; return regs; } /* Current gdt points %fs at the "master" per-cpu area: after this, * it's on the real one. */ void switch_to_new_gdt(void) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id()); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory"); } /* * cpu_init() initializes state that is per-CPU. Some data is already * initialized (naturally) in the bootstrap process, such as the GDT * and IDT. We reload them nevertheless, this function acts as a * 'CPU state barrier', nothing should get across. */ void __cpuinit cpu_init(void) { int cpu = smp_processor_id(); struct task_struct *curr = current; struct tss_struct * t = &per_cpu(init_tss, cpu); struct thread_struct *thread = &curr->thread; if (cpu_test_and_set(cpu, cpu_initialized)) { printk(KERN_WARNING "CPU#%d already initialized!\n", cpu); for (;;) local_irq_enable(); } printk(KERN_INFO "Initializing CPU#%d\n", cpu); if (cpu_has_vme || cpu_has_tsc || cpu_has_de) clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); load_idt(&idt_descr); switch_to_new_gdt(); /* * Set up and load the per-CPU TSS and LDT */ atomic_inc(&init_mm.mm_count); curr->active_mm = &init_mm; if (curr->mm) BUG(); enter_lazy_tlb(&init_mm, curr); load_sp0(t, thread); set_tss_desc(cpu,t); load_TR_desc(); load_LDT(&init_mm.context); #ifdef CONFIG_DOUBLEFAULT /* Set up doublefault TSS pointer in the GDT */ __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); #endif /* Clear %gs. */ asm volatile ("mov %0, %%gs" : : "r" (0)); /* Clear all 6 debug registers: */ set_debugreg(0, 0); set_debugreg(0, 1); set_debugreg(0, 2); set_debugreg(0, 3); set_debugreg(0, 6); set_debugreg(0, 7); /* * Force FPU initialization: */ current_thread_info()->status = 0; clear_used_math(); mxcsr_feature_mask_init(); } #ifdef CONFIG_HOTPLUG_CPU void __cpuinit cpu_uninit(void) { int cpu = raw_smp_processor_id(); cpu_clear(cpu, cpu_initialized); /* lazy TLB state */ per_cpu(cpu_tlbstate, cpu).state = 0; per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm; } #endif