/* * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $) * * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * Copyright (C) 2002 - 2004 Dominik Brodowski * Copyright (C) 2006 Denis Sadykov * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); MODULE_DESCRIPTION("ACPI Processor P-States Driver"); MODULE_LICENSE("GPL"); enum { UNDEFINED_CAPABLE = 0, SYSTEM_INTEL_MSR_CAPABLE, SYSTEM_IO_CAPABLE, }; #define INTEL_MSR_RANGE (0xffff) #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1) struct acpi_cpufreq_data { struct acpi_processor_performance *acpi_data; struct cpufreq_frequency_table *freq_table; unsigned int max_freq; unsigned int resume; unsigned int cpu_feature; }; static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data); /* acpi_perf_data is a pointer to percpu data. */ static struct acpi_processor_performance *acpi_perf_data; static struct cpufreq_driver acpi_cpufreq_driver; static unsigned int acpi_pstate_strict; static int check_est_cpu(unsigned int cpuid) { struct cpuinfo_x86 *cpu = &cpu_data(cpuid); if (cpu->x86_vendor != X86_VENDOR_INTEL || !cpu_has(cpu, X86_FEATURE_EST)) return 0; return 1; } static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data) { struct acpi_processor_performance *perf; int i; perf = data->acpi_data; for (i=0; istate_count; i++) { if (value == perf->states[i].status) return data->freq_table[i].frequency; } return 0; } static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data) { int i; struct acpi_processor_performance *perf; msr &= INTEL_MSR_RANGE; perf = data->acpi_data; for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { if (msr == perf->states[data->freq_table[i].index].status) return data->freq_table[i].frequency; } return data->freq_table[0].frequency; } static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data) { switch (data->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: return extract_msr(val, data); case SYSTEM_IO_CAPABLE: return extract_io(val, data); default: return 0; } } struct msr_addr { u32 reg; }; struct io_addr { u16 port; u8 bit_width; }; typedef union { struct msr_addr msr; struct io_addr io; } drv_addr_union; struct drv_cmd { unsigned int type; cpumask_var_t mask; drv_addr_union addr; u32 val; }; static long do_drv_read(void *_cmd) { struct drv_cmd *cmd = _cmd; u32 h; switch (cmd->type) { case SYSTEM_INTEL_MSR_CAPABLE: rdmsr(cmd->addr.msr.reg, cmd->val, h); break; case SYSTEM_IO_CAPABLE: acpi_os_read_port((acpi_io_address)cmd->addr.io.port, &cmd->val, (u32)cmd->addr.io.bit_width); break; default: break; } return 0; } static long do_drv_write(void *_cmd) { struct drv_cmd *cmd = _cmd; u32 lo, hi; switch (cmd->type) { case SYSTEM_INTEL_MSR_CAPABLE: rdmsr(cmd->addr.msr.reg, lo, hi); lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE); wrmsr(cmd->addr.msr.reg, lo, hi); break; case SYSTEM_IO_CAPABLE: acpi_os_write_port((acpi_io_address)cmd->addr.io.port, cmd->val, (u32)cmd->addr.io.bit_width); break; default: break; } return 0; } static void drv_read(struct drv_cmd *cmd) { cmd->val = 0; work_on_cpu(cpumask_any(cmd->mask), do_drv_read, cmd); } static void drv_write(struct drv_cmd *cmd) { unsigned int i; for_each_cpu(i, cmd->mask) { work_on_cpu(i, do_drv_write, cmd); } } static u32 get_cur_val(const struct cpumask *mask) { struct acpi_processor_performance *perf; struct drv_cmd cmd; if (unlikely(cpumask_empty(mask))) return 0; switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: cmd.type = SYSTEM_INTEL_MSR_CAPABLE; cmd.addr.msr.reg = MSR_IA32_PERF_STATUS; break; case SYSTEM_IO_CAPABLE: cmd.type = SYSTEM_IO_CAPABLE; perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data; cmd.addr.io.port = perf->control_register.address; cmd.addr.io.bit_width = perf->control_register.bit_width; break; default: return 0; } drv_read(&cmd); dprintk("get_cur_val = %u\n", cmd.val); return cmd.val; } struct perf_cur { union { struct { u32 lo; u32 hi; } split; u64 whole; } aperf_cur, mperf_cur; }; static long read_measured_perf_ctrs(void *_cur) { struct perf_cur *cur = _cur; rdmsr(MSR_IA32_APERF, cur->aperf_cur.split.lo, cur->aperf_cur.split.hi); rdmsr(MSR_IA32_MPERF, cur->mperf_cur.split.lo, cur->mperf_cur.split.hi); wrmsr(MSR_IA32_APERF, 0, 0); wrmsr(MSR_IA32_MPERF, 0, 0); return 0; } /* * Return the measured active (C0) frequency on this CPU since last call * to this function. * Input: cpu number * Return: Average CPU frequency in terms of max frequency (zero on error) * * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance * over a period of time, while CPU is in C0 state. * IA32_MPERF counts at the rate of max advertised frequency * IA32_APERF counts at the rate of actual CPU frequency * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and * no meaning should be associated with absolute values of these MSRs. */ static unsigned int get_measured_perf(struct cpufreq_policy *policy, unsigned int cpu) { struct perf_cur cur; unsigned int perf_percent; unsigned int retval; if (!work_on_cpu(cpu, read_measured_perf_ctrs, &cur)) return 0; #ifdef __i386__ /* * We dont want to do 64 bit divide with 32 bit kernel * Get an approximate value. Return failure in case we cannot get * an approximate value. */ if (unlikely(cur.aperf_cur.split.hi || cur.mperf_cur.split.hi)) { int shift_count; u32 h; h = max_t(u32, cur.aperf_cur.split.hi, cur.mperf_cur.split.hi); shift_count = fls(h); cur.aperf_cur.whole >>= shift_count; cur.mperf_cur.whole >>= shift_count; } if (((unsigned long)(-1) / 100) < cur.aperf_cur.split.lo) { int shift_count = 7; cur.aperf_cur.split.lo >>= shift_count; cur.mperf_cur.split.lo >>= shift_count; } if (cur.aperf_cur.split.lo && cur.mperf_cur.split.lo) perf_percent = (cur.aperf_cur.split.lo * 100) / cur.mperf_cur.split.lo; else perf_percent = 0; #else if (unlikely(((unsigned long)(-1) / 100) < cur.aperf_cur.whole)) { int shift_count = 7; cur.aperf_cur.whole >>= shift_count; cur.mperf_cur.whole >>= shift_count; } if (cur.aperf_cur.whole && cur.mperf_cur.whole) perf_percent = (cur.aperf_cur.whole * 100) / cur.mperf_cur.whole; else perf_percent = 0; #endif retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100; return retval; } static unsigned int get_cur_freq_on_cpu(unsigned int cpu) { struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu); unsigned int freq; unsigned int cached_freq; dprintk("get_cur_freq_on_cpu (%d)\n", cpu); if (unlikely(data == NULL || data->acpi_data == NULL || data->freq_table == NULL)) { return 0; } cached_freq = data->freq_table[data->acpi_data->state].frequency; freq = extract_freq(get_cur_val(cpumask_of(cpu)), data); if (freq != cached_freq) { /* * The dreaded BIOS frequency change behind our back. * Force set the frequency on next target call. */ data->resume = 1; } dprintk("cur freq = %u\n", freq); return freq; } static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq, struct acpi_cpufreq_data *data) { unsigned int cur_freq; unsigned int i; for (i=0; i<100; i++) { cur_freq = extract_freq(get_cur_val(mask), data); if (cur_freq == freq) return 1; udelay(10); } return 0; } static int acpi_cpufreq_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu); struct acpi_processor_performance *perf; struct cpufreq_freqs freqs; struct drv_cmd cmd; unsigned int next_state = 0; /* Index into freq_table */ unsigned int next_perf_state = 0; /* Index into perf table */ unsigned int i; int result = 0; struct power_trace it; dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu); if (unlikely(data == NULL || data->acpi_data == NULL || data->freq_table == NULL)) { return -ENODEV; } if (unlikely(!alloc_cpumask_var(&cmd.mask, GFP_KERNEL))) return -ENOMEM; perf = data->acpi_data; result = cpufreq_frequency_table_target(policy, data->freq_table, target_freq, relation, &next_state); if (unlikely(result)) { result = -ENODEV; goto out; } next_perf_state = data->freq_table[next_state].index; if (perf->state == next_perf_state) { if (unlikely(data->resume)) { dprintk("Called after resume, resetting to P%d\n", next_perf_state); data->resume = 0; } else { dprintk("Already at target state (P%d)\n", next_perf_state); goto out; } } trace_power_mark(&it, POWER_PSTATE, next_perf_state); switch (data->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: cmd.type = SYSTEM_INTEL_MSR_CAPABLE; cmd.addr.msr.reg = MSR_IA32_PERF_CTL; cmd.val = (u32) perf->states[next_perf_state].control; break; case SYSTEM_IO_CAPABLE: cmd.type = SYSTEM_IO_CAPABLE; cmd.addr.io.port = perf->control_register.address; cmd.addr.io.bit_width = perf->control_register.bit_width; cmd.val = (u32) perf->states[next_perf_state].control; break; default: result = -ENODEV; goto out; } /* cpufreq holds the hotplug lock, so we are safe from here on */ if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY) cpumask_and(cmd.mask, cpu_online_mask, policy->cpus); else cpumask_copy(cmd.mask, cpumask_of(policy->cpu)); freqs.old = perf->states[perf->state].core_frequency * 1000; freqs.new = data->freq_table[next_state].frequency; for_each_cpu(i, cmd.mask) { freqs.cpu = i; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); } drv_write(&cmd); if (acpi_pstate_strict) { if (!check_freqs(cmd.mask, freqs.new, data)) { dprintk("acpi_cpufreq_target failed (%d)\n", policy->cpu); result = -EAGAIN; goto out; } } for_each_cpu(i, cmd.mask) { freqs.cpu = i; cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); } perf->state = next_perf_state; out: free_cpumask_var(cmd.mask); return result; } static int acpi_cpufreq_verify(struct cpufreq_policy *policy) { struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu); dprintk("acpi_cpufreq_verify\n"); return cpufreq_frequency_table_verify(policy, data->freq_table); } static unsigned long acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) { struct acpi_processor_performance *perf = data->acpi_data; if (cpu_khz) { /* search the closest match to cpu_khz */ unsigned int i; unsigned long freq; unsigned long freqn = perf->states[0].core_frequency * 1000; for (i=0; i<(perf->state_count-1); i++) { freq = freqn; freqn = perf->states[i+1].core_frequency * 1000; if ((2 * cpu_khz) > (freqn + freq)) { perf->state = i; return freq; } } perf->state = perf->state_count-1; return freqn; } else { /* assume CPU is at P0... */ perf->state = 0; return perf->states[0].core_frequency * 1000; } } static void free_acpi_perf_data(void) { unsigned int i; /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ for_each_possible_cpu(i) free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) ->shared_cpu_map); free_percpu(acpi_perf_data); } /* * acpi_cpufreq_early_init - initialize ACPI P-States library * * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) * in order to determine correct frequency and voltage pairings. We can * do _PDC and _PSD and find out the processor dependency for the * actual init that will happen later... */ static int __init acpi_cpufreq_early_init(void) { unsigned int i; dprintk("acpi_cpufreq_early_init\n"); acpi_perf_data = alloc_percpu(struct acpi_processor_performance); if (!acpi_perf_data) { dprintk("Memory allocation error for acpi_perf_data.\n"); return -ENOMEM; } for_each_possible_cpu(i) { if (!alloc_cpumask_var_node( &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, GFP_KERNEL, cpu_to_node(i))) { /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ free_acpi_perf_data(); return -ENOMEM; } } /* Do initialization in ACPI core */ acpi_processor_preregister_performance(acpi_perf_data); return 0; } #ifdef CONFIG_SMP /* * Some BIOSes do SW_ANY coordination internally, either set it up in hw * or do it in BIOS firmware and won't inform about it to OS. If not * detected, this has a side effect of making CPU run at a different speed * than OS intended it to run at. Detect it and handle it cleanly. */ static int bios_with_sw_any_bug; static int sw_any_bug_found(const struct dmi_system_id *d) { bios_with_sw_any_bug = 1; return 0; } static const struct dmi_system_id sw_any_bug_dmi_table[] = { { .callback = sw_any_bug_found, .ident = "Supermicro Server X6DLP", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), DMI_MATCH(DMI_BIOS_VERSION, "080010"), DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), }, }, { } }; #endif static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) { unsigned int i; unsigned int valid_states = 0; unsigned int cpu = policy->cpu; struct acpi_cpufreq_data *data; unsigned int result = 0; struct cpuinfo_x86 *c = &cpu_data(policy->cpu); struct acpi_processor_performance *perf; dprintk("acpi_cpufreq_cpu_init\n"); data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL); if (!data) return -ENOMEM; data->acpi_data = percpu_ptr(acpi_perf_data, cpu); per_cpu(drv_data, cpu) = data; if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; result = acpi_processor_register_performance(data->acpi_data, cpu); if (result) goto err_free; perf = data->acpi_data; policy->shared_type = perf->shared_type; /* * Will let policy->cpus know about dependency only when software * coordination is required. */ if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { cpumask_copy(policy->cpus, perf->shared_cpu_map); } cpumask_copy(policy->related_cpus, perf->shared_cpu_map); #ifdef CONFIG_SMP dmi_check_system(sw_any_bug_dmi_table); if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) { policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; cpumask_copy(policy->cpus, cpu_core_mask(cpu)); } #endif /* capability check */ if (perf->state_count <= 1) { dprintk("No P-States\n"); result = -ENODEV; goto err_unreg; } if (perf->control_register.space_id != perf->status_register.space_id) { result = -ENODEV; goto err_unreg; } switch (perf->control_register.space_id) { case ACPI_ADR_SPACE_SYSTEM_IO: dprintk("SYSTEM IO addr space\n"); data->cpu_feature = SYSTEM_IO_CAPABLE; break; case ACPI_ADR_SPACE_FIXED_HARDWARE: dprintk("HARDWARE addr space\n"); if (!check_est_cpu(cpu)) { result = -ENODEV; goto err_unreg; } data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; break; default: dprintk("Unknown addr space %d\n", (u32) (perf->control_register.space_id)); result = -ENODEV; goto err_unreg; } data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count+1), GFP_KERNEL); if (!data->freq_table) { result = -ENOMEM; goto err_unreg; } /* detect transition latency */ policy->cpuinfo.transition_latency = 0; for (i=0; istate_count; i++) { if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000; } data->max_freq = perf->states[0].core_frequency * 1000; /* table init */ for (i=0; istate_count; i++) { if (i>0 && perf->states[i].core_frequency >= data->freq_table[valid_states-1].frequency / 1000) continue; data->freq_table[valid_states].index = i; data->freq_table[valid_states].frequency = perf->states[i].core_frequency * 1000; valid_states++; } data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END; perf->state = 0; result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); if (result) goto err_freqfree; switch (perf->control_register.space_id) { case ACPI_ADR_SPACE_SYSTEM_IO: /* Current speed is unknown and not detectable by IO port */ policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); break; case ACPI_ADR_SPACE_FIXED_HARDWARE: acpi_cpufreq_driver.get = get_cur_freq_on_cpu; policy->cur = get_cur_freq_on_cpu(cpu); break; default: break; } /* notify BIOS that we exist */ acpi_processor_notify_smm(THIS_MODULE); /* Check for APERF/MPERF support in hardware */ if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) { unsigned int ecx; ecx = cpuid_ecx(6); if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY) acpi_cpufreq_driver.getavg = get_measured_perf; } dprintk("CPU%u - ACPI performance management activated.\n", cpu); for (i = 0; i < perf->state_count; i++) dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", (i == perf->state ? '*' : ' '), i, (u32) perf->states[i].core_frequency, (u32) perf->states[i].power, (u32) perf->states[i].transition_latency); cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); /* * the first call to ->target() should result in us actually * writing something to the appropriate registers. */ data->resume = 1; return result; err_freqfree: kfree(data->freq_table); err_unreg: acpi_processor_unregister_performance(perf, cpu); err_free: kfree(data); per_cpu(drv_data, cpu) = NULL; return result; } static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) { struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu); dprintk("acpi_cpufreq_cpu_exit\n"); if (data) { cpufreq_frequency_table_put_attr(policy->cpu); per_cpu(drv_data, policy->cpu) = NULL; acpi_processor_unregister_performance(data->acpi_data, policy->cpu); kfree(data); } return 0; } static int acpi_cpufreq_resume(struct cpufreq_policy *policy) { struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu); dprintk("acpi_cpufreq_resume\n"); data->resume = 1; return 0; } static struct freq_attr *acpi_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver acpi_cpufreq_driver = { .verify = acpi_cpufreq_verify, .target = acpi_cpufreq_target, .init = acpi_cpufreq_cpu_init, .exit = acpi_cpufreq_cpu_exit, .resume = acpi_cpufreq_resume, .name = "acpi-cpufreq", .owner = THIS_MODULE, .attr = acpi_cpufreq_attr, }; static int __init acpi_cpufreq_init(void) { int ret; if (acpi_disabled) return 0; dprintk("acpi_cpufreq_init\n"); ret = acpi_cpufreq_early_init(); if (ret) return ret; ret = cpufreq_register_driver(&acpi_cpufreq_driver); if (ret) free_acpi_perf_data(); return ret; } static void __exit acpi_cpufreq_exit(void) { dprintk("acpi_cpufreq_exit\n"); cpufreq_unregister_driver(&acpi_cpufreq_driver); free_percpu(acpi_perf_data); } module_param(acpi_pstate_strict, uint, 0644); MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are " "performed during frequency changes."); late_initcall(acpi_cpufreq_init); module_exit(acpi_cpufreq_exit); MODULE_ALIAS("acpi");