/* * Machine check handler. * * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. * Rest from unknown author(s). * 2004 Andi Kleen. Rewrote most of it. * Copyright 2008 Intel Corporation * Author: Andi Kleen */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mce-internal.h" #include "mce.h" /* Handle unconfigured int18 (should never happen) */ static void unexpected_machine_check(struct pt_regs *regs, long error_code) { printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n", smp_processor_id()); } /* Call the installed machine check handler for this CPU setup. */ void (*machine_check_vector)(struct pt_regs *, long error_code) = unexpected_machine_check; int mce_disabled; #ifdef CONFIG_X86_NEW_MCE #define MISC_MCELOG_MINOR 227 #define SPINUNIT 100 /* 100ns */ atomic_t mce_entry; DEFINE_PER_CPU(unsigned, mce_exception_count); /* * Tolerant levels: * 0: always panic on uncorrected errors, log corrected errors * 1: panic or SIGBUS on uncorrected errors, log corrected errors * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors * 3: never panic or SIGBUS, log all errors (for testing only) */ static int tolerant = 1; static int banks; static u64 *bank; static unsigned long notify_user; static int rip_msr; static int mce_bootlog = -1; static int monarch_timeout = -1; static int mce_panic_timeout; static int mce_dont_log_ce; int mce_cmci_disabled; int mce_ignore_ce; int mce_ser; static char trigger[128]; static char *trigger_argv[2] = { trigger, NULL }; static unsigned long dont_init_banks; static DECLARE_WAIT_QUEUE_HEAD(mce_wait); static DEFINE_PER_CPU(struct mce, mces_seen); static int cpu_missing; /* MCA banks polled by the period polling timer for corrected events */ DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL }; static inline int skip_bank_init(int i) { return i < BITS_PER_LONG && test_bit(i, &dont_init_banks); } static DEFINE_PER_CPU(struct work_struct, mce_work); /* Do initial initialization of a struct mce */ void mce_setup(struct mce *m) { memset(m, 0, sizeof(struct mce)); m->cpu = m->extcpu = smp_processor_id(); rdtscll(m->tsc); /* We hope get_seconds stays lockless */ m->time = get_seconds(); m->cpuvendor = boot_cpu_data.x86_vendor; m->cpuid = cpuid_eax(1); #ifdef CONFIG_SMP m->socketid = cpu_data(m->extcpu).phys_proc_id; #endif m->apicid = cpu_data(m->extcpu).initial_apicid; rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap); } DEFINE_PER_CPU(struct mce, injectm); EXPORT_PER_CPU_SYMBOL_GPL(injectm); /* * Lockless MCE logging infrastructure. * This avoids deadlocks on printk locks without having to break locks. Also * separate MCEs from kernel messages to avoid bogus bug reports. */ static struct mce_log mcelog = { .signature = MCE_LOG_SIGNATURE, .len = MCE_LOG_LEN, .recordlen = sizeof(struct mce), }; void mce_log(struct mce *mce) { unsigned next, entry; mce->finished = 0; wmb(); for (;;) { entry = rcu_dereference(mcelog.next); for (;;) { /* * When the buffer fills up discard new entries. * Assume that the earlier errors are the more * interesting ones: */ if (entry >= MCE_LOG_LEN) { set_bit(MCE_OVERFLOW, (unsigned long *)&mcelog.flags); return; } /* Old left over entry. Skip: */ if (mcelog.entry[entry].finished) { entry++; continue; } break; } smp_rmb(); next = entry + 1; if (cmpxchg(&mcelog.next, entry, next) == entry) break; } memcpy(mcelog.entry + entry, mce, sizeof(struct mce)); wmb(); mcelog.entry[entry].finished = 1; wmb(); mce->finished = 1; set_bit(0, ¬ify_user); } static void print_mce(struct mce *m) { printk(KERN_EMERG "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n", m->extcpu, m->mcgstatus, m->bank, m->status); if (m->ip) { printk(KERN_EMERG "RIP%s %02x:<%016Lx> ", !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", m->cs, m->ip); if (m->cs == __KERNEL_CS) print_symbol("{%s}", m->ip); printk("\n"); } printk(KERN_EMERG "TSC %llx ", m->tsc); if (m->addr) printk("ADDR %llx ", m->addr); if (m->misc) printk("MISC %llx ", m->misc); printk("\n"); printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid); } static void print_mce_head(void) { printk(KERN_EMERG "\n" KERN_EMERG "HARDWARE ERROR\n"); } static void print_mce_tail(void) { printk(KERN_EMERG "This is not a software problem!\n" KERN_EMERG "Run through mcelog --ascii to decode and contact your hardware vendor\n"); } #define PANIC_TIMEOUT 5 /* 5 seconds */ static atomic_t mce_paniced; /* Panic in progress. Enable interrupts and wait for final IPI */ static void wait_for_panic(void) { long timeout = PANIC_TIMEOUT*USEC_PER_SEC; preempt_disable(); local_irq_enable(); while (timeout-- > 0) udelay(1); if (panic_timeout == 0) panic_timeout = mce_panic_timeout; panic("Panicing machine check CPU died"); } static void mce_panic(char *msg, struct mce *final, char *exp) { int i; /* * Make sure only one CPU runs in machine check panic */ if (atomic_add_return(1, &mce_paniced) > 1) wait_for_panic(); barrier(); bust_spinlocks(1); console_verbose(); print_mce_head(); /* First print corrected ones that are still unlogged */ for (i = 0; i < MCE_LOG_LEN; i++) { struct mce *m = &mcelog.entry[i]; if (!(m->status & MCI_STATUS_VAL)) continue; if (!(m->status & MCI_STATUS_UC)) print_mce(m); } /* Now print uncorrected but with the final one last */ for (i = 0; i < MCE_LOG_LEN; i++) { struct mce *m = &mcelog.entry[i]; if (!(m->status & MCI_STATUS_VAL)) continue; if (!(m->status & MCI_STATUS_UC)) continue; if (!final || memcmp(m, final, sizeof(struct mce))) print_mce(m); } if (final) print_mce(final); if (cpu_missing) printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n"); print_mce_tail(); if (exp) printk(KERN_EMERG "Machine check: %s\n", exp); if (panic_timeout == 0) panic_timeout = mce_panic_timeout; panic(msg); } /* Support code for software error injection */ static int msr_to_offset(u32 msr) { unsigned bank = __get_cpu_var(injectm.bank); if (msr == rip_msr) return offsetof(struct mce, ip); if (msr == MSR_IA32_MC0_STATUS + bank*4) return offsetof(struct mce, status); if (msr == MSR_IA32_MC0_ADDR + bank*4) return offsetof(struct mce, addr); if (msr == MSR_IA32_MC0_MISC + bank*4) return offsetof(struct mce, misc); if (msr == MSR_IA32_MCG_STATUS) return offsetof(struct mce, mcgstatus); return -1; } /* MSR access wrappers used for error injection */ static u64 mce_rdmsrl(u32 msr) { u64 v; if (__get_cpu_var(injectm).finished) { int offset = msr_to_offset(msr); if (offset < 0) return 0; return *(u64 *)((char *)&__get_cpu_var(injectm) + offset); } rdmsrl(msr, v); return v; } static void mce_wrmsrl(u32 msr, u64 v) { if (__get_cpu_var(injectm).finished) { int offset = msr_to_offset(msr); if (offset >= 0) *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v; return; } wrmsrl(msr, v); } /* * Simple lockless ring to communicate PFNs from the exception handler with the * process context work function. This is vastly simplified because there's * only a single reader and a single writer. */ #define MCE_RING_SIZE 16 /* we use one entry less */ struct mce_ring { unsigned short start; unsigned short end; unsigned long ring[MCE_RING_SIZE]; }; static DEFINE_PER_CPU(struct mce_ring, mce_ring); /* Runs with CPU affinity in workqueue */ static int mce_ring_empty(void) { struct mce_ring *r = &__get_cpu_var(mce_ring); return r->start == r->end; } static int mce_ring_get(unsigned long *pfn) { struct mce_ring *r; int ret = 0; *pfn = 0; get_cpu(); r = &__get_cpu_var(mce_ring); if (r->start == r->end) goto out; *pfn = r->ring[r->start]; r->start = (r->start + 1) % MCE_RING_SIZE; ret = 1; out: put_cpu(); return ret; } /* Always runs in MCE context with preempt off */ static int mce_ring_add(unsigned long pfn) { struct mce_ring *r = &__get_cpu_var(mce_ring); unsigned next; next = (r->end + 1) % MCE_RING_SIZE; if (next == r->start) return -1; r->ring[r->end] = pfn; wmb(); r->end = next; return 0; } int mce_available(struct cpuinfo_x86 *c) { if (mce_disabled) return 0; return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); } static void mce_schedule_work(void) { if (!mce_ring_empty()) { struct work_struct *work = &__get_cpu_var(mce_work); if (!work_pending(work)) schedule_work(work); } } /* * Get the address of the instruction at the time of the machine check * error. */ static inline void mce_get_rip(struct mce *m, struct pt_regs *regs) { if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) { m->ip = regs->ip; m->cs = regs->cs; } else { m->ip = 0; m->cs = 0; } if (rip_msr) m->ip = mce_rdmsrl(rip_msr); } #ifdef CONFIG_X86_LOCAL_APIC /* * Called after interrupts have been reenabled again * when a MCE happened during an interrupts off region * in the kernel. */ asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs) { ack_APIC_irq(); exit_idle(); irq_enter(); mce_notify_irq(); mce_schedule_work(); irq_exit(); } #endif static void mce_report_event(struct pt_regs *regs) { if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) { mce_notify_irq(); /* * Triggering the work queue here is just an insurance * policy in case the syscall exit notify handler * doesn't run soon enough or ends up running on the * wrong CPU (can happen when audit sleeps) */ mce_schedule_work(); return; } #ifdef CONFIG_X86_LOCAL_APIC /* * Without APIC do not notify. The event will be picked * up eventually. */ if (!cpu_has_apic) return; /* * When interrupts are disabled we cannot use * kernel services safely. Trigger an self interrupt * through the APIC to instead do the notification * after interrupts are reenabled again. */ apic->send_IPI_self(MCE_SELF_VECTOR); /* * Wait for idle afterwards again so that we don't leave the * APIC in a non idle state because the normal APIC writes * cannot exclude us. */ apic_wait_icr_idle(); #endif } DEFINE_PER_CPU(unsigned, mce_poll_count); /* * Poll for corrected events or events that happened before reset. * Those are just logged through /dev/mcelog. * * This is executed in standard interrupt context. * * Note: spec recommends to panic for fatal unsignalled * errors here. However this would be quite problematic -- * we would need to reimplement the Monarch handling and * it would mess up the exclusion between exception handler * and poll hander -- * so we skip this for now. * These cases should not happen anyways, or only when the CPU * is already totally * confused. In this case it's likely it will * not fully execute the machine check handler either. */ void machine_check_poll(enum mcp_flags flags, mce_banks_t *b) { struct mce m; int i; __get_cpu_var(mce_poll_count)++; mce_setup(&m); m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); for (i = 0; i < banks; i++) { if (!bank[i] || !test_bit(i, *b)) continue; m.misc = 0; m.addr = 0; m.bank = i; m.tsc = 0; barrier(); m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4); if (!(m.status & MCI_STATUS_VAL)) continue; /* * Uncorrected or signalled events are handled by the exception * handler when it is enabled, so don't process those here. * * TBD do the same check for MCI_STATUS_EN here? */ if (!(flags & MCP_UC) && (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC))) continue; if (m.status & MCI_STATUS_MISCV) m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4); if (m.status & MCI_STATUS_ADDRV) m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4); if (!(flags & MCP_TIMESTAMP)) m.tsc = 0; /* * Don't get the IP here because it's unlikely to * have anything to do with the actual error location. */ if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) { mce_log(&m); add_taint(TAINT_MACHINE_CHECK); } /* * Clear state for this bank. */ mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0); } /* * Don't clear MCG_STATUS here because it's only defined for * exceptions. */ sync_core(); } EXPORT_SYMBOL_GPL(machine_check_poll); /* * Do a quick check if any of the events requires a panic. * This decides if we keep the events around or clear them. */ static int mce_no_way_out(struct mce *m, char **msg) { int i; for (i = 0; i < banks; i++) { m->status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4); if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY) return 1; } return 0; } /* * Variable to establish order between CPUs while scanning. * Each CPU spins initially until executing is equal its number. */ static atomic_t mce_executing; /* * Defines order of CPUs on entry. First CPU becomes Monarch. */ static atomic_t mce_callin; /* * Check if a timeout waiting for other CPUs happened. */ static int mce_timed_out(u64 *t) { /* * The others already did panic for some reason. * Bail out like in a timeout. * rmb() to tell the compiler that system_state * might have been modified by someone else. */ rmb(); if (atomic_read(&mce_paniced)) wait_for_panic(); if (!monarch_timeout) goto out; if ((s64)*t < SPINUNIT) { /* CHECKME: Make panic default for 1 too? */ if (tolerant < 1) mce_panic("Timeout synchronizing machine check over CPUs", NULL, NULL); cpu_missing = 1; return 1; } *t -= SPINUNIT; out: touch_nmi_watchdog(); return 0; } /* * The Monarch's reign. The Monarch is the CPU who entered * the machine check handler first. It waits for the others to * raise the exception too and then grades them. When any * error is fatal panic. Only then let the others continue. * * The other CPUs entering the MCE handler will be controlled by the * Monarch. They are called Subjects. * * This way we prevent any potential data corruption in a unrecoverable case * and also makes sure always all CPU's errors are examined. * * Also this detects the case of an machine check event coming from outer * space (not detected by any CPUs) In this case some external agent wants * us to shut down, so panic too. * * The other CPUs might still decide to panic if the handler happens * in a unrecoverable place, but in this case the system is in a semi-stable * state and won't corrupt anything by itself. It's ok to let the others * continue for a bit first. * * All the spin loops have timeouts; when a timeout happens a CPU * typically elects itself to be Monarch. */ static void mce_reign(void) { int cpu; struct mce *m = NULL; int global_worst = 0; char *msg = NULL; char *nmsg = NULL; /* * This CPU is the Monarch and the other CPUs have run * through their handlers. * Grade the severity of the errors of all the CPUs. */ for_each_possible_cpu(cpu) { int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant, &nmsg); if (severity > global_worst) { msg = nmsg; global_worst = severity; m = &per_cpu(mces_seen, cpu); } } /* * Cannot recover? Panic here then. * This dumps all the mces in the log buffer and stops the * other CPUs. */ if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3) mce_panic("Fatal Machine check", m, msg); /* * For UC somewhere we let the CPU who detects it handle it. * Also must let continue the others, otherwise the handling * CPU could deadlock on a lock. */ /* * No machine check event found. Must be some external * source or one CPU is hung. Panic. */ if (!m && tolerant < 3) mce_panic("Machine check from unknown source", NULL, NULL); /* * Now clear all the mces_seen so that they don't reappear on * the next mce. */ for_each_possible_cpu(cpu) memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); } static atomic_t global_nwo; /* * Start of Monarch synchronization. This waits until all CPUs have * entered the exception handler and then determines if any of them * saw a fatal event that requires panic. Then it executes them * in the entry order. * TBD double check parallel CPU hotunplug */ static int mce_start(int no_way_out, int *order) { int nwo; int cpus = num_online_cpus(); u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC; if (!timeout) { *order = -1; return no_way_out; } atomic_add(no_way_out, &global_nwo); /* * Wait for everyone. */ while (atomic_read(&mce_callin) != cpus) { if (mce_timed_out(&timeout)) { atomic_set(&global_nwo, 0); *order = -1; return no_way_out; } ndelay(SPINUNIT); } /* * Cache the global no_way_out state. */ nwo = atomic_read(&global_nwo); /* * Monarch starts executing now, the others wait. */ if (*order == 1) { atomic_set(&mce_executing, 1); return nwo; } /* * Now start the scanning loop one by one * in the original callin order. * This way when there are any shared banks it will * be only seen by one CPU before cleared, avoiding duplicates. */ while (atomic_read(&mce_executing) < *order) { if (mce_timed_out(&timeout)) { atomic_set(&global_nwo, 0); *order = -1; return no_way_out; } ndelay(SPINUNIT); } return nwo; } /* * Synchronize between CPUs after main scanning loop. * This invokes the bulk of the Monarch processing. */ static int mce_end(int order) { int ret = -1; u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC; if (!timeout) goto reset; if (order < 0) goto reset; /* * Allow others to run. */ atomic_inc(&mce_executing); if (order == 1) { /* CHECKME: Can this race with a parallel hotplug? */ int cpus = num_online_cpus(); /* * Monarch: Wait for everyone to go through their scanning * loops. */ while (atomic_read(&mce_executing) <= cpus) { if (mce_timed_out(&timeout)) goto reset; ndelay(SPINUNIT); } mce_reign(); barrier(); ret = 0; } else { /* * Subject: Wait for Monarch to finish. */ while (atomic_read(&mce_executing) != 0) { if (mce_timed_out(&timeout)) goto reset; ndelay(SPINUNIT); } /* * Don't reset anything. That's done by the Monarch. */ return 0; } /* * Reset all global state. */ reset: atomic_set(&global_nwo, 0); atomic_set(&mce_callin, 0); barrier(); /* * Let others run again. */ atomic_set(&mce_executing, 0); return ret; } /* * Check if the address reported by the CPU is in a format we can parse. * It would be possible to add code for most other cases, but all would * be somewhat complicated (e.g. segment offset would require an instruction * parser). So only support physical addresses upto page granuality for now. */ static int mce_usable_address(struct mce *m) { if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV)) return 0; if ((m->misc & 0x3f) > PAGE_SHIFT) return 0; if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS) return 0; return 1; } static void mce_clear_state(unsigned long *toclear) { int i; for (i = 0; i < banks; i++) { if (test_bit(i, toclear)) mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0); } } /* * The actual machine check handler. This only handles real * exceptions when something got corrupted coming in through int 18. * * This is executed in NMI context not subject to normal locking rules. This * implies that most kernel services cannot be safely used. Don't even * think about putting a printk in there! * * On Intel systems this is entered on all CPUs in parallel through * MCE broadcast. However some CPUs might be broken beyond repair, * so be always careful when synchronizing with others. */ void do_machine_check(struct pt_regs *regs, long error_code) { struct mce m, *final; int i; int worst = 0; int severity; /* * Establish sequential order between the CPUs entering the machine * check handler. */ int order; /* * If no_way_out gets set, there is no safe way to recover from this * MCE. If tolerant is cranked up, we'll try anyway. */ int no_way_out = 0; /* * If kill_it gets set, there might be a way to recover from this * error. */ int kill_it = 0; DECLARE_BITMAP(toclear, MAX_NR_BANKS); char *msg = "Unknown"; atomic_inc(&mce_entry); __get_cpu_var(mce_exception_count)++; if (notify_die(DIE_NMI, "machine check", regs, error_code, 18, SIGKILL) == NOTIFY_STOP) goto out; if (!banks) goto out; order = atomic_add_return(1, &mce_callin); mce_setup(&m); m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); no_way_out = mce_no_way_out(&m, &msg); final = &__get_cpu_var(mces_seen); *final = m; barrier(); /* * When no restart IP must always kill or panic. */ if (!(m.mcgstatus & MCG_STATUS_RIPV)) kill_it = 1; /* * Go through all the banks in exclusion of the other CPUs. * This way we don't report duplicated events on shared banks * because the first one to see it will clear it. */ no_way_out = mce_start(no_way_out, &order); for (i = 0; i < banks; i++) { __clear_bit(i, toclear); if (!bank[i]) continue; m.misc = 0; m.addr = 0; m.bank = i; m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4); if ((m.status & MCI_STATUS_VAL) == 0) continue; /* * Non uncorrected or non signaled errors are handled by * machine_check_poll. Leave them alone, unless this panics. */ if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) && !no_way_out) continue; /* * Set taint even when machine check was not enabled. */ add_taint(TAINT_MACHINE_CHECK); severity = mce_severity(&m, tolerant, NULL); /* * When machine check was for corrected handler don't touch, * unless we're panicing. */ if (severity == MCE_KEEP_SEVERITY && !no_way_out) continue; __set_bit(i, toclear); if (severity == MCE_NO_SEVERITY) { /* * Machine check event was not enabled. Clear, but * ignore. */ continue; } /* * Kill on action required. */ if (severity == MCE_AR_SEVERITY) kill_it = 1; if (m.status & MCI_STATUS_MISCV) m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4); if (m.status & MCI_STATUS_ADDRV) m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4); /* * Action optional error. Queue address for later processing. * When the ring overflows we just ignore the AO error. * RED-PEN add some logging mechanism when * usable_address or mce_add_ring fails. * RED-PEN don't ignore overflow for tolerant == 0 */ if (severity == MCE_AO_SEVERITY && mce_usable_address(&m)) mce_ring_add(m.addr >> PAGE_SHIFT); mce_get_rip(&m, regs); mce_log(&m); if (severity > worst) { *final = m; worst = severity; } } if (!no_way_out) mce_clear_state(toclear); /* * Do most of the synchronization with other CPUs. * When there's any problem use only local no_way_out state. */ if (mce_end(order) < 0) no_way_out = worst >= MCE_PANIC_SEVERITY; /* * If we have decided that we just CAN'T continue, and the user * has not set tolerant to an insane level, give up and die. * * This is mainly used in the case when the system doesn't * support MCE broadcasting or it has been disabled. */ if (no_way_out && tolerant < 3) mce_panic("Fatal machine check on current CPU", final, msg); /* * If the error seems to be unrecoverable, something should be * done. Try to kill as little as possible. If we can kill just * one task, do that. If the user has set the tolerance very * high, don't try to do anything at all. */ if (kill_it && tolerant < 3) force_sig(SIGBUS, current); /* notify userspace ASAP */ set_thread_flag(TIF_MCE_NOTIFY); if (worst > 0) mce_report_event(regs); mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); out: atomic_dec(&mce_entry); sync_core(); } EXPORT_SYMBOL_GPL(do_machine_check); /* dummy to break dependency. actual code is in mm/memory-failure.c */ void __attribute__((weak)) memory_failure(unsigned long pfn, int vector) { printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn); } /* * Called after mce notification in process context. This code * is allowed to sleep. Call the high level VM handler to process * any corrupted pages. * Assume that the work queue code only calls this one at a time * per CPU. * Note we don't disable preemption, so this code might run on the wrong * CPU. In this case the event is picked up by the scheduled work queue. * This is merely a fast path to expedite processing in some common * cases. */ void mce_notify_process(void) { unsigned long pfn; mce_notify_irq(); while (mce_ring_get(&pfn)) memory_failure(pfn, MCE_VECTOR); } static void mce_process_work(struct work_struct *dummy) { mce_notify_process(); } #ifdef CONFIG_X86_MCE_INTEL /*** * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog * @cpu: The CPU on which the event occurred. * @status: Event status information * * This function should be called by the thermal interrupt after the * event has been processed and the decision was made to log the event * further. * * The status parameter will be saved to the 'status' field of 'struct mce' * and historically has been the register value of the * MSR_IA32_THERMAL_STATUS (Intel) msr. */ void mce_log_therm_throt_event(__u64 status) { struct mce m; mce_setup(&m); m.bank = MCE_THERMAL_BANK; m.status = status; mce_log(&m); } #endif /* CONFIG_X86_MCE_INTEL */ /* * Periodic polling timer for "silent" machine check errors. If the * poller finds an MCE, poll 2x faster. When the poller finds no more * errors, poll 2x slower (up to check_interval seconds). */ static int check_interval = 5 * 60; /* 5 minutes */ static DEFINE_PER_CPU(int, next_interval); /* in jiffies */ static DEFINE_PER_CPU(struct timer_list, mce_timer); static void mcheck_timer(unsigned long data) { struct timer_list *t = &per_cpu(mce_timer, data); int *n; WARN_ON(smp_processor_id() != data); if (mce_available(¤t_cpu_data)) { machine_check_poll(MCP_TIMESTAMP, &__get_cpu_var(mce_poll_banks)); } /* * Alert userspace if needed. If we logged an MCE, reduce the * polling interval, otherwise increase the polling interval. */ n = &__get_cpu_var(next_interval); if (mce_notify_irq()) *n = max(*n/2, HZ/100); else *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ)); t->expires = jiffies + *n; add_timer(t); } static void mce_do_trigger(struct work_struct *work) { call_usermodehelper(trigger, trigger_argv, NULL, UMH_NO_WAIT); } static DECLARE_WORK(mce_trigger_work, mce_do_trigger); /* * Notify the user(s) about new machine check events. * Can be called from interrupt context, but not from machine check/NMI * context. */ int mce_notify_irq(void) { /* Not more than two messages every minute */ static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); clear_thread_flag(TIF_MCE_NOTIFY); if (test_and_clear_bit(0, ¬ify_user)) { wake_up_interruptible(&mce_wait); /* * There is no risk of missing notifications because * work_pending is always cleared before the function is * executed. */ if (trigger[0] && !work_pending(&mce_trigger_work)) schedule_work(&mce_trigger_work); if (__ratelimit(&ratelimit)) printk(KERN_INFO "Machine check events logged\n"); return 1; } return 0; } EXPORT_SYMBOL_GPL(mce_notify_irq); /* * Initialize Machine Checks for a CPU. */ static int mce_cap_init(void) { unsigned b; u64 cap; rdmsrl(MSR_IA32_MCG_CAP, cap); b = cap & MCG_BANKCNT_MASK; printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b); if (b > MAX_NR_BANKS) { printk(KERN_WARNING "MCE: Using only %u machine check banks out of %u\n", MAX_NR_BANKS, b); b = MAX_NR_BANKS; } /* Don't support asymmetric configurations today */ WARN_ON(banks != 0 && b != banks); banks = b; if (!bank) { bank = kmalloc(banks * sizeof(u64), GFP_KERNEL); if (!bank) return -ENOMEM; memset(bank, 0xff, banks * sizeof(u64)); } /* Use accurate RIP reporting if available. */ if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) rip_msr = MSR_IA32_MCG_EIP; if (cap & MCG_SER_P) mce_ser = 1; return 0; } static void mce_init(void) { mce_banks_t all_banks; u64 cap; int i; /* * Log the machine checks left over from the previous reset. */ bitmap_fill(all_banks, MAX_NR_BANKS); machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks); set_in_cr4(X86_CR4_MCE); rdmsrl(MSR_IA32_MCG_CAP, cap); if (cap & MCG_CTL_P) wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); for (i = 0; i < banks; i++) { if (skip_bank_init(i)) continue; wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]); wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0); } } /* Add per CPU specific workarounds here */ static void mce_cpu_quirks(struct cpuinfo_x86 *c) { /* This should be disabled by the BIOS, but isn't always */ if (c->x86_vendor == X86_VENDOR_AMD) { if (c->x86 == 15 && banks > 4) { /* * disable GART TBL walk error reporting, which * trips off incorrectly with the IOMMU & 3ware * & Cerberus: */ clear_bit(10, (unsigned long *)&bank[4]); } if (c->x86 <= 17 && mce_bootlog < 0) { /* * Lots of broken BIOS around that don't clear them * by default and leave crap in there. Don't log: */ mce_bootlog = 0; } /* * Various K7s with broken bank 0 around. Always disable * by default. */ if (c->x86 == 6 && banks > 0) bank[0] = 0; } if (c->x86_vendor == X86_VENDOR_INTEL) { /* * SDM documents that on family 6 bank 0 should not be written * because it aliases to another special BIOS controlled * register. * But it's not aliased anymore on model 0x1a+ * Don't ignore bank 0 completely because there could be a * valid event later, merely don't write CTL0. */ if (c->x86 == 6 && c->x86_model < 0x1A) __set_bit(0, &dont_init_banks); /* * All newer Intel systems support MCE broadcasting. Enable * synchronization with a one second timeout. */ if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && monarch_timeout < 0) monarch_timeout = USEC_PER_SEC; } if (monarch_timeout < 0) monarch_timeout = 0; if (mce_bootlog != 0) mce_panic_timeout = 30; } static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c) { if (c->x86 != 5) return; switch (c->x86_vendor) { case X86_VENDOR_INTEL: if (mce_p5_enabled()) intel_p5_mcheck_init(c); break; case X86_VENDOR_CENTAUR: winchip_mcheck_init(c); break; } } static void mce_cpu_features(struct cpuinfo_x86 *c) { switch (c->x86_vendor) { case X86_VENDOR_INTEL: mce_intel_feature_init(c); break; case X86_VENDOR_AMD: mce_amd_feature_init(c); break; default: break; } } static void mce_init_timer(void) { struct timer_list *t = &__get_cpu_var(mce_timer); int *n = &__get_cpu_var(next_interval); if (mce_ignore_ce) return; *n = check_interval * HZ; if (!*n) return; setup_timer(t, mcheck_timer, smp_processor_id()); t->expires = round_jiffies(jiffies + *n); add_timer(t); } /* * Called for each booted CPU to set up machine checks. * Must be called with preempt off: */ void __cpuinit mcheck_init(struct cpuinfo_x86 *c) { if (mce_disabled) return; mce_ancient_init(c); if (!mce_available(c)) return; if (mce_cap_init() < 0) { mce_disabled = 1; return; } mce_cpu_quirks(c); machine_check_vector = do_machine_check; mce_init(); mce_cpu_features(c); mce_init_timer(); INIT_WORK(&__get_cpu_var(mce_work), mce_process_work); } /* * Character device to read and clear the MCE log. */ static DEFINE_SPINLOCK(mce_state_lock); static int open_count; /* #times opened */ static int open_exclu; /* already open exclusive? */ static int mce_open(struct inode *inode, struct file *file) { spin_lock(&mce_state_lock); if (open_exclu || (open_count && (file->f_flags & O_EXCL))) { spin_unlock(&mce_state_lock); return -EBUSY; } if (file->f_flags & O_EXCL) open_exclu = 1; open_count++; spin_unlock(&mce_state_lock); return nonseekable_open(inode, file); } static int mce_release(struct inode *inode, struct file *file) { spin_lock(&mce_state_lock); open_count--; open_exclu = 0; spin_unlock(&mce_state_lock); return 0; } static void collect_tscs(void *data) { unsigned long *cpu_tsc = (unsigned long *)data; rdtscll(cpu_tsc[smp_processor_id()]); } static DEFINE_MUTEX(mce_read_mutex); static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize, loff_t *off) { char __user *buf = ubuf; unsigned long *cpu_tsc; unsigned prev, next; int i, err; cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL); if (!cpu_tsc) return -ENOMEM; mutex_lock(&mce_read_mutex); next = rcu_dereference(mcelog.next); /* Only supports full reads right now */ if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) { mutex_unlock(&mce_read_mutex); kfree(cpu_tsc); return -EINVAL; } err = 0; prev = 0; do { for (i = prev; i < next; i++) { unsigned long start = jiffies; while (!mcelog.entry[i].finished) { if (time_after_eq(jiffies, start + 2)) { memset(mcelog.entry + i, 0, sizeof(struct mce)); goto timeout; } cpu_relax(); } smp_rmb(); err |= copy_to_user(buf, mcelog.entry + i, sizeof(struct mce)); buf += sizeof(struct mce); timeout: ; } memset(mcelog.entry + prev, 0, (next - prev) * sizeof(struct mce)); prev = next; next = cmpxchg(&mcelog.next, prev, 0); } while (next != prev); synchronize_sched(); /* * Collect entries that were still getting written before the * synchronize. */ on_each_cpu(collect_tscs, cpu_tsc, 1); for (i = next; i < MCE_LOG_LEN; i++) { if (mcelog.entry[i].finished && mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) { err |= copy_to_user(buf, mcelog.entry+i, sizeof(struct mce)); smp_rmb(); buf += sizeof(struct mce); memset(&mcelog.entry[i], 0, sizeof(struct mce)); } } mutex_unlock(&mce_read_mutex); kfree(cpu_tsc); return err ? -EFAULT : buf - ubuf; } static unsigned int mce_poll(struct file *file, poll_table *wait) { poll_wait(file, &mce_wait, wait); if (rcu_dereference(mcelog.next)) return POLLIN | POLLRDNORM; return 0; } static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg) { int __user *p = (int __user *)arg; if (!capable(CAP_SYS_ADMIN)) return -EPERM; switch (cmd) { case MCE_GET_RECORD_LEN: return put_user(sizeof(struct mce), p); case MCE_GET_LOG_LEN: return put_user(MCE_LOG_LEN, p); case MCE_GETCLEAR_FLAGS: { unsigned flags; do { flags = mcelog.flags; } while (cmpxchg(&mcelog.flags, flags, 0) != flags); return put_user(flags, p); } default: return -ENOTTY; } } /* Modified in mce-inject.c, so not static or const */ struct file_operations mce_chrdev_ops = { .open = mce_open, .release = mce_release, .read = mce_read, .poll = mce_poll, .unlocked_ioctl = mce_ioctl, }; EXPORT_SYMBOL_GPL(mce_chrdev_ops); static struct miscdevice mce_log_device = { MISC_MCELOG_MINOR, "mcelog", &mce_chrdev_ops, }; /* * mce=off Disables machine check * mce=no_cmci Disables CMCI * mce=dont_log_ce Clears corrected events silently, no log created for CEs. * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) * monarchtimeout is how long to wait for other CPUs on machine * check, or 0 to not wait * mce=bootlog Log MCEs from before booting. Disabled by default on AMD. * mce=nobootlog Don't log MCEs from before booting. */ static int __init mcheck_enable(char *str) { if (*str == 0) enable_p5_mce(); if (*str == '=') str++; if (!strcmp(str, "off")) mce_disabled = 1; else if (!strcmp(str, "no_cmci")) mce_cmci_disabled = 1; else if (!strcmp(str, "dont_log_ce")) mce_dont_log_ce = 1; else if (!strcmp(str, "ignore_ce")) mce_ignore_ce = 1; else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) mce_bootlog = (str[0] == 'b'); else if (isdigit(str[0])) { get_option(&str, &tolerant); if (*str == ',') { ++str; get_option(&str, &monarch_timeout); } } else { printk(KERN_INFO "mce argument %s ignored. Please use /sys\n", str); return 0; } return 1; } __setup("mce", mcheck_enable); /* * Sysfs support */ /* * Disable machine checks on suspend and shutdown. We can't really handle * them later. */ static int mce_disable(void) { int i; for (i = 0; i < banks; i++) { if (!skip_bank_init(i)) wrmsrl(MSR_IA32_MC0_CTL + i*4, 0); } return 0; } static int mce_suspend(struct sys_device *dev, pm_message_t state) { return mce_disable(); } static int mce_shutdown(struct sys_device *dev) { return mce_disable(); } /* * On resume clear all MCE state. Don't want to see leftovers from the BIOS. * Only one CPU is active at this time, the others get re-added later using * CPU hotplug: */ static int mce_resume(struct sys_device *dev) { mce_init(); mce_cpu_features(¤t_cpu_data); return 0; } static void mce_cpu_restart(void *data) { del_timer_sync(&__get_cpu_var(mce_timer)); if (mce_available(¤t_cpu_data)) mce_init(); mce_init_timer(); } /* Reinit MCEs after user configuration changes */ static void mce_restart(void) { on_each_cpu(mce_cpu_restart, NULL, 1); } static struct sysdev_class mce_sysclass = { .suspend = mce_suspend, .shutdown = mce_shutdown, .resume = mce_resume, .name = "machinecheck", }; DEFINE_PER_CPU(struct sys_device, mce_dev); __cpuinitdata void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu); static struct sysdev_attribute *bank_attrs; static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr, char *buf) { u64 b = bank[attr - bank_attrs]; return sprintf(buf, "%llx\n", b); } static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr, const char *buf, size_t size) { u64 new; if (strict_strtoull(buf, 0, &new) < 0) return -EINVAL; bank[attr - bank_attrs] = new; mce_restart(); return size; } static ssize_t show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf) { strcpy(buf, trigger); strcat(buf, "\n"); return strlen(trigger) + 1; } static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr, const char *buf, size_t siz) { char *p; int len; strncpy(trigger, buf, sizeof(trigger)); trigger[sizeof(trigger)-1] = 0; len = strlen(trigger); p = strchr(trigger, '\n'); if (*p) *p = 0; return len; } static ssize_t store_int_with_restart(struct sys_device *s, struct sysdev_attribute *attr, const char *buf, size_t size) { ssize_t ret = sysdev_store_int(s, attr, buf, size); mce_restart(); return ret; } static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger); static SYSDEV_INT_ATTR(tolerant, 0644, tolerant); static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout); static struct sysdev_ext_attribute attr_check_interval = { _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int, store_int_with_restart), &check_interval }; static struct sysdev_attribute *mce_attrs[] = { &attr_tolerant.attr, &attr_check_interval.attr, &attr_trigger, &attr_monarch_timeout.attr, NULL }; static cpumask_var_t mce_dev_initialized; /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */ static __cpuinit int mce_create_device(unsigned int cpu) { int err; int i; if (!mce_available(&boot_cpu_data)) return -EIO; memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject)); per_cpu(mce_dev, cpu).id = cpu; per_cpu(mce_dev, cpu).cls = &mce_sysclass; err = sysdev_register(&per_cpu(mce_dev, cpu)); if (err) return err; for (i = 0; mce_attrs[i]; i++) { err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]); if (err) goto error; } for (i = 0; i < banks; i++) { err = sysdev_create_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]); if (err) goto error2; } cpumask_set_cpu(cpu, mce_dev_initialized); return 0; error2: while (--i >= 0) sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]); error: while (--i >= 0) sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]); sysdev_unregister(&per_cpu(mce_dev, cpu)); return err; } static __cpuinit void mce_remove_device(unsigned int cpu) { int i; if (!cpumask_test_cpu(cpu, mce_dev_initialized)) return; for (i = 0; mce_attrs[i]; i++) sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]); for (i = 0; i < banks; i++) sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]); sysdev_unregister(&per_cpu(mce_dev, cpu)); cpumask_clear_cpu(cpu, mce_dev_initialized); } /* Make sure there are no machine checks on offlined CPUs. */ static void mce_disable_cpu(void *h) { unsigned long action = *(unsigned long *)h; int i; if (!mce_available(¤t_cpu_data)) return; if (!(action & CPU_TASKS_FROZEN)) cmci_clear(); for (i = 0; i < banks; i++) { if (!skip_bank_init(i)) wrmsrl(MSR_IA32_MC0_CTL + i*4, 0); } } static void mce_reenable_cpu(void *h) { unsigned long action = *(unsigned long *)h; int i; if (!mce_available(¤t_cpu_data)) return; if (!(action & CPU_TASKS_FROZEN)) cmci_reenable(); for (i = 0; i < banks; i++) { if (!skip_bank_init(i)) wrmsrl(MSR_IA32_MC0_CTL + i*4, bank[i]); } } /* Get notified when a cpu comes on/off. Be hotplug friendly. */ static int __cpuinit mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct timer_list *t = &per_cpu(mce_timer, cpu); switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: mce_create_device(cpu); if (threshold_cpu_callback) threshold_cpu_callback(action, cpu); break; case CPU_DEAD: case CPU_DEAD_FROZEN: if (threshold_cpu_callback) threshold_cpu_callback(action, cpu); mce_remove_device(cpu); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: del_timer_sync(t); smp_call_function_single(cpu, mce_disable_cpu, &action, 1); break; case CPU_DOWN_FAILED: case CPU_DOWN_FAILED_FROZEN: t->expires = round_jiffies(jiffies + __get_cpu_var(next_interval)); add_timer_on(t, cpu); smp_call_function_single(cpu, mce_reenable_cpu, &action, 1); break; case CPU_POST_DEAD: /* intentionally ignoring frozen here */ cmci_rediscover(cpu); break; } return NOTIFY_OK; } static struct notifier_block mce_cpu_notifier __cpuinitdata = { .notifier_call = mce_cpu_callback, }; static __init int mce_init_banks(void) { int i; bank_attrs = kzalloc(sizeof(struct sysdev_attribute) * banks, GFP_KERNEL); if (!bank_attrs) return -ENOMEM; for (i = 0; i < banks; i++) { struct sysdev_attribute *a = &bank_attrs[i]; a->attr.name = kasprintf(GFP_KERNEL, "bank%d", i); if (!a->attr.name) goto nomem; a->attr.mode = 0644; a->show = show_bank; a->store = set_bank; } return 0; nomem: while (--i >= 0) kfree(bank_attrs[i].attr.name); kfree(bank_attrs); bank_attrs = NULL; return -ENOMEM; } static __init int mce_init_device(void) { int err; int i = 0; if (!mce_available(&boot_cpu_data)) return -EIO; alloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL); err = mce_init_banks(); if (err) return err; err = sysdev_class_register(&mce_sysclass); if (err) return err; for_each_online_cpu(i) { err = mce_create_device(i); if (err) return err; } register_hotcpu_notifier(&mce_cpu_notifier); misc_register(&mce_log_device); return err; } device_initcall(mce_init_device); #else /* CONFIG_X86_OLD_MCE: */ int nr_mce_banks; EXPORT_SYMBOL_GPL(nr_mce_banks); /* non-fatal.o */ /* This has to be run for each processor */ void mcheck_init(struct cpuinfo_x86 *c) { if (mce_disabled == 1) return; switch (c->x86_vendor) { case X86_VENDOR_AMD: amd_mcheck_init(c); break; case X86_VENDOR_INTEL: if (c->x86 == 5) intel_p5_mcheck_init(c); if (c->x86 == 6) intel_p6_mcheck_init(c); if (c->x86 == 15) intel_p4_mcheck_init(c); break; case X86_VENDOR_CENTAUR: if (c->x86 == 5) winchip_mcheck_init(c); break; default: break; } printk(KERN_INFO "mce: CPU supports %d MCE banks\n", nr_mce_banks); } static int __init mcheck_enable(char *str) { mce_disabled = -1; return 1; } __setup("mce", mcheck_enable); #endif /* CONFIG_X86_OLD_MCE */ /* * Old style boot options parsing. Only for compatibility. */ static int __init mcheck_disable(char *str) { mce_disabled = 1; return 1; } __setup("nomce", mcheck_disable);