/* * KVM paravirt_ops implementation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * Copyright IBM Corporation, 2007 * Authors: Anthony Liguori <aliguori@us.ibm.com> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/kvm_para.h> #include <linux/cpu.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/hardirq.h> #include <asm/timer.h> #define MMU_QUEUE_SIZE 1024 struct kvm_para_state { u8 mmu_queue[MMU_QUEUE_SIZE]; int mmu_queue_len; enum paravirt_lazy_mode mode; }; static DEFINE_PER_CPU(struct kvm_para_state, para_state); static struct kvm_para_state *kvm_para_state(void) { return &per_cpu(para_state, raw_smp_processor_id()); } /* * No need for any "IO delay" on KVM */ static void kvm_io_delay(void) { } static void kvm_mmu_op(void *buffer, unsigned len) { int r; unsigned long a1, a2; do { a1 = __pa(buffer); a2 = 0; /* on i386 __pa() always returns <4G */ r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2); buffer += r; len -= r; } while (len); } static void mmu_queue_flush(struct kvm_para_state *state) { if (state->mmu_queue_len) { kvm_mmu_op(state->mmu_queue, state->mmu_queue_len); state->mmu_queue_len = 0; } } static void kvm_deferred_mmu_op(void *buffer, int len) { struct kvm_para_state *state = kvm_para_state(); if (state->mode != PARAVIRT_LAZY_MMU) { kvm_mmu_op(buffer, len); return; } if (state->mmu_queue_len + len > sizeof state->mmu_queue) mmu_queue_flush(state); memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len); state->mmu_queue_len += len; } static void kvm_mmu_write(void *dest, u64 val) { __u64 pte_phys; struct kvm_mmu_op_write_pte wpte; #ifdef CONFIG_HIGHPTE struct page *page; unsigned long dst = (unsigned long) dest; page = kmap_atomic_to_page(dest); pte_phys = page_to_pfn(page); pte_phys <<= PAGE_SHIFT; pte_phys += (dst & ~(PAGE_MASK)); #else pte_phys = (unsigned long)__pa(dest); #endif wpte.header.op = KVM_MMU_OP_WRITE_PTE; wpte.pte_val = val; wpte.pte_phys = pte_phys; kvm_deferred_mmu_op(&wpte, sizeof wpte); } /* * We only need to hook operations that are MMU writes. We hook these so that * we can use lazy MMU mode to batch these operations. We could probably * improve the performance of the host code if we used some of the information * here to simplify processing of batched writes. */ static void kvm_set_pte(pte_t *ptep, pte_t pte) { kvm_mmu_write(ptep, pte_val(pte)); } static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { kvm_mmu_write(ptep, pte_val(pte)); } static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd) { kvm_mmu_write(pmdp, pmd_val(pmd)); } #if PAGETABLE_LEVELS >= 3 #ifdef CONFIG_X86_PAE static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte) { kvm_mmu_write(ptep, pte_val(pte)); } static void kvm_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { kvm_mmu_write(ptep, 0); } static void kvm_pmd_clear(pmd_t *pmdp) { kvm_mmu_write(pmdp, 0); } #endif static void kvm_set_pud(pud_t *pudp, pud_t pud) { kvm_mmu_write(pudp, pud_val(pud)); } #if PAGETABLE_LEVELS == 4 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd) { kvm_mmu_write(pgdp, pgd_val(pgd)); } #endif #endif /* PAGETABLE_LEVELS >= 3 */ static void kvm_flush_tlb(void) { struct kvm_mmu_op_flush_tlb ftlb = { .header.op = KVM_MMU_OP_FLUSH_TLB, }; kvm_deferred_mmu_op(&ftlb, sizeof ftlb); } static void kvm_release_pt(unsigned long pfn) { struct kvm_mmu_op_release_pt rpt = { .header.op = KVM_MMU_OP_RELEASE_PT, .pt_phys = (u64)pfn << PAGE_SHIFT, }; kvm_mmu_op(&rpt, sizeof rpt); } static void kvm_enter_lazy_mmu(void) { struct kvm_para_state *state = kvm_para_state(); paravirt_enter_lazy_mmu(); state->mode = paravirt_get_lazy_mode(); } static void kvm_leave_lazy_mmu(void) { struct kvm_para_state *state = kvm_para_state(); mmu_queue_flush(state); paravirt_leave_lazy_mmu(); state->mode = paravirt_get_lazy_mode(); } static void __init paravirt_ops_setup(void) { pv_info.name = "KVM"; pv_info.paravirt_enabled = 1; if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) pv_cpu_ops.io_delay = kvm_io_delay; if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) { pv_mmu_ops.set_pte = kvm_set_pte; pv_mmu_ops.set_pte_at = kvm_set_pte_at; pv_mmu_ops.set_pmd = kvm_set_pmd; #if PAGETABLE_LEVELS >= 3 #ifdef CONFIG_X86_PAE pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic; pv_mmu_ops.pte_clear = kvm_pte_clear; pv_mmu_ops.pmd_clear = kvm_pmd_clear; #endif pv_mmu_ops.set_pud = kvm_set_pud; #if PAGETABLE_LEVELS == 4 pv_mmu_ops.set_pgd = kvm_set_pgd; #endif #endif pv_mmu_ops.flush_tlb_user = kvm_flush_tlb; pv_mmu_ops.release_pte = kvm_release_pt; pv_mmu_ops.release_pmd = kvm_release_pt; pv_mmu_ops.release_pud = kvm_release_pt; pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu; pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu; } #ifdef CONFIG_X86_IO_APIC no_timer_check = 1; #endif } void __init kvm_guest_init(void) { if (!kvm_para_available()) return; paravirt_ops_setup(); }