#include #include #include #include DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, }; /* must come after the send_IPI functions above for inlining */ #include /* * Smarter SMP flushing macros. * c/o Linus Torvalds. * * These mean you can really definitely utterly forget about * writing to user space from interrupts. (Its not allowed anyway). * * Optimizations Manfred Spraul */ static cpumask_var_t flush_cpumask; static struct mm_struct *flush_mm; static unsigned long flush_va; static DEFINE_SPINLOCK(tlbstate_lock); /* * We cannot call mmdrop() because we are in interrupt context, * instead update mm->cpu_vm_mask. * * We need to reload %cr3 since the page tables may be going * away from under us.. */ void leave_mm(int cpu) { BUG_ON(x86_read_percpu(cpu_tlbstate.state) == TLBSTATE_OK); cpu_clear(cpu, x86_read_percpu(cpu_tlbstate.active_mm)->cpu_vm_mask); load_cr3(swapper_pg_dir); } EXPORT_SYMBOL_GPL(leave_mm); /* * * The flush IPI assumes that a thread switch happens in this order: * [cpu0: the cpu that switches] * 1) switch_mm() either 1a) or 1b) * 1a) thread switch to a different mm * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); * Stop ipi delivery for the old mm. This is not synchronized with * the other cpus, but smp_invalidate_interrupt ignore flush ipis * for the wrong mm, and in the worst case we perform a superfluous * tlb flush. * 1a2) set cpu_tlbstate to TLBSTATE_OK * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 * was in lazy tlb mode. * 1a3) update cpu_tlbstate[].active_mm * Now cpu0 accepts tlb flushes for the new mm. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); * Now the other cpus will send tlb flush ipis. * 1a4) change cr3. * 1b) thread switch without mm change * cpu_tlbstate[].active_mm is correct, cpu0 already handles * flush ipis. * 1b1) set cpu_tlbstate to TLBSTATE_OK * 1b2) test_and_set the cpu bit in cpu_vm_mask. * Atomically set the bit [other cpus will start sending flush ipis], * and test the bit. * 1b3) if the bit was 0: leave_mm was called, flush the tlb. * 2) switch %%esp, ie current * * The interrupt must handle 2 special cases: * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. * - the cpu performs speculative tlb reads, i.e. even if the cpu only * runs in kernel space, the cpu could load tlb entries for user space * pages. * * The good news is that cpu_tlbstate is local to each cpu, no * write/read ordering problems. */ /* * TLB flush IPI: * * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. * 2) Leave the mm if we are in the lazy tlb mode. */ void smp_invalidate_interrupt(struct pt_regs *regs) { unsigned long cpu; cpu = get_cpu(); if (!cpumask_test_cpu(cpu, flush_cpumask)) goto out; /* * This was a BUG() but until someone can quote me the * line from the intel manual that guarantees an IPI to * multiple CPUs is retried _only_ on the erroring CPUs * its staying as a return * * BUG(); */ if (flush_mm == x86_read_percpu(cpu_tlbstate.active_mm)) { if (x86_read_percpu(cpu_tlbstate.state) == TLBSTATE_OK) { if (flush_va == TLB_FLUSH_ALL) local_flush_tlb(); else __flush_tlb_one(flush_va); } else leave_mm(cpu); } ack_APIC_irq(); smp_mb__before_clear_bit(); cpumask_clear_cpu(cpu, flush_cpumask); smp_mb__after_clear_bit(); out: put_cpu_no_resched(); inc_irq_stat(irq_tlb_count); } void native_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long va) { /* * mm must exist :) */ BUG_ON(!mm); /* * i'm not happy about this global shared spinlock in the * MM hot path, but we'll see how contended it is. * AK: x86-64 has a faster method that could be ported. */ spin_lock(&tlbstate_lock); cpumask_andnot(flush_cpumask, cpumask, cpumask_of(smp_processor_id())); cpumask_and(flush_cpumask, flush_cpumask, cpu_online_mask); /* * If a task whose mm mask we are looking at has descheduled and * has cleared its presence from the mask, or if a CPU which we ran * on has gone down then there might be no flush work left: */ if (unlikely(cpumask_empty(flush_cpumask))) { spin_unlock(&tlbstate_lock); return; } flush_mm = mm; flush_va = va; /* * Make the above memory operations globally visible before * sending the IPI. */ smp_mb(); /* * We have to send the IPI only to * CPUs affected. */ send_IPI_mask(flush_cpumask, INVALIDATE_TLB_VECTOR); while (!cpumask_empty(flush_cpumask)) /* nothing. lockup detection does not belong here */ cpu_relax(); flush_mm = NULL; flush_va = 0; spin_unlock(&tlbstate_lock); } void flush_tlb_current_task(void) { struct mm_struct *mm = current->mm; preempt_disable(); local_flush_tlb(); if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids) flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL); preempt_enable(); } void flush_tlb_mm(struct mm_struct *mm) { preempt_disable(); if (current->active_mm == mm) { if (current->mm) local_flush_tlb(); else leave_mm(smp_processor_id()); } if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids) flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL); preempt_enable(); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long va) { struct mm_struct *mm = vma->vm_mm; preempt_disable(); if (current->active_mm == mm) { if (current->mm) __flush_tlb_one(va); else leave_mm(smp_processor_id()); } if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids) flush_tlb_others(&mm->cpu_vm_mask, mm, va); preempt_enable(); } EXPORT_SYMBOL(flush_tlb_page); static void do_flush_tlb_all(void *info) { unsigned long cpu = smp_processor_id(); __flush_tlb_all(); if (x86_read_percpu(cpu_tlbstate.state) == TLBSTATE_LAZY) leave_mm(cpu); } void flush_tlb_all(void) { on_each_cpu(do_flush_tlb_all, NULL, 1); } void reset_lazy_tlbstate(void) { int cpu = raw_smp_processor_id(); per_cpu(cpu_tlbstate, cpu).state = 0; per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm; } static int init_flush_cpumask(void) { alloc_cpumask_var(&flush_cpumask, GFP_KERNEL); return 0; } early_initcall(init_flush_cpumask);