/* * Xen SMP support * * This file implements the Xen versions of smp_ops. SMP under Xen is * very straightforward. Bringing a CPU up is simply a matter of * loading its initial context and setting it running. * * IPIs are handled through the Xen event mechanism. * * Because virtual CPUs can be scheduled onto any real CPU, there's no * useful topology information for the kernel to make use of. As a * result, all CPUs are treated as if they're single-core and * single-threaded. * * This does not handle HOTPLUG_CPU yet. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xen-ops.h" #include "mmu.h" static cpumask_t xen_cpu_initialized_map; static DEFINE_PER_CPU(int, resched_irq) = -1; static DEFINE_PER_CPU(int, callfunc_irq) = -1; static DEFINE_PER_CPU(int, debug_irq) = -1; /* * Structure and data for smp_call_function(). This is designed to minimise * static memory requirements. It also looks cleaner. */ static DEFINE_SPINLOCK(call_lock); struct call_data_struct { void (*func) (void *info); void *info; atomic_t started; atomic_t finished; int wait; }; static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); static struct call_data_struct *call_data; /* * Reschedule call back. Nothing to do, * all the work is done automatically when * we return from the interrupt. */ static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) { return IRQ_HANDLED; } static __cpuinit void cpu_bringup_and_idle(void) { int cpu = smp_processor_id(); cpu_init(); xen_enable_sysenter(); preempt_disable(); per_cpu(cpu_state, cpu) = CPU_ONLINE; xen_setup_cpu_clockevents(); /* We can take interrupts now: we're officially "up". */ local_irq_enable(); wmb(); /* make sure everything is out */ cpu_idle(); } static int xen_smp_intr_init(unsigned int cpu) { int rc; const char *resched_name, *callfunc_name, *debug_name; resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu); rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, cpu, xen_reschedule_interrupt, IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, resched_name, NULL); if (rc < 0) goto fail; per_cpu(resched_irq, cpu) = rc; callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, cpu, xen_call_function_interrupt, IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, callfunc_name, NULL); if (rc < 0) goto fail; per_cpu(callfunc_irq, cpu) = rc; debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING, debug_name, NULL); if (rc < 0) goto fail; per_cpu(debug_irq, cpu) = rc; return 0; fail: if (per_cpu(resched_irq, cpu) >= 0) unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL); if (per_cpu(callfunc_irq, cpu) >= 0) unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL); if (per_cpu(debug_irq, cpu) >= 0) unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL); return rc; } void __init xen_fill_possible_map(void) { int i, rc; for (i = 0; i < NR_CPUS; i++) { rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); if (rc >= 0) cpu_set(i, cpu_possible_map); } } void __init xen_smp_prepare_boot_cpu(void) { int cpu; BUG_ON(smp_processor_id() != 0); native_smp_prepare_boot_cpu(); /* We've switched to the "real" per-cpu gdt, so make sure the old memory can be recycled */ make_lowmem_page_readwrite(&per_cpu__gdt_page); for_each_possible_cpu(cpu) { cpus_clear(per_cpu(cpu_sibling_map, cpu)); /* * cpu_core_map lives in a per cpu area that is cleared * when the per cpu array is allocated. * * cpus_clear(per_cpu(cpu_core_map, cpu)); */ } xen_setup_vcpu_info_placement(); } void __init xen_smp_prepare_cpus(unsigned int max_cpus) { unsigned cpu; for_each_possible_cpu(cpu) { cpus_clear(per_cpu(cpu_sibling_map, cpu)); /* * cpu_core_ map will be zeroed when the per * cpu area is allocated. * * cpus_clear(per_cpu(cpu_core_map, cpu)); */ } smp_store_cpu_info(0); set_cpu_sibling_map(0); if (xen_smp_intr_init(0)) BUG(); xen_cpu_initialized_map = cpumask_of_cpu(0); /* Restrict the possible_map according to max_cpus. */ while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { for (cpu = NR_CPUS - 1; !cpu_possible(cpu); cpu--) continue; cpu_clear(cpu, cpu_possible_map); } for_each_possible_cpu (cpu) { struct task_struct *idle; if (cpu == 0) continue; idle = fork_idle(cpu); if (IS_ERR(idle)) panic("failed fork for CPU %d", cpu); cpu_set(cpu, cpu_present_map); } //init_xenbus_allowed_cpumask(); } static __cpuinit int cpu_initialize_context(unsigned int cpu, struct task_struct *idle) { struct vcpu_guest_context *ctxt; struct gdt_page *gdt = &per_cpu(gdt_page, cpu); if (cpu_test_and_set(cpu, xen_cpu_initialized_map)) return 0; ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (ctxt == NULL) return -ENOMEM; ctxt->flags = VGCF_IN_KERNEL; ctxt->user_regs.ds = __USER_DS; ctxt->user_regs.es = __USER_DS; ctxt->user_regs.fs = __KERNEL_PERCPU; ctxt->user_regs.gs = 0; ctxt->user_regs.ss = __KERNEL_DS; ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); xen_copy_trap_info(ctxt->trap_ctxt); ctxt->ldt_ents = 0; BUG_ON((unsigned long)gdt->gdt & ~PAGE_MASK); make_lowmem_page_readonly(gdt->gdt); ctxt->gdt_frames[0] = virt_to_mfn(gdt->gdt); ctxt->gdt_ents = ARRAY_SIZE(gdt->gdt); ctxt->user_regs.cs = __KERNEL_CS; ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs); ctxt->kernel_ss = __KERNEL_DS; ctxt->kernel_sp = idle->thread.sp0; ctxt->event_callback_cs = __KERNEL_CS; ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback; ctxt->failsafe_callback_cs = __KERNEL_CS; ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback; per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir)); if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt)) BUG(); kfree(ctxt); return 0; } int __cpuinit xen_cpu_up(unsigned int cpu) { struct task_struct *idle = idle_task(cpu); int rc; #if 0 rc = cpu_up_check(cpu); if (rc) return rc; #endif init_gdt(cpu); per_cpu(current_task, cpu) = idle; irq_ctx_init(cpu); xen_setup_timer(cpu); /* make sure interrupts start blocked */ per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; rc = cpu_initialize_context(cpu, idle); if (rc) return rc; if (num_online_cpus() == 1) alternatives_smp_switch(1); rc = xen_smp_intr_init(cpu); if (rc) return rc; smp_store_cpu_info(cpu); set_cpu_sibling_map(cpu); /* This must be done before setting cpu_online_map */ wmb(); cpu_set(cpu, cpu_online_map); rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL); BUG_ON(rc); return 0; } void xen_smp_cpus_done(unsigned int max_cpus) { } static void stop_self(void *v) { int cpu = smp_processor_id(); /* make sure we're not pinning something down */ load_cr3(swapper_pg_dir); /* should set up a minimal gdt */ HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL); BUG(); } void xen_smp_send_stop(void) { smp_call_function(stop_self, NULL, 0, 0); } void xen_smp_send_reschedule(int cpu) { xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR); } static void xen_send_IPI_mask(cpumask_t mask, enum ipi_vector vector) { unsigned cpu; cpus_and(mask, mask, cpu_online_map); for_each_cpu_mask_nr(cpu, mask) xen_send_IPI_one(cpu, vector); } static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) { void (*func) (void *info) = call_data->func; void *info = call_data->info; int wait = call_data->wait; /* * Notify initiating CPU that I've grabbed the data and am * about to execute the function */ mb(); atomic_inc(&call_data->started); /* * At this point the info structure may be out of scope unless wait==1 */ irq_enter(); (*func)(info); __get_cpu_var(irq_stat).irq_call_count++; irq_exit(); if (wait) { mb(); /* commit everything before setting finished */ atomic_inc(&call_data->finished); } return IRQ_HANDLED; } int xen_smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info, int wait) { struct call_data_struct data; int cpus, cpu; bool yield; /* Holding any lock stops cpus from going down. */ spin_lock(&call_lock); cpu_clear(smp_processor_id(), mask); cpus = cpus_weight(mask); if (!cpus) { spin_unlock(&call_lock); return 0; } /* Can deadlock when called with interrupts disabled */ WARN_ON(irqs_disabled()); data.func = func; data.info = info; atomic_set(&data.started, 0); data.wait = wait; if (wait) atomic_set(&data.finished, 0); call_data = &data; mb(); /* write everything before IPI */ /* Send a message to other CPUs and wait for them to respond */ xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR); /* Make sure other vcpus get a chance to run if they need to. */ yield = false; for_each_cpu_mask_nr(cpu, mask) if (xen_vcpu_stolen(cpu)) yield = true; if (yield) HYPERVISOR_sched_op(SCHEDOP_yield, 0); /* Wait for response */ while (atomic_read(&data.started) != cpus || (wait && atomic_read(&data.finished) != cpus)) cpu_relax(); spin_unlock(&call_lock); return 0; }