/* * core routines for the asynchronous memory transfer/transform api * * Copyright © 2006, Intel Corporation. * * Dan Williams * * with architecture considerations by: * Neil Brown * Jeff Garzik * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ #include #include #include #ifdef CONFIG_DMA_ENGINE static int __init async_tx_init(void) { dmaengine_get(); printk(KERN_INFO "async_tx: api initialized (async)\n"); return 0; } static void __exit async_tx_exit(void) { dmaengine_put(); } /** * __async_tx_find_channel - find a channel to carry out the operation or let * the transaction execute synchronously * @depend_tx: transaction dependency * @tx_type: transaction type */ struct dma_chan * __async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx, enum dma_transaction_type tx_type) { /* see if we can keep the chain on one channel */ if (depend_tx && dma_has_cap(tx_type, depend_tx->chan->device->cap_mask)) return depend_tx->chan; return dma_find_channel(tx_type); } EXPORT_SYMBOL_GPL(__async_tx_find_channel); #else static int __init async_tx_init(void) { printk(KERN_INFO "async_tx: api initialized (sync-only)\n"); return 0; } static void __exit async_tx_exit(void) { do { } while (0); } #endif /** * async_tx_channel_switch - queue an interrupt descriptor with a dependency * pre-attached. * @depend_tx: the operation that must finish before the new operation runs * @tx: the new operation */ static void async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx, struct dma_async_tx_descriptor *tx) { struct dma_chan *chan; struct dma_device *device; struct dma_async_tx_descriptor *intr_tx = (void *) ~0; /* first check to see if we can still append to depend_tx */ spin_lock_bh(&depend_tx->lock); if (depend_tx->parent && depend_tx->chan == tx->chan) { tx->parent = depend_tx; depend_tx->next = tx; intr_tx = NULL; } spin_unlock_bh(&depend_tx->lock); if (!intr_tx) return; chan = depend_tx->chan; device = chan->device; /* see if we can schedule an interrupt * otherwise poll for completion */ if (dma_has_cap(DMA_INTERRUPT, device->cap_mask)) intr_tx = device->device_prep_dma_interrupt(chan, 0); else intr_tx = NULL; if (intr_tx) { intr_tx->callback = NULL; intr_tx->callback_param = NULL; tx->parent = intr_tx; /* safe to set ->next outside the lock since we know we are * not submitted yet */ intr_tx->next = tx; /* check if we need to append */ spin_lock_bh(&depend_tx->lock); if (depend_tx->parent) { intr_tx->parent = depend_tx; depend_tx->next = intr_tx; async_tx_ack(intr_tx); intr_tx = NULL; } spin_unlock_bh(&depend_tx->lock); if (intr_tx) { intr_tx->parent = NULL; intr_tx->tx_submit(intr_tx); async_tx_ack(intr_tx); } } else { if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR) panic("%s: DMA_ERROR waiting for depend_tx\n", __func__); tx->tx_submit(tx); } } /** * submit_disposition - while holding depend_tx->lock we must avoid submitting * new operations to prevent a circular locking dependency with * drivers that already hold a channel lock when calling * async_tx_run_dependencies. * @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock * @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch * @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly */ enum submit_disposition { ASYNC_TX_SUBMITTED, ASYNC_TX_CHANNEL_SWITCH, ASYNC_TX_DIRECT_SUBMIT, }; void async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx, enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx, dma_async_tx_callback cb_fn, void *cb_param) { tx->callback = cb_fn; tx->callback_param = cb_param; if (depend_tx) { enum submit_disposition s; /* sanity check the dependency chain: * 1/ if ack is already set then we cannot be sure * we are referring to the correct operation * 2/ dependencies are 1:1 i.e. two transactions can * not depend on the same parent */ BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next || tx->parent); /* the lock prevents async_tx_run_dependencies from missing * the setting of ->next when ->parent != NULL */ spin_lock_bh(&depend_tx->lock); if (depend_tx->parent) { /* we have a parent so we can not submit directly * if we are staying on the same channel: append * else: channel switch */ if (depend_tx->chan == chan) { tx->parent = depend_tx; depend_tx->next = tx; s = ASYNC_TX_SUBMITTED; } else s = ASYNC_TX_CHANNEL_SWITCH; } else { /* we do not have a parent so we may be able to submit * directly if we are staying on the same channel */ if (depend_tx->chan == chan) s = ASYNC_TX_DIRECT_SUBMIT; else s = ASYNC_TX_CHANNEL_SWITCH; } spin_unlock_bh(&depend_tx->lock); switch (s) { case ASYNC_TX_SUBMITTED: break; case ASYNC_TX_CHANNEL_SWITCH: async_tx_channel_switch(depend_tx, tx); break; case ASYNC_TX_DIRECT_SUBMIT: tx->parent = NULL; tx->tx_submit(tx); break; } } else { tx->parent = NULL; tx->tx_submit(tx); } if (flags & ASYNC_TX_ACK) async_tx_ack(tx); if (depend_tx && (flags & ASYNC_TX_DEP_ACK)) async_tx_ack(depend_tx); } EXPORT_SYMBOL_GPL(async_tx_submit); /** * async_trigger_callback - schedules the callback function to be run after * any dependent operations have been completed. * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK * @depend_tx: 'callback' requires the completion of this transaction * @cb_fn: function to call after depend_tx completes * @cb_param: parameter to pass to the callback routine */ struct dma_async_tx_descriptor * async_trigger_callback(enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx, dma_async_tx_callback cb_fn, void *cb_param) { struct dma_chan *chan; struct dma_device *device; struct dma_async_tx_descriptor *tx; if (depend_tx) { chan = depend_tx->chan; device = chan->device; /* see if we can schedule an interrupt * otherwise poll for completion */ if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask)) device = NULL; tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL; } else tx = NULL; if (tx) { pr_debug("%s: (async)\n", __func__); async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param); } else { pr_debug("%s: (sync)\n", __func__); /* wait for any prerequisite operations */ async_tx_quiesce(&depend_tx); async_tx_sync_epilog(cb_fn, cb_param); } return tx; } EXPORT_SYMBOL_GPL(async_trigger_callback); /** * async_tx_quiesce - ensure tx is complete and freeable upon return * @tx - transaction to quiesce */ void async_tx_quiesce(struct dma_async_tx_descriptor **tx) { if (*tx) { /* if ack is already set then we cannot be sure * we are referring to the correct operation */ BUG_ON(async_tx_test_ack(*tx)); if (dma_wait_for_async_tx(*tx) == DMA_ERROR) panic("DMA_ERROR waiting for transaction\n"); async_tx_ack(*tx); *tx = NULL; } } EXPORT_SYMBOL_GPL(async_tx_quiesce); module_init(async_tx_init); module_exit(async_tx_exit); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API"); MODULE_LICENSE("GPL");