/* * asus_acpi.c - Asus Laptop ACPI Extras * * * Copyright (C) 2002, 2003, 2004 Julien Lerouge, Karol Kozimor * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * The development page for this driver is located at * http://sourceforge.net/projects/acpi4asus/ * * Credits: * Pontus Fuchs - Helper functions, cleanup * Johann Wiesner - Small compile fixes * John Belmonte - ACPI code for Toshiba laptop was a good starting point. * * TODO: * add Fn key status * Add mode selection on module loading (parameter) -> still necessary? * Complete display switching -- may require dirty hacks or calling _DOS? */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/proc_fs.h> #include <acpi/acpi_drivers.h> #include <acpi/acpi_bus.h> #include <asm/uaccess.h> #define ASUS_ACPI_VERSION "0.29" #define PROC_ASUS "asus" //the directory #define PROC_MLED "mled" #define PROC_WLED "wled" #define PROC_TLED "tled" #define PROC_INFO "info" #define PROC_LCD "lcd" #define PROC_BRN "brn" #define PROC_DISP "disp" #define ACPI_HOTK_NAME "Asus Laptop ACPI Extras Driver" #define ACPI_HOTK_CLASS "hotkey" #define ACPI_HOTK_DEVICE_NAME "Hotkey" #define ACPI_HOTK_HID "ATK0100" /* * Some events we use, same for all Asus */ #define BR_UP 0x10 #define BR_DOWN 0x20 /* * Flags for hotk status */ #define MLED_ON 0x01 //is MLED ON ? #define WLED_ON 0x02 #define TLED_ON 0x04 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor"); MODULE_DESCRIPTION(ACPI_HOTK_NAME); MODULE_LICENSE("GPL"); static uid_t asus_uid; static gid_t asus_gid; module_param(asus_uid, uint, 0); MODULE_PARM_DESC(uid, "UID for entries in /proc/acpi/asus.\n"); module_param(asus_gid, uint, 0); MODULE_PARM_DESC(gid, "GID for entries in /proc/acpi/asus.\n"); /* For each model, all features implemented, * those marked with R are relative to HOTK, A for absolute */ struct model_data { char *name; //name of the laptop________________A char *mt_mled; //method to handle mled_____________R char *mled_status; //node to handle mled reading_______A char *mt_wled; //method to handle wled_____________R char *wled_status; //node to handle wled reading_______A char *mt_tled; //method to handle tled_____________R char *tled_status; //node to handle tled reading_______A char *mt_lcd_switch; //method to turn LCD ON/OFF_________A char *lcd_status; //node to read LCD panel state______A char *brightness_up; //method to set brightness up_______A char *brightness_down; //guess what ?______________________A char *brightness_set; //method to set absolute brightness_R char *brightness_get; //method to get absolute brightness_R char *brightness_status; //node to get brightness____________A char *display_set; //method to set video output________R char *display_get; //method to get video output________R }; /* * This is the main structure, we can use it to store anything interesting * about the hotk device */ struct asus_hotk { struct acpi_device *device; //the device we are in acpi_handle handle; //the handle of the hotk device char status; //status of the hotk, for LEDs, ... struct model_data *methods; //methods available on the laptop u8 brightness; //brightness level enum { A1x = 0, //A1340D, A1300F A2x, //A2500H D1x, //D1 L2D, //L2000D L3C, //L3800C L3D, //L3400D L3H, //L3H, but also L2000E L4R, //L4500R L5x, //L5800C L8L, //L8400L M1A, //M1300A M2E, //M2400E, L4400L M6N, //M6800N M6R, //M6700R P30, //Samsung P30 S1x, //S1300A, but also L1400B and M2400A (L84F) S2x, //S200 (J1 reported), Victor MP-XP7210 xxN, //M2400N, M3700N, M5200N, S1300N, S5200N, W1OOON //(Centrino) END_MODEL } model; //Models currently supported u16 event_count[128]; //count for each event TODO make this better }; /* Here we go */ #define A1x_PREFIX "\\_SB.PCI0.ISA.EC0." #define L3C_PREFIX "\\_SB.PCI0.PX40.ECD0." #define M1A_PREFIX "\\_SB.PCI0.PX40.EC0." #define P30_PREFIX "\\_SB.PCI0.LPCB.EC0." #define S1x_PREFIX "\\_SB.PCI0.PX40." #define S2x_PREFIX A1x_PREFIX #define xxN_PREFIX "\\_SB.PCI0.SBRG.EC0." static struct model_data model_conf[END_MODEL] = { /* * Those pathnames are relative to the HOTK / ATKD device : * - mt_mled * - mt_wled * - brightness_set * - brightness_get * - display_set * - display_get * * TODO I have seen a SWBX and AIBX method on some models, like L1400B, * it seems to be a kind of switch, but what for ? * */ { .name = "A1x", .mt_mled = "MLED", .mled_status = "\\MAIL", .mt_lcd_switch = A1x_PREFIX "_Q10", .lcd_status = "\\BKLI", .brightness_up = A1x_PREFIX "_Q0E", .brightness_down = A1x_PREFIX "_Q0F"}, { .name = "A2x", .mt_mled = "MLED", .mt_wled = "WLED", .wled_status = "\\SG66", .mt_lcd_switch = "\\Q10", .lcd_status = "\\BAOF", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "D1x", .mt_mled = "MLED", .mt_lcd_switch = "\\Q0D", .lcd_status = "\\GP11", .brightness_up = "\\Q0C", .brightness_down = "\\Q0B", .brightness_status = "\\BLVL", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L2D", .mt_mled = "MLED", .mled_status = "\\SGP6", .mt_wled = "WLED", .wled_status = "\\RCP3", .mt_lcd_switch = "\\Q10", .lcd_status = "\\SGP0", .brightness_up = "\\Q0E", .brightness_down = "\\Q0F", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L3C", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = L3C_PREFIX "_Q10", .lcd_status = "\\GL32", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\_SB.PCI0.PCI1.VGAC.NMAP"}, { .name = "L3D", .mt_mled = "MLED", .mled_status = "\\MALD", .mt_wled = "WLED", .mt_lcd_switch = "\\Q10", .lcd_status = "\\BKLG", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L3H", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = "EHK", .lcd_status = "\\_SB.PCI0.PM.PBC", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L4R", .mt_mled = "MLED", .mt_wled = "WLED", .wled_status = "\\_SB.PCI0.SBRG.SG13", .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\_SB.PCI0.SBSM.SEO4", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\_SB.PCI0.P0P1.VGA.GETD"}, { .name = "L5x", .mt_mled = "MLED", /* WLED present, but not controlled by ACPI */ .mt_tled = "TLED", .mt_lcd_switch = "\\Q0D", .lcd_status = "\\BAOF", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L8L" /* No features, but at least support the hotkeys */ }, { .name = "M1A", .mt_mled = "MLED", .mt_lcd_switch = M1A_PREFIX "Q10", .lcd_status = "\\PNOF", .brightness_up = M1A_PREFIX "Q0E", .brightness_down = M1A_PREFIX "Q0F", .brightness_status = "\\BRIT", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "M2E", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = "\\Q10", .lcd_status = "\\GP06", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "M6N", .mt_mled = "MLED", .mt_wled = "WLED", .wled_status = "\\_SB.PCI0.SBRG.SG13", .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\_SB.BKLT", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\SSTE"}, { .name = "M6R", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\_SB.PCI0.SBSM.SEO4", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\SSTE"}, { .name = "P30", .mt_wled = "WLED", .mt_lcd_switch = P30_PREFIX "_Q0E", .lcd_status = "\\BKLT", .brightness_up = P30_PREFIX "_Q68", .brightness_down = P30_PREFIX "_Q69", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\DNXT"}, { .name = "S1x", .mt_mled = "MLED", .mled_status = "\\EMLE", .mt_wled = "WLED", .mt_lcd_switch = S1x_PREFIX "Q10", .lcd_status = "\\PNOF", .brightness_set = "SPLV", .brightness_get = "GPLV"}, { .name = "S2x", .mt_mled = "MLED", .mled_status = "\\MAIL", .mt_lcd_switch = S2x_PREFIX "_Q10", .lcd_status = "\\BKLI", .brightness_up = S2x_PREFIX "_Q0B", .brightness_down = S2x_PREFIX "_Q0A"}, { .name = "xxN", .mt_mled = "MLED", /* WLED present, but not controlled by ACPI */ .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\BKLT", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\ADVG"} }; /* procdir we use */ static struct proc_dir_entry *asus_proc_dir; /* * This header is made available to allow proper configuration given model, * revision number , ... this info cannot go in struct asus_hotk because it is * available before the hotk */ static struct acpi_table_header *asus_info; /* The actual device the driver binds to */ static struct asus_hotk *hotk; /* * The hotkey driver declaration */ static int asus_hotk_add(struct acpi_device *device); static int asus_hotk_remove(struct acpi_device *device, int type); static struct acpi_driver asus_hotk_driver = { .name = ACPI_HOTK_NAME, .class = ACPI_HOTK_CLASS, .ids = ACPI_HOTK_HID, .ops = { .add = asus_hotk_add, .remove = asus_hotk_remove, }, }; /* * This function evaluates an ACPI method, given an int as parameter, the * method is searched within the scope of the handle, can be NULL. The output * of the method is written is output, which can also be NULL * * returns 1 if write is successful, 0 else. */ static int write_acpi_int(acpi_handle handle, const char *method, int val, struct acpi_buffer *output) { struct acpi_object_list params; //list of input parameters (an int here) union acpi_object in_obj; //the only param we use acpi_status status; params.count = 1; params.pointer = &in_obj; in_obj.type = ACPI_TYPE_INTEGER; in_obj.integer.value = val; status = acpi_evaluate_object(handle, (char *)method, ¶ms, output); return (status == AE_OK); } static int read_acpi_int(acpi_handle handle, const char *method, int *val) { struct acpi_buffer output; union acpi_object out_obj; acpi_status status; output.length = sizeof(out_obj); output.pointer = &out_obj; status = acpi_evaluate_object(handle, (char *)method, NULL, &output); *val = out_obj.integer.value; return (status == AE_OK) && (out_obj.type == ACPI_TYPE_INTEGER); } /* * We write our info in page, we begin at offset off and cannot write more * than count bytes. We set eof to 1 if we handle those 2 values. We return the * number of bytes written in page */ static int proc_read_info(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = 0; int temp; char buf[16]; //enough for all info /* * We use the easy way, we don't care of off and count, so we don't set eof * to 1 */ len += sprintf(page, ACPI_HOTK_NAME " " ASUS_ACPI_VERSION "\n"); len += sprintf(page + len, "Model reference : %s\n", hotk->methods->name); /* * The SFUN method probably allows the original driver to get the list * of features supported by a given model. For now, 0x0100 or 0x0800 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. * The significance of others is yet to be found. */ if (read_acpi_int(hotk->handle, "SFUN", &temp)) len += sprintf(page + len, "SFUN value : 0x%04x\n", temp); /* * Another value for userspace: the ASYM method returns 0x02 for * battery low and 0x04 for battery critical, its readings tend to be * more accurate than those provided by _BST. * Note: since not all the laptops provide this method, errors are * silently ignored. */ if (read_acpi_int(hotk->handle, "ASYM", &temp)) len += sprintf(page + len, "ASYM value : 0x%04x\n", temp); if (asus_info) { snprintf(buf, 16, "%d", asus_info->length); len += sprintf(page + len, "DSDT length : %s\n", buf); snprintf(buf, 16, "%d", asus_info->checksum); len += sprintf(page + len, "DSDT checksum : %s\n", buf); snprintf(buf, 16, "%d", asus_info->revision); len += sprintf(page + len, "DSDT revision : %s\n", buf); snprintf(buf, 7, "%s", asus_info->oem_id); len += sprintf(page + len, "OEM id : %s\n", buf); snprintf(buf, 9, "%s", asus_info->oem_table_id); len += sprintf(page + len, "OEM table id : %s\n", buf); snprintf(buf, 16, "%x", asus_info->oem_revision); len += sprintf(page + len, "OEM revision : 0x%s\n", buf); snprintf(buf, 5, "%s", asus_info->asl_compiler_id); len += sprintf(page + len, "ASL comp vendor id : %s\n", buf); snprintf(buf, 16, "%x", asus_info->asl_compiler_revision); len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf); } return len; } /* * /proc handlers * We write our info in page, we begin at offset off and cannot write more * than count bytes. We set eof to 1 if we handle those 2 values. We return the * number of bytes written in page */ /* Generic LED functions */ static int read_led(const char *ledname, int ledmask) { if (ledname) { int led_status; if (read_acpi_int(NULL, ledname, &led_status)) return led_status; else printk(KERN_WARNING "Asus ACPI: Error reading LED " "status\n"); } return (hotk->status & ledmask) ? 1 : 0; } static int parse_arg(const char __user * buf, unsigned long count, int *val) { char s[32]; if (!count) return 0; if (count > 31) return -EINVAL; if (copy_from_user(s, buf, count)) return -EFAULT; s[count] = 0; if (sscanf(s, "%i", val) != 1) return -EINVAL; return count; } /* FIXME: kill extraneous args so it can be called independently */ static int write_led(const char __user * buffer, unsigned long count, char *ledname, int ledmask, int invert) { int value; int led_out = 0; count = parse_arg(buffer, count, &value); if (count > 0) led_out = value ? 1 : 0; hotk->status = (led_out) ? (hotk->status | ledmask) : (hotk->status & ~ledmask); if (invert) /* invert target value */ led_out = !led_out & 0x1; if (!write_acpi_int(hotk->handle, ledname, led_out, NULL)) printk(KERN_WARNING "Asus ACPI: LED (%s) write failed\n", ledname); return count; } /* * Proc handlers for MLED */ static int proc_read_mled(char *page, char **start, off_t off, int count, int *eof, void *data) { return sprintf(page, "%d\n", read_led(hotk->methods->mled_status, MLED_ON)); } static int proc_write_mled(struct file *file, const char __user * buffer, unsigned long count, void *data) { return write_led(buffer, count, hotk->methods->mt_mled, MLED_ON, 1); } /* * Proc handlers for WLED */ static int proc_read_wled(char *page, char **start, off_t off, int count, int *eof, void *data) { return sprintf(page, "%d\n", read_led(hotk->methods->wled_status, WLED_ON)); } static int proc_write_wled(struct file *file, const char __user * buffer, unsigned long count, void *data) { return write_led(buffer, count, hotk->methods->mt_wled, WLED_ON, 0); } /* * Proc handlers for TLED */ static int proc_read_tled(char *page, char **start, off_t off, int count, int *eof, void *data) { return sprintf(page, "%d\n", read_led(hotk->methods->tled_status, TLED_ON)); } static int proc_write_tled(struct file *file, const char __user * buffer, unsigned long count, void *data) { return write_led(buffer, count, hotk->methods->mt_tled, TLED_ON, 0); } static int get_lcd_state(void) { int lcd = 0; if (hotk->model != L3H) { /* We don't have to check anything if we are here */ if (!read_acpi_int(NULL, hotk->methods->lcd_status, &lcd)) printk(KERN_WARNING "Asus ACPI: Error reading LCD status\n"); if (hotk->model == L2D) lcd = ~lcd; } else { /* L3H and the like have to be handled differently */ acpi_status status = 0; struct acpi_object_list input; union acpi_object mt_params[2]; struct acpi_buffer output; union acpi_object out_obj; input.count = 2; input.pointer = mt_params; /* Note: the following values are partly guessed up, but otherwise they seem to work */ mt_params[0].type = ACPI_TYPE_INTEGER; mt_params[0].integer.value = 0x02; mt_params[1].type = ACPI_TYPE_INTEGER; mt_params[1].integer.value = 0x02; output.length = sizeof(out_obj); output.pointer = &out_obj; status = acpi_evaluate_object(NULL, hotk->methods->lcd_status, &input, &output); if (status != AE_OK) return -1; if (out_obj.type == ACPI_TYPE_INTEGER) /* That's what the AML code does */ lcd = out_obj.integer.value >> 8; } return (lcd & 1); } static int set_lcd_state(int value) { int lcd = 0; acpi_status status = 0; lcd = value ? 1 : 0; if (lcd != get_lcd_state()) { /* switch */ if (hotk->model != L3H) { status = acpi_evaluate_object(NULL, hotk->methods->mt_lcd_switch, NULL, NULL); } else { /* L3H and the like have to be handled differently */ if (!write_acpi_int (hotk->handle, hotk->methods->mt_lcd_switch, 0x07, NULL)) status = AE_ERROR; /* L3H's AML executes EHK (0x07) upon Fn+F7 keypress, the exact behaviour is simulated here */ } if (ACPI_FAILURE(status)) printk(KERN_WARNING "Asus ACPI: Error switching LCD\n"); } return 0; } static int proc_read_lcd(char *page, char **start, off_t off, int count, int *eof, void *data) { return sprintf(page, "%d\n", get_lcd_state()); } static int proc_write_lcd(struct file *file, const char __user * buffer, unsigned long count, void *data) { int value; count = parse_arg(buffer, count, &value); if (count > 0) set_lcd_state(value); return count; } static int read_brightness(void) { int value; if (hotk->methods->brightness_get) { /* SPLV/GPLV laptop */ if (!read_acpi_int(hotk->handle, hotk->methods->brightness_get, &value)) printk(KERN_WARNING "Asus ACPI: Error reading brightness\n"); } else if (hotk->methods->brightness_status) { /* For D1 for example */ if (!read_acpi_int(NULL, hotk->methods->brightness_status, &value)) printk(KERN_WARNING "Asus ACPI: Error reading brightness\n"); } else /* No GPLV method */ value = hotk->brightness; return value; } /* * Change the brightness level */ static void set_brightness(int value) { acpi_status status = 0; /* SPLV laptop */ if (hotk->methods->brightness_set) { if (!write_acpi_int(hotk->handle, hotk->methods->brightness_set, value, NULL)) printk(KERN_WARNING "Asus ACPI: Error changing brightness\n"); return; } /* No SPLV method if we are here, act as appropriate */ value -= read_brightness(); while (value != 0) { status = acpi_evaluate_object(NULL, (value > 0) ? hotk->methods->brightness_up : hotk->methods->brightness_down, NULL, NULL); (value > 0) ? value-- : value++; if (ACPI_FAILURE(status)) printk(KERN_WARNING "Asus ACPI: Error changing brightness\n"); } return; } static int proc_read_brn(char *page, char **start, off_t off, int count, int *eof, void *data) { return sprintf(page, "%d\n", read_brightness()); } static int proc_write_brn(struct file *file, const char __user * buffer, unsigned long count, void *data) { int value; count = parse_arg(buffer, count, &value); if (count > 0) { value = (0 < value) ? ((15 < value) ? 15 : value) : 0; /* 0 <= value <= 15 */ set_brightness(value); } else if (count < 0) { printk(KERN_WARNING "Asus ACPI: Error reading user input\n"); } return count; } static void set_display(int value) { /* no sanity check needed for now */ if (!write_acpi_int(hotk->handle, hotk->methods->display_set, value, NULL)) printk(KERN_WARNING "Asus ACPI: Error setting display\n"); return; } /* * Now, *this* one could be more user-friendly, but so far, no-one has * complained. The significance of bits is the same as in proc_write_disp() */ static int proc_read_disp(char *page, char **start, off_t off, int count, int *eof, void *data) { int value = 0; if (!read_acpi_int(hotk->handle, hotk->methods->display_get, &value)) printk(KERN_WARNING "Asus ACPI: Error reading display status\n"); value &= 0x07; /* needed for some models, shouldn't hurt others */ return sprintf(page, "%d\n", value); } /* * Experimental support for display switching. As of now: 1 should activate * the LCD output, 2 should do for CRT, and 4 for TV-Out. Any combination * (bitwise) of these will suffice. I never actually tested 3 displays hooked up * simultaneously, so be warned. See the acpi4asus README for more info. */ static int proc_write_disp(struct file *file, const char __user * buffer, unsigned long count, void *data) { int value; count = parse_arg(buffer, count, &value); if (count > 0) set_display(value); else if (count < 0) printk(KERN_WARNING "Asus ACPI: Error reading user input\n"); return count; } typedef int (proc_readfunc) (char *page, char **start, off_t off, int count, int *eof, void *data); typedef int (proc_writefunc) (struct file * file, const char __user * buffer, unsigned long count, void *data); static int __init asus_proc_add(char *name, proc_writefunc * writefunc, proc_readfunc * readfunc, mode_t mode, struct acpi_device *device) { struct proc_dir_entry *proc = create_proc_entry(name, mode, acpi_device_dir(device)); if (!proc) { printk(KERN_WARNING " Unable to create %s fs entry\n", name); return -1; } proc->write_proc = writefunc; proc->read_proc = readfunc; proc->data = acpi_driver_data(device); proc->owner = THIS_MODULE; proc->uid = asus_uid; proc->gid = asus_gid; return 0; } static int __init asus_hotk_add_fs(struct acpi_device *device) { struct proc_dir_entry *proc; mode_t mode; /* * If parameter uid or gid is not changed, keep the default setting for * our proc entries (-rw-rw-rw-) else, it means we care about security, * and then set to -rw-rw---- */ if ((asus_uid == 0) && (asus_gid == 0)) { mode = S_IFREG | S_IRUGO | S_IWUGO; } else { mode = S_IFREG | S_IRUSR | S_IRGRP | S_IWUSR | S_IWGRP; } acpi_device_dir(device) = asus_proc_dir; if (!acpi_device_dir(device)) return -ENODEV; proc = create_proc_entry(PROC_INFO, mode, acpi_device_dir(device)); if (proc) { proc->read_proc = proc_read_info; proc->data = acpi_driver_data(device); proc->owner = THIS_MODULE; proc->uid = asus_uid; proc->gid = asus_gid; } else { printk(KERN_WARNING " Unable to create " PROC_INFO " fs entry\n"); } if (hotk->methods->mt_wled) { asus_proc_add(PROC_WLED, &proc_write_wled, &proc_read_wled, mode, device); } if (hotk->methods->mt_mled) { asus_proc_add(PROC_MLED, &proc_write_mled, &proc_read_mled, mode, device); } if (hotk->methods->mt_tled) { asus_proc_add(PROC_TLED, &proc_write_tled, &proc_read_tled, mode, device); } /* * We need both read node and write method as LCD switch is also accessible * from keyboard */ if (hotk->methods->mt_lcd_switch && hotk->methods->lcd_status) { asus_proc_add(PROC_LCD, &proc_write_lcd, &proc_read_lcd, mode, device); } if ((hotk->methods->brightness_up && hotk->methods->brightness_down) || (hotk->methods->brightness_get && hotk->methods->brightness_set)) { asus_proc_add(PROC_BRN, &proc_write_brn, &proc_read_brn, mode, device); } if (hotk->methods->display_set) { asus_proc_add(PROC_DISP, &proc_write_disp, &proc_read_disp, mode, device); } return 0; } static int asus_hotk_remove_fs(struct acpi_device *device) { if (acpi_device_dir(device)) { remove_proc_entry(PROC_INFO, acpi_device_dir(device)); if (hotk->methods->mt_wled) remove_proc_entry(PROC_WLED, acpi_device_dir(device)); if (hotk->methods->mt_mled) remove_proc_entry(PROC_MLED, acpi_device_dir(device)); if (hotk->methods->mt_tled) remove_proc_entry(PROC_TLED, acpi_device_dir(device)); if (hotk->methods->mt_lcd_switch && hotk->methods->lcd_status) remove_proc_entry(PROC_LCD, acpi_device_dir(device)); if ((hotk->methods->brightness_up && hotk->methods->brightness_down) || (hotk->methods->brightness_get && hotk->methods->brightness_set)) remove_proc_entry(PROC_BRN, acpi_device_dir(device)); if (hotk->methods->display_set) remove_proc_entry(PROC_DISP, acpi_device_dir(device)); } return 0; } static void asus_hotk_notify(acpi_handle handle, u32 event, void *data) { /* TODO Find a better way to handle events count. */ if (!hotk) return; if ((event & ~((u32) BR_UP)) < 16) { hotk->brightness = (event & ~((u32) BR_UP)); } else if ((event & ~((u32) BR_DOWN)) < 16) { hotk->brightness = (event & ~((u32) BR_DOWN)); } acpi_bus_generate_event(hotk->device, event, hotk->event_count[event % 128]++); return; } /* * This function is used to initialize the hotk with right values. In this * method, we can make all the detection we want, and modify the hotk struct */ static int __init asus_hotk_get_info(void) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_buffer dsdt = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *model = NULL; int bsts_result; acpi_status status; /* * Get DSDT headers early enough to allow for differentiating between * models, but late enough to allow acpi_bus_register_driver() to fail * before doing anything ACPI-specific. Should we encounter a machine, * which needs special handling (i.e. its hotkey device has a different * HID), this bit will be moved. A global variable asus_info contains * the DSDT header. */ status = acpi_get_table(ACPI_TABLE_DSDT, 1, &dsdt); if (ACPI_FAILURE(status)) printk(KERN_WARNING " Couldn't get the DSDT table header\n"); else asus_info = (struct acpi_table_header *)dsdt.pointer; /* We have to write 0 on init this far for all ASUS models */ if (!write_acpi_int(hotk->handle, "INIT", 0, &buffer)) { printk(KERN_ERR " Hotkey initialization failed\n"); return -ENODEV; } /* This needs to be called for some laptops to init properly */ if (!read_acpi_int(hotk->handle, "BSTS", &bsts_result)) printk(KERN_WARNING " Error calling BSTS\n"); else if (bsts_result) printk(KERN_NOTICE " BSTS called, 0x%02x returned\n", bsts_result); /* Samsung P30 has a device with a valid _HID whose INIT does not * return anything. Catch this one and any similar here */ if (buffer.pointer == NULL) { if (asus_info && /* Samsung P30 */ strncmp(asus_info->oem_table_id, "ODEM", 4) == 0) { hotk->model = P30; printk(KERN_NOTICE " Samsung P30 detected, supported\n"); } else { hotk->model = M2E; printk(KERN_WARNING " no string returned by INIT\n"); printk(KERN_WARNING " trying default values, supply " "the developers with your DSDT\n"); } hotk->methods = &model_conf[hotk->model]; return AE_OK; } model = (union acpi_object *)buffer.pointer; if (model->type == ACPI_TYPE_STRING) { printk(KERN_NOTICE " %s model detected, ", model->string.pointer); } hotk->model = END_MODEL; if (strncmp(model->string.pointer, "L3D", 3) == 0) hotk->model = L3D; else if (strncmp(model->string.pointer, "L3H", 3) == 0 || strncmp(model->string.pointer, "L2E", 3) == 0) hotk->model = L3H; else if (strncmp(model->string.pointer, "L3", 2) == 0 || strncmp(model->string.pointer, "L2B", 3) == 0) hotk->model = L3C; else if (strncmp(model->string.pointer, "L8L", 3) == 0) hotk->model = L8L; else if (strncmp(model->string.pointer, "L4R", 3) == 0) hotk->model = L4R; else if (strncmp(model->string.pointer, "M6N", 3) == 0) hotk->model = M6N; else if (strncmp(model->string.pointer, "M6R", 3) == 0) hotk->model = M6R; else if (strncmp(model->string.pointer, "M2N", 3) == 0 || strncmp(model->string.pointer, "M3N", 3) == 0 || strncmp(model->string.pointer, "M5N", 3) == 0 || strncmp(model->string.pointer, "M6N", 3) == 0 || strncmp(model->string.pointer, "S1N", 3) == 0 || strncmp(model->string.pointer, "S5N", 3) == 0 || strncmp(model->string.pointer, "W1N", 3) == 0) hotk->model = xxN; else if (strncmp(model->string.pointer, "M1", 2) == 0) hotk->model = M1A; else if (strncmp(model->string.pointer, "M2", 2) == 0 || strncmp(model->string.pointer, "L4E", 3) == 0) hotk->model = M2E; else if (strncmp(model->string.pointer, "L2", 2) == 0) hotk->model = L2D; else if (strncmp(model->string.pointer, "L8", 2) == 0) hotk->model = S1x; else if (strncmp(model->string.pointer, "D1", 2) == 0) hotk->model = D1x; else if (strncmp(model->string.pointer, "A1", 2) == 0) hotk->model = A1x; else if (strncmp(model->string.pointer, "A2", 2) == 0) hotk->model = A2x; else if (strncmp(model->string.pointer, "J1", 2) == 0) hotk->model = S2x; else if (strncmp(model->string.pointer, "L5", 2) == 0) hotk->model = L5x; if (hotk->model == END_MODEL) { printk("unsupported, trying default values, supply the " "developers with your DSDT\n"); hotk->model = M2E; } else { printk("supported\n"); } hotk->methods = &model_conf[hotk->model]; /* Sort of per-model blacklist */ if (strncmp(model->string.pointer, "L2B", 3) == 0) hotk->methods->lcd_status = NULL; /* L2B is similar enough to L3C to use its settings, with this only exception */ else if (strncmp(model->string.pointer, "S5N", 3) == 0 || strncmp(model->string.pointer, "M5N", 3) == 0) hotk->methods->mt_mled = NULL; /* S5N and M5N have no MLED */ else if (strncmp(model->string.pointer, "M2N", 3) == 0 || strncmp(model->string.pointer, "W1N", 3) == 0) hotk->methods->mt_wled = "WLED"; /* M2N and W1N have a usable WLED */ else if (asus_info) { if (strncmp(asus_info->oem_table_id, "L1", 2) == 0) hotk->methods->mled_status = NULL; /* S1300A reports L84F, but L1400B too, account for that */ } acpi_os_free(model); return AE_OK; } static int __init asus_hotk_check(void) { int result = 0; result = acpi_bus_get_status(hotk->device); if (result) return result; if (hotk->device->status.present) { result = asus_hotk_get_info(); } else { printk(KERN_ERR " Hotkey device not present, aborting\n"); return -EINVAL; } return result; } static int __init asus_hotk_add(struct acpi_device *device) { acpi_status status = AE_OK; int result; if (!device) return -EINVAL; printk(KERN_NOTICE "Asus Laptop ACPI Extras version %s\n", ASUS_ACPI_VERSION); hotk = (struct asus_hotk *)kmalloc(sizeof(struct asus_hotk), GFP_KERNEL); if (!hotk) return -ENOMEM; memset(hotk, 0, sizeof(struct asus_hotk)); hotk->handle = device->handle; strcpy(acpi_device_name(device), ACPI_HOTK_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_HOTK_CLASS); acpi_driver_data(device) = hotk; hotk->device = device; result = asus_hotk_check(); if (result) goto end; result = asus_hotk_add_fs(device); if (result) goto end; /* * We install the handler, it will receive the hotk in parameter, so, we * could add other data to the hotk struct */ status = acpi_install_notify_handler(hotk->handle, ACPI_SYSTEM_NOTIFY, asus_hotk_notify, hotk); if (ACPI_FAILURE(status)) printk(KERN_ERR " Error installing notify handler\n"); /* For laptops without GPLV: init the hotk->brightness value */ if ((!hotk->methods->brightness_get) && (!hotk->methods->brightness_status) && (hotk->methods->brightness_up && hotk->methods->brightness_down)) { status = acpi_evaluate_object(NULL, hotk->methods->brightness_down, NULL, NULL); if (ACPI_FAILURE(status)) printk(KERN_WARNING " Error changing brightness\n"); else { status = acpi_evaluate_object(NULL, hotk->methods->brightness_up, NULL, NULL); if (ACPI_FAILURE(status)) printk(KERN_WARNING " Strange, error changing" " brightness\n"); } } end: if (result) { kfree(hotk); } return result; } static int asus_hotk_remove(struct acpi_device *device, int type) { acpi_status status = 0; if (!device || !acpi_driver_data(device)) return -EINVAL; status = acpi_remove_notify_handler(hotk->handle, ACPI_SYSTEM_NOTIFY, asus_hotk_notify); if (ACPI_FAILURE(status)) printk(KERN_ERR "Asus ACPI: Error removing notify handler\n"); asus_hotk_remove_fs(device); kfree(hotk); return 0; } static int __init asus_acpi_init(void) { int result; if (acpi_disabled) return -ENODEV; if (!acpi_specific_hotkey_enabled) { printk(KERN_ERR "Using generic hotkey driver\n"); return -ENODEV; } asus_proc_dir = proc_mkdir(PROC_ASUS, acpi_root_dir); if (!asus_proc_dir) { printk(KERN_ERR "Asus ACPI: Unable to create /proc entry\n"); return -ENODEV; } asus_proc_dir->owner = THIS_MODULE; result = acpi_bus_register_driver(&asus_hotk_driver); if (result < 1) { acpi_bus_unregister_driver(&asus_hotk_driver); remove_proc_entry(PROC_ASUS, acpi_root_dir); return -ENODEV; } return 0; } static void __exit asus_acpi_exit(void) { acpi_bus_unregister_driver(&asus_hotk_driver); remove_proc_entry(PROC_ASUS, acpi_root_dir); acpi_os_free(asus_info); return; } module_init(asus_acpi_init); module_exit(asus_acpi_exit);