/* * acpi_ec.c - ACPI Embedded Controller Driver ($Revision: 38 $) * * Copyright (C) 2004 Luming Yu <luming.yu@intel.com> * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/interrupt.h> #include <asm/io.h> #include <acpi/acpi_bus.h> #include <acpi/acpi_drivers.h> #include <acpi/actypes.h> #define _COMPONENT ACPI_EC_COMPONENT ACPI_MODULE_NAME("acpi_ec") #define ACPI_EC_COMPONENT 0x00100000 #define ACPI_EC_CLASS "embedded_controller" #define ACPI_EC_HID "PNP0C09" #define ACPI_EC_DRIVER_NAME "ACPI Embedded Controller Driver" #define ACPI_EC_DEVICE_NAME "Embedded Controller" #define ACPI_EC_FILE_INFO "info" #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */ #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */ #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */ #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */ #define ACPI_EC_EVENT_OBF 0x01 /* Output buffer full */ #define ACPI_EC_EVENT_IBE 0x02 /* Input buffer empty */ #define ACPI_EC_DELAY 50 /* Wait 50ms max. during EC ops */ #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */ #define ACPI_EC_UDELAY 100 /* Poll @ 100us increments */ #define ACPI_EC_UDELAY_COUNT 1000 /* Wait 10ms max. during EC ops */ #define ACPI_EC_COMMAND_READ 0x80 #define ACPI_EC_COMMAND_WRITE 0x81 #define ACPI_EC_BURST_ENABLE 0x82 #define ACPI_EC_BURST_DISABLE 0x83 #define ACPI_EC_COMMAND_QUERY 0x84 #define EC_POLL 0xFF #define EC_INTR 0x00 static int acpi_ec_remove(struct acpi_device *device, int type); static int acpi_ec_start(struct acpi_device *device); static int acpi_ec_stop(struct acpi_device *device, int type); static int acpi_ec_intr_add(struct acpi_device *device); static int acpi_ec_poll_add(struct acpi_device *device); static struct acpi_driver acpi_ec_driver = { .name = ACPI_EC_DRIVER_NAME, .class = ACPI_EC_CLASS, .ids = ACPI_EC_HID, .ops = { .add = acpi_ec_intr_add, .remove = acpi_ec_remove, .start = acpi_ec_start, .stop = acpi_ec_stop, }, }; union acpi_ec { struct { u32 mode; acpi_handle handle; unsigned long uid; unsigned long gpe_bit; struct acpi_generic_address status_addr; struct acpi_generic_address command_addr; struct acpi_generic_address data_addr; unsigned long global_lock; } common; struct { u32 mode; acpi_handle handle; unsigned long uid; unsigned long gpe_bit; struct acpi_generic_address status_addr; struct acpi_generic_address command_addr; struct acpi_generic_address data_addr; unsigned long global_lock; unsigned int expect_event; atomic_t leaving_burst; /* 0 : No, 1 : Yes, 2: abort */ atomic_t pending_gpe; struct semaphore sem; wait_queue_head_t wait; } intr; struct { u32 mode; acpi_handle handle; unsigned long uid; unsigned long gpe_bit; struct acpi_generic_address status_addr; struct acpi_generic_address command_addr; struct acpi_generic_address data_addr; unsigned long global_lock; spinlock_t lock; } poll; }; static int acpi_ec_poll_wait(union acpi_ec *ec, u8 event); static int acpi_ec_intr_wait(union acpi_ec *ec, unsigned int event); static int acpi_ec_poll_read(union acpi_ec *ec, u8 address, u32 * data); static int acpi_ec_intr_read(union acpi_ec *ec, u8 address, u32 * data); static int acpi_ec_poll_write(union acpi_ec *ec, u8 address, u8 data); static int acpi_ec_intr_write(union acpi_ec *ec, u8 address, u8 data); static int acpi_ec_poll_query(union acpi_ec *ec, u32 * data); static int acpi_ec_intr_query(union acpi_ec *ec, u32 * data); static void acpi_ec_gpe_poll_query(void *ec_cxt); static void acpi_ec_gpe_intr_query(void *ec_cxt); static u32 acpi_ec_gpe_poll_handler(void *data); static u32 acpi_ec_gpe_intr_handler(void *data); static acpi_status __init acpi_fake_ecdt_poll_callback(acpi_handle handle, u32 Level, void *context, void **retval); static acpi_status __init acpi_fake_ecdt_intr_callback(acpi_handle handle, u32 Level, void *context, void **retval); static int __init acpi_ec_poll_get_real_ecdt(void); static int __init acpi_ec_intr_get_real_ecdt(void); /* If we find an EC via the ECDT, we need to keep a ptr to its context */ static union acpi_ec *ec_ecdt; /* External interfaces use first EC only, so remember */ static struct acpi_device *first_ec; static int acpi_ec_poll_mode = EC_INTR; /* -------------------------------------------------------------------------- Transaction Management -------------------------------------------------------------------------- */ static u32 acpi_ec_read_status(union acpi_ec *ec) { u32 status = 0; acpi_hw_low_level_read(8, &status, &ec->common.status_addr); return status; } static int acpi_ec_wait(union acpi_ec *ec, u8 event) { if (acpi_ec_poll_mode) return acpi_ec_poll_wait(ec, event); else return acpi_ec_intr_wait(ec, event); } static int acpi_ec_poll_wait(union acpi_ec *ec, u8 event) { u32 acpi_ec_status = 0; u32 i = ACPI_EC_UDELAY_COUNT; if (!ec) return -EINVAL; /* Poll the EC status register waiting for the event to occur. */ switch (event) { case ACPI_EC_EVENT_OBF: do { acpi_hw_low_level_read(8, &acpi_ec_status, &ec->common.status_addr); if (acpi_ec_status & ACPI_EC_FLAG_OBF) return 0; udelay(ACPI_EC_UDELAY); } while (--i > 0); break; case ACPI_EC_EVENT_IBE: do { acpi_hw_low_level_read(8, &acpi_ec_status, &ec->common.status_addr); if (!(acpi_ec_status & ACPI_EC_FLAG_IBF)) return 0; udelay(ACPI_EC_UDELAY); } while (--i > 0); break; default: return -EINVAL; } return -ETIME; } static int acpi_ec_intr_wait(union acpi_ec *ec, unsigned int event) { int result = 0; ACPI_FUNCTION_TRACE("acpi_ec_wait"); ec->intr.expect_event = event; smp_mb(); switch (event) { case ACPI_EC_EVENT_IBE: if (~acpi_ec_read_status(ec) & event) { ec->intr.expect_event = 0; return_VALUE(0); } break; default: break; } result = wait_event_timeout(ec->intr.wait, !ec->intr.expect_event, msecs_to_jiffies(ACPI_EC_DELAY)); ec->intr.expect_event = 0; smp_mb(); /* * Verify that the event in question has actually happened by * querying EC status. Do the check even if operation timed-out * to make sure that we did not miss interrupt. */ switch (event) { case ACPI_EC_EVENT_OBF: if (acpi_ec_read_status(ec) & ACPI_EC_FLAG_OBF) return_VALUE(0); break; case ACPI_EC_EVENT_IBE: if (~acpi_ec_read_status(ec) & ACPI_EC_FLAG_IBF) return_VALUE(0); break; } return_VALUE(-ETIME); } #ifdef ACPI_FUTURE_USAGE /* * Note: samsung nv5000 doesn't work with ec burst mode. * http://bugzilla.kernel.org/show_bug.cgi?id=4980 */ int acpi_ec_enter_burst_mode(union acpi_ec *ec) { u32 tmp = 0; int status = 0; ACPI_FUNCTION_TRACE("acpi_ec_enter_burst_mode"); status = acpi_ec_read_status(ec); if (status != -EINVAL && !(status & ACPI_EC_FLAG_BURST)) { status = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (status) goto end; acpi_hw_low_level_write(8, ACPI_EC_BURST_ENABLE, &ec->common.command_addr); status = acpi_ec_wait(ec, ACPI_EC_EVENT_OBF); acpi_hw_low_level_read(8, &tmp, &ec->common.data_addr); if (tmp != 0x90) { /* Burst ACK byte */ return_VALUE(-EINVAL); } } atomic_set(&ec->intr.leaving_burst, 0); return_VALUE(0); end: printk(KERN_WARNING PREFIX "Error in acpi_ec_wait\n"); return_VALUE(-1); } int acpi_ec_leave_burst_mode(union acpi_ec *ec) { int status = 0; ACPI_FUNCTION_TRACE("acpi_ec_leave_burst_mode"); status = acpi_ec_read_status(ec); if (status != -EINVAL && (status & ACPI_EC_FLAG_BURST)){ status = acpi_ec_wait(ec, ACPI_EC_FLAG_IBF); if(status) goto end; acpi_hw_low_level_write(8, ACPI_EC_BURST_DISABLE, &ec->common.command_addr); acpi_ec_wait(ec, ACPI_EC_FLAG_IBF); } atomic_set(&ec->intr.leaving_burst, 1); return_VALUE(0); end: printk(KERN_WARNING PREFIX "leave burst_mode:error\n"); return_VALUE(-1); } #endif /* ACPI_FUTURE_USAGE */ static int acpi_ec_read(union acpi_ec *ec, u8 address, u32 * data) { if (acpi_ec_poll_mode) return acpi_ec_poll_read(ec, address, data); else return acpi_ec_intr_read(ec, address, data); } static int acpi_ec_write(union acpi_ec *ec, u8 address, u8 data) { if (acpi_ec_poll_mode) return acpi_ec_poll_write(ec, address, data); else return acpi_ec_intr_write(ec, address, data); } static int acpi_ec_poll_read(union acpi_ec *ec, u8 address, u32 * data) { acpi_status status = AE_OK; int result = 0; unsigned long flags = 0; u32 glk = 0; ACPI_FUNCTION_TRACE("acpi_ec_read"); if (!ec || !data) return_VALUE(-EINVAL); *data = 0; if (ec->common.global_lock) { status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); if (ACPI_FAILURE(status)) return_VALUE(-ENODEV); } spin_lock_irqsave(&ec->poll.lock, flags); acpi_hw_low_level_write(8, ACPI_EC_COMMAND_READ, &ec->common.command_addr); result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (result) goto end; acpi_hw_low_level_write(8, address, &ec->common.data_addr); result = acpi_ec_wait(ec, ACPI_EC_EVENT_OBF); if (result) goto end; acpi_hw_low_level_read(8, data, &ec->common.data_addr); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Read [%02x] from address [%02x]\n", *data, address)); end: spin_unlock_irqrestore(&ec->poll.lock, flags); if (ec->common.global_lock) acpi_release_global_lock(glk); return_VALUE(result); } static int acpi_ec_poll_write(union acpi_ec *ec, u8 address, u8 data) { int result = 0; acpi_status status = AE_OK; unsigned long flags = 0; u32 glk = 0; ACPI_FUNCTION_TRACE("acpi_ec_write"); if (!ec) return_VALUE(-EINVAL); if (ec->common.global_lock) { status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); if (ACPI_FAILURE(status)) return_VALUE(-ENODEV); } spin_lock_irqsave(&ec->poll.lock, flags); acpi_hw_low_level_write(8, ACPI_EC_COMMAND_WRITE, &ec->common.command_addr); result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (result) goto end; acpi_hw_low_level_write(8, address, &ec->common.data_addr); result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (result) goto end; acpi_hw_low_level_write(8, data, &ec->common.data_addr); result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (result) goto end; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Wrote [%02x] to address [%02x]\n", data, address)); end: spin_unlock_irqrestore(&ec->poll.lock, flags); if (ec->common.global_lock) acpi_release_global_lock(glk); return_VALUE(result); } static int acpi_ec_intr_read(union acpi_ec *ec, u8 address, u32 * data) { int status = 0; u32 glk; ACPI_FUNCTION_TRACE("acpi_ec_read"); if (!ec || !data) return_VALUE(-EINVAL); *data = 0; if (ec->common.global_lock) { status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); if (ACPI_FAILURE(status)) return_VALUE(-ENODEV); } WARN_ON(in_interrupt()); down(&ec->intr.sem); status = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (status) { printk(KERN_DEBUG PREFIX "read EC, IB not empty\n"); goto end; } acpi_hw_low_level_write(8, ACPI_EC_COMMAND_READ, &ec->common.command_addr); status = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (status) { printk(KERN_DEBUG PREFIX "read EC, IB not empty\n"); } acpi_hw_low_level_write(8, address, &ec->common.data_addr); status = acpi_ec_wait(ec, ACPI_EC_EVENT_OBF); if (status) { printk(KERN_DEBUG PREFIX "read EC, OB not full\n"); goto end; } acpi_hw_low_level_read(8, data, &ec->common.data_addr); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Read [%02x] from address [%02x]\n", *data, address)); end: up(&ec->intr.sem); if (ec->common.global_lock) acpi_release_global_lock(glk); return_VALUE(status); } static int acpi_ec_intr_write(union acpi_ec *ec, u8 address, u8 data) { int status = 0; u32 glk; ACPI_FUNCTION_TRACE("acpi_ec_write"); if (!ec) return_VALUE(-EINVAL); if (ec->common.global_lock) { status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); if (ACPI_FAILURE(status)) return_VALUE(-ENODEV); } WARN_ON(in_interrupt()); down(&ec->intr.sem); status = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (status) { printk(KERN_DEBUG PREFIX "write EC, IB not empty\n"); } acpi_hw_low_level_write(8, ACPI_EC_COMMAND_WRITE, &ec->common.command_addr); status = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (status) { printk(KERN_DEBUG PREFIX "write EC, IB not empty\n"); } acpi_hw_low_level_write(8, address, &ec->common.data_addr); status = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (status) { printk(KERN_DEBUG PREFIX "write EC, IB not empty\n"); } acpi_hw_low_level_write(8, data, &ec->common.data_addr); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Wrote [%02x] to address [%02x]\n", data, address)); up(&ec->intr.sem); if (ec->common.global_lock) acpi_release_global_lock(glk); return_VALUE(status); } /* * Externally callable EC access functions. For now, assume 1 EC only */ int ec_read(u8 addr, u8 * val) { union acpi_ec *ec; int err; u32 temp_data; if (!first_ec) return -ENODEV; ec = acpi_driver_data(first_ec); err = acpi_ec_read(ec, addr, &temp_data); if (!err) { *val = temp_data; return 0; } else return err; } EXPORT_SYMBOL(ec_read); int ec_write(u8 addr, u8 val) { union acpi_ec *ec; int err; if (!first_ec) return -ENODEV; ec = acpi_driver_data(first_ec); err = acpi_ec_write(ec, addr, val); return err; } EXPORT_SYMBOL(ec_write); static int acpi_ec_query(union acpi_ec *ec, u32 * data) { if (acpi_ec_poll_mode) return acpi_ec_poll_query(ec, data); else return acpi_ec_intr_query(ec, data); } static int acpi_ec_poll_query(union acpi_ec *ec, u32 * data) { int result = 0; acpi_status status = AE_OK; unsigned long flags = 0; u32 glk = 0; ACPI_FUNCTION_TRACE("acpi_ec_query"); if (!ec || !data) return_VALUE(-EINVAL); *data = 0; if (ec->common.global_lock) { status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); if (ACPI_FAILURE(status)) return_VALUE(-ENODEV); } /* * Query the EC to find out which _Qxx method we need to evaluate. * Note that successful completion of the query causes the ACPI_EC_SCI * bit to be cleared (and thus clearing the interrupt source). */ spin_lock_irqsave(&ec->poll.lock, flags); acpi_hw_low_level_write(8, ACPI_EC_COMMAND_QUERY, &ec->common.command_addr); result = acpi_ec_wait(ec, ACPI_EC_EVENT_OBF); if (result) goto end; acpi_hw_low_level_read(8, data, &ec->common.data_addr); if (!*data) result = -ENODATA; end: spin_unlock_irqrestore(&ec->poll.lock, flags); if (ec->common.global_lock) acpi_release_global_lock(glk); return_VALUE(result); } static int acpi_ec_intr_query(union acpi_ec *ec, u32 * data) { int status = 0; u32 glk; ACPI_FUNCTION_TRACE("acpi_ec_query"); if (!ec || !data) return_VALUE(-EINVAL); *data = 0; if (ec->common.global_lock) { status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); if (ACPI_FAILURE(status)) return_VALUE(-ENODEV); } down(&ec->intr.sem); status = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE); if (status) { printk(KERN_DEBUG PREFIX "query EC, IB not empty\n"); goto end; } /* * Query the EC to find out which _Qxx method we need to evaluate. * Note that successful completion of the query causes the ACPI_EC_SCI * bit to be cleared (and thus clearing the interrupt source). */ acpi_hw_low_level_write(8, ACPI_EC_COMMAND_QUERY, &ec->common.command_addr); status = acpi_ec_wait(ec, ACPI_EC_EVENT_OBF); if (status) { printk(KERN_DEBUG PREFIX "query EC, OB not full\n"); goto end; } acpi_hw_low_level_read(8, data, &ec->common.data_addr); if (!*data) status = -ENODATA; end: up(&ec->intr.sem); if (ec->common.global_lock) acpi_release_global_lock(glk); return_VALUE(status); } /* -------------------------------------------------------------------------- Event Management -------------------------------------------------------------------------- */ union acpi_ec_query_data { acpi_handle handle; u8 data; }; static void acpi_ec_gpe_query(void *ec_cxt) { if (acpi_ec_poll_mode) acpi_ec_gpe_poll_query(ec_cxt); else acpi_ec_gpe_intr_query(ec_cxt); } static void acpi_ec_gpe_poll_query(void *ec_cxt) { union acpi_ec *ec = (union acpi_ec *)ec_cxt; u32 value = 0; unsigned long flags = 0; static char object_name[5] = { '_', 'Q', '0', '0', '\0' }; const char hex[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; ACPI_FUNCTION_TRACE("acpi_ec_gpe_query"); if (!ec_cxt) goto end; spin_lock_irqsave(&ec->poll.lock, flags); acpi_hw_low_level_read(8, &value, &ec->common.command_addr); spin_unlock_irqrestore(&ec->poll.lock, flags); /* TBD: Implement asynch events! * NOTE: All we care about are EC-SCI's. Other EC events are * handled via polling (yuck!). This is because some systems * treat EC-SCIs as level (versus EDGE!) triggered, preventing * a purely interrupt-driven approach (grumble, grumble). */ if (!(value & ACPI_EC_FLAG_SCI)) goto end; if (acpi_ec_query(ec, &value)) goto end; object_name[2] = hex[((value >> 4) & 0x0F)]; object_name[3] = hex[(value & 0x0F)]; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Evaluating %s\n", object_name)); acpi_evaluate_object(ec->common.handle, object_name, NULL, NULL); end: acpi_enable_gpe(NULL, ec->common.gpe_bit, ACPI_NOT_ISR); } static void acpi_ec_gpe_intr_query(void *ec_cxt) { union acpi_ec *ec = (union acpi_ec *)ec_cxt; u32 value; int result = -ENODATA; static char object_name[5] = { '_', 'Q', '0', '0', '\0' }; const char hex[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; ACPI_FUNCTION_TRACE("acpi_ec_gpe_query"); if (acpi_ec_read_status(ec) & ACPI_EC_FLAG_SCI) result = acpi_ec_query(ec, &value); if (result) goto end; object_name[2] = hex[((value >> 4) & 0x0F)]; object_name[3] = hex[(value & 0x0F)]; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Evaluating %s\n", object_name)); acpi_evaluate_object(ec->common.handle, object_name, NULL, NULL); end: atomic_dec(&ec->intr.pending_gpe); return; } static u32 acpi_ec_gpe_handler(void *data) { if (acpi_ec_poll_mode) return acpi_ec_gpe_poll_handler(data); else return acpi_ec_gpe_intr_handler(data); } static u32 acpi_ec_gpe_poll_handler(void *data) { acpi_status status = AE_OK; union acpi_ec *ec = (union acpi_ec *)data; if (!ec) return ACPI_INTERRUPT_NOT_HANDLED; acpi_disable_gpe(NULL, ec->common.gpe_bit, ACPI_ISR); status = acpi_os_queue_for_execution(OSD_PRIORITY_GPE, acpi_ec_gpe_query, ec); if (status == AE_OK) return ACPI_INTERRUPT_HANDLED; else return ACPI_INTERRUPT_NOT_HANDLED; } static u32 acpi_ec_gpe_intr_handler(void *data) { acpi_status status = AE_OK; u32 value; union acpi_ec *ec = (union acpi_ec *)data; if (!ec) return ACPI_INTERRUPT_NOT_HANDLED; acpi_clear_gpe(NULL, ec->common.gpe_bit, ACPI_ISR); value = acpi_ec_read_status(ec); switch (ec->intr.expect_event) { case ACPI_EC_EVENT_OBF: if (!(value & ACPI_EC_FLAG_OBF)) break; case ACPI_EC_EVENT_IBE: if ((value & ACPI_EC_FLAG_IBF)) break; ec->intr.expect_event = 0; wake_up(&ec->intr.wait); return ACPI_INTERRUPT_HANDLED; default: break; } if (value & ACPI_EC_FLAG_SCI) { atomic_add(1, &ec->intr.pending_gpe); status = acpi_os_queue_for_execution(OSD_PRIORITY_GPE, acpi_ec_gpe_query, ec); return status == AE_OK ? ACPI_INTERRUPT_HANDLED : ACPI_INTERRUPT_NOT_HANDLED; } acpi_enable_gpe(NULL, ec->common.gpe_bit, ACPI_ISR); return status == AE_OK ? ACPI_INTERRUPT_HANDLED : ACPI_INTERRUPT_NOT_HANDLED; } /* -------------------------------------------------------------------------- Address Space Management -------------------------------------------------------------------------- */ static acpi_status acpi_ec_space_setup(acpi_handle region_handle, u32 function, void *handler_context, void **return_context) { /* * The EC object is in the handler context and is needed * when calling the acpi_ec_space_handler. */ *return_context = (function != ACPI_REGION_DEACTIVATE) ? handler_context : NULL; return AE_OK; } static acpi_status acpi_ec_space_handler(u32 function, acpi_physical_address address, u32 bit_width, acpi_integer * value, void *handler_context, void *region_context) { int result = 0; union acpi_ec *ec = NULL; u64 temp = *value; acpi_integer f_v = 0; int i = 0; ACPI_FUNCTION_TRACE("acpi_ec_space_handler"); if ((address > 0xFF) || !value || !handler_context) return_VALUE(AE_BAD_PARAMETER); if (bit_width != 8 && acpi_strict) { printk(KERN_WARNING PREFIX "acpi_ec_space_handler: bit_width should be 8\n"); return_VALUE(AE_BAD_PARAMETER); } ec = (union acpi_ec *)handler_context; next_byte: switch (function) { case ACPI_READ: temp = 0; result = acpi_ec_read(ec, (u8) address, (u32 *) & temp); break; case ACPI_WRITE: result = acpi_ec_write(ec, (u8) address, (u8) temp); break; default: result = -EINVAL; goto out; break; } bit_width -= 8; if (bit_width) { if (function == ACPI_READ) f_v |= temp << 8 * i; if (function == ACPI_WRITE) temp >>= 8; i++; address++; goto next_byte; } if (function == ACPI_READ) { f_v |= temp << 8 * i; *value = f_v; } out: switch (result) { case -EINVAL: return_VALUE(AE_BAD_PARAMETER); break; case -ENODEV: return_VALUE(AE_NOT_FOUND); break; case -ETIME: return_VALUE(AE_TIME); break; default: return_VALUE(AE_OK); } } /* -------------------------------------------------------------------------- FS Interface (/proc) -------------------------------------------------------------------------- */ static struct proc_dir_entry *acpi_ec_dir; static int acpi_ec_read_info(struct seq_file *seq, void *offset) { union acpi_ec *ec = (union acpi_ec *)seq->private; ACPI_FUNCTION_TRACE("acpi_ec_read_info"); if (!ec) goto end; seq_printf(seq, "gpe bit: 0x%02x\n", (u32) ec->common.gpe_bit); seq_printf(seq, "ports: 0x%02x, 0x%02x\n", (u32) ec->common.status_addr.address, (u32) ec->common.data_addr.address); seq_printf(seq, "use global lock: %s\n", ec->common.global_lock ? "yes" : "no"); acpi_enable_gpe(NULL, ec->common.gpe_bit, ACPI_NOT_ISR); end: return_VALUE(0); } static int acpi_ec_info_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_ec_read_info, PDE(inode)->data); } static struct file_operations acpi_ec_info_ops = { .open = acpi_ec_info_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, .owner = THIS_MODULE, }; static int acpi_ec_add_fs(struct acpi_device *device) { struct proc_dir_entry *entry = NULL; ACPI_FUNCTION_TRACE("acpi_ec_add_fs"); if (!acpi_device_dir(device)) { acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device), acpi_ec_dir); if (!acpi_device_dir(device)) return_VALUE(-ENODEV); } entry = create_proc_entry(ACPI_EC_FILE_INFO, S_IRUGO, acpi_device_dir(device)); if (!entry) ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Unable to create '%s' fs entry\n", ACPI_EC_FILE_INFO)); else { entry->proc_fops = &acpi_ec_info_ops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } return_VALUE(0); } static int acpi_ec_remove_fs(struct acpi_device *device) { ACPI_FUNCTION_TRACE("acpi_ec_remove_fs"); if (acpi_device_dir(device)) { remove_proc_entry(ACPI_EC_FILE_INFO, acpi_device_dir(device)); remove_proc_entry(acpi_device_bid(device), acpi_ec_dir); acpi_device_dir(device) = NULL; } return_VALUE(0); } /* -------------------------------------------------------------------------- Driver Interface -------------------------------------------------------------------------- */ static int acpi_ec_poll_add(struct acpi_device *device) { int result = 0; acpi_status status = AE_OK; union acpi_ec *ec = NULL; unsigned long uid; ACPI_FUNCTION_TRACE("acpi_ec_add"); if (!device) return_VALUE(-EINVAL); ec = kmalloc(sizeof(union acpi_ec), GFP_KERNEL); if (!ec) return_VALUE(-ENOMEM); memset(ec, 0, sizeof(union acpi_ec)); ec->common.handle = device->handle; ec->common.uid = -1; spin_lock_init(&ec->poll.lock); strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_EC_CLASS); acpi_driver_data(device) = ec; /* Use the global lock for all EC transactions? */ acpi_evaluate_integer(ec->common.handle, "_GLK", NULL, &ec->common.global_lock); /* If our UID matches the UID for the ECDT-enumerated EC, we now have the *real* EC info, so kill the makeshift one. */ acpi_evaluate_integer(ec->common.handle, "_UID", NULL, &uid); if (ec_ecdt && ec_ecdt->common.uid == uid) { acpi_remove_address_space_handler(ACPI_ROOT_OBJECT, ACPI_ADR_SPACE_EC, &acpi_ec_space_handler); acpi_remove_gpe_handler(NULL, ec_ecdt->common.gpe_bit, &acpi_ec_gpe_handler); kfree(ec_ecdt); } /* Get GPE bit assignment (EC events). */ /* TODO: Add support for _GPE returning a package */ status = acpi_evaluate_integer(ec->common.handle, "_GPE", NULL, &ec->common.gpe_bit); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error obtaining GPE bit assignment\n")); result = -ENODEV; goto end; } result = acpi_ec_add_fs(device); if (result) goto end; printk(KERN_INFO PREFIX "%s [%s] (gpe %d) polling mode.\n", acpi_device_name(device), acpi_device_bid(device), (u32) ec->common.gpe_bit); if (!first_ec) first_ec = device; end: if (result) kfree(ec); return_VALUE(result); } static int acpi_ec_intr_add(struct acpi_device *device) { int result = 0; acpi_status status = AE_OK; union acpi_ec *ec = NULL; unsigned long uid; ACPI_FUNCTION_TRACE("acpi_ec_add"); if (!device) return_VALUE(-EINVAL); ec = kmalloc(sizeof(union acpi_ec), GFP_KERNEL); if (!ec) return_VALUE(-ENOMEM); memset(ec, 0, sizeof(union acpi_ec)); ec->common.handle = device->handle; ec->common.uid = -1; atomic_set(&ec->intr.pending_gpe, 0); atomic_set(&ec->intr.leaving_burst, 1); init_MUTEX(&ec->intr.sem); init_waitqueue_head(&ec->intr.wait); strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_EC_CLASS); acpi_driver_data(device) = ec; /* Use the global lock for all EC transactions? */ acpi_evaluate_integer(ec->common.handle, "_GLK", NULL, &ec->common.global_lock); /* If our UID matches the UID for the ECDT-enumerated EC, we now have the *real* EC info, so kill the makeshift one. */ acpi_evaluate_integer(ec->common.handle, "_UID", NULL, &uid); if (ec_ecdt && ec_ecdt->common.uid == uid) { acpi_remove_address_space_handler(ACPI_ROOT_OBJECT, ACPI_ADR_SPACE_EC, &acpi_ec_space_handler); acpi_remove_gpe_handler(NULL, ec_ecdt->common.gpe_bit, &acpi_ec_gpe_handler); kfree(ec_ecdt); } /* Get GPE bit assignment (EC events). */ /* TODO: Add support for _GPE returning a package */ status = acpi_evaluate_integer(ec->common.handle, "_GPE", NULL, &ec->common.gpe_bit); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error obtaining GPE bit assignment\n")); result = -ENODEV; goto end; } result = acpi_ec_add_fs(device); if (result) goto end; printk(KERN_INFO PREFIX "%s [%s] (gpe %d) interrupt mode.\n", acpi_device_name(device), acpi_device_bid(device), (u32) ec->common.gpe_bit); if (!first_ec) first_ec = device; end: if (result) kfree(ec); return_VALUE(result); } static int acpi_ec_remove(struct acpi_device *device, int type) { union acpi_ec *ec = NULL; ACPI_FUNCTION_TRACE("acpi_ec_remove"); if (!device) return_VALUE(-EINVAL); ec = acpi_driver_data(device); acpi_ec_remove_fs(device); kfree(ec); return_VALUE(0); } static acpi_status acpi_ec_io_ports(struct acpi_resource *resource, void *context) { union acpi_ec *ec = (union acpi_ec *)context; struct acpi_generic_address *addr; if (resource->type != ACPI_RESOURCE_TYPE_IO) { return AE_OK; } /* * The first address region returned is the data port, and * the second address region returned is the status/command * port. */ if (ec->common.data_addr.register_bit_width == 0) { addr = &ec->common.data_addr; } else if (ec->common.command_addr.register_bit_width == 0) { addr = &ec->common.command_addr; } else { return AE_CTRL_TERMINATE; } addr->address_space_id = ACPI_ADR_SPACE_SYSTEM_IO; addr->register_bit_width = 8; addr->register_bit_offset = 0; addr->address = resource->data.io.minimum; return AE_OK; } static int acpi_ec_start(struct acpi_device *device) { acpi_status status = AE_OK; union acpi_ec *ec = NULL; ACPI_FUNCTION_TRACE("acpi_ec_start"); if (!device) return_VALUE(-EINVAL); ec = acpi_driver_data(device); if (!ec) return_VALUE(-EINVAL); /* * Get I/O port addresses. Convert to GAS format. */ status = acpi_walk_resources(ec->common.handle, METHOD_NAME__CRS, acpi_ec_io_ports, ec); if (ACPI_FAILURE(status) || ec->common.command_addr.register_bit_width == 0) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error getting I/O port addresses")); return_VALUE(-ENODEV); } ec->common.status_addr = ec->common.command_addr; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "gpe=0x%02x, ports=0x%2x,0x%2x\n", (u32) ec->common.gpe_bit, (u32) ec->common.command_addr.address, (u32) ec->common.data_addr.address)); /* * Install GPE handler */ status = acpi_install_gpe_handler(NULL, ec->common.gpe_bit, ACPI_GPE_EDGE_TRIGGERED, &acpi_ec_gpe_handler, ec); if (ACPI_FAILURE(status)) { return_VALUE(-ENODEV); } acpi_set_gpe_type(NULL, ec->common.gpe_bit, ACPI_GPE_TYPE_RUNTIME); acpi_enable_gpe(NULL, ec->common.gpe_bit, ACPI_NOT_ISR); status = acpi_install_address_space_handler(ec->common.handle, ACPI_ADR_SPACE_EC, &acpi_ec_space_handler, &acpi_ec_space_setup, ec); if (ACPI_FAILURE(status)) { acpi_remove_gpe_handler(NULL, ec->common.gpe_bit, &acpi_ec_gpe_handler); return_VALUE(-ENODEV); } return_VALUE(AE_OK); } static int acpi_ec_stop(struct acpi_device *device, int type) { acpi_status status = AE_OK; union acpi_ec *ec = NULL; ACPI_FUNCTION_TRACE("acpi_ec_stop"); if (!device) return_VALUE(-EINVAL); ec = acpi_driver_data(device); status = acpi_remove_address_space_handler(ec->common.handle, ACPI_ADR_SPACE_EC, &acpi_ec_space_handler); if (ACPI_FAILURE(status)) return_VALUE(-ENODEV); status = acpi_remove_gpe_handler(NULL, ec->common.gpe_bit, &acpi_ec_gpe_handler); if (ACPI_FAILURE(status)) return_VALUE(-ENODEV); return_VALUE(0); } static acpi_status __init acpi_fake_ecdt_callback(acpi_handle handle, u32 Level, void *context, void **retval) { if (acpi_ec_poll_mode) return acpi_fake_ecdt_poll_callback(handle, Level, context, retval); else return acpi_fake_ecdt_intr_callback(handle, Level, context, retval); } static acpi_status __init acpi_fake_ecdt_poll_callback(acpi_handle handle, u32 Level, void *context, void **retval) { acpi_status status; status = acpi_walk_resources(handle, METHOD_NAME__CRS, acpi_ec_io_ports, ec_ecdt); if (ACPI_FAILURE(status)) return status; ec_ecdt->common.status_addr = ec_ecdt->common.command_addr; ec_ecdt->common.uid = -1; acpi_evaluate_integer(handle, "_UID", NULL, &ec_ecdt->common.uid); status = acpi_evaluate_integer(handle, "_GPE", NULL, &ec_ecdt->common.gpe_bit); if (ACPI_FAILURE(status)) return status; spin_lock_init(&ec_ecdt->poll.lock); ec_ecdt->common.global_lock = TRUE; ec_ecdt->common.handle = handle; printk(KERN_INFO PREFIX "GPE=0x%02x, ports=0x%2x, 0x%2x\n", (u32) ec_ecdt->common.gpe_bit, (u32) ec_ecdt->common.command_addr.address, (u32) ec_ecdt->common.data_addr.address); return AE_CTRL_TERMINATE; } static acpi_status __init acpi_fake_ecdt_intr_callback(acpi_handle handle, u32 Level, void *context, void **retval) { acpi_status status; init_MUTEX(&ec_ecdt->intr.sem); init_waitqueue_head(&ec_ecdt->intr.wait); status = acpi_walk_resources(handle, METHOD_NAME__CRS, acpi_ec_io_ports, ec_ecdt); if (ACPI_FAILURE(status)) return status; ec_ecdt->common.status_addr = ec_ecdt->common.command_addr; ec_ecdt->common.uid = -1; acpi_evaluate_integer(handle, "_UID", NULL, &ec_ecdt->common.uid); status = acpi_evaluate_integer(handle, "_GPE", NULL, &ec_ecdt->common.gpe_bit); if (ACPI_FAILURE(status)) return status; ec_ecdt->common.global_lock = TRUE; ec_ecdt->common.handle = handle; printk(KERN_INFO PREFIX "GPE=0x%02x, ports=0x%2x, 0x%2x\n", (u32) ec_ecdt->common.gpe_bit, (u32) ec_ecdt->common.command_addr.address, (u32) ec_ecdt->common.data_addr.address); return AE_CTRL_TERMINATE; } /* * Some BIOS (such as some from Gateway laptops) access EC region very early * such as in BAT0._INI or EC._INI before an EC device is found and * do not provide an ECDT. According to ACPI spec, ECDT isn't mandatorily * required, but if EC regison is accessed early, it is required. * The routine tries to workaround the BIOS bug by pre-scan EC device * It assumes that _CRS, _HID, _GPE, _UID methods of EC don't touch any * op region (since _REG isn't invoked yet). The assumption is true for * all systems found. */ static int __init acpi_ec_fake_ecdt(void) { acpi_status status; int ret = 0; printk(KERN_INFO PREFIX "Try to make an fake ECDT\n"); ec_ecdt = kmalloc(sizeof(union acpi_ec), GFP_KERNEL); if (!ec_ecdt) { ret = -ENOMEM; goto error; } memset(ec_ecdt, 0, sizeof(union acpi_ec)); status = acpi_get_devices(ACPI_EC_HID, acpi_fake_ecdt_callback, NULL, NULL); if (ACPI_FAILURE(status)) { kfree(ec_ecdt); ec_ecdt = NULL; ret = -ENODEV; goto error; } return 0; error: printk(KERN_ERR PREFIX "Can't make an fake ECDT\n"); return ret; } static int __init acpi_ec_get_real_ecdt(void) { if (acpi_ec_poll_mode) return acpi_ec_poll_get_real_ecdt(); else return acpi_ec_intr_get_real_ecdt(); } static int __init acpi_ec_poll_get_real_ecdt(void) { acpi_status status; struct acpi_table_ecdt *ecdt_ptr; status = acpi_get_firmware_table("ECDT", 1, ACPI_LOGICAL_ADDRESSING, (struct acpi_table_header **) &ecdt_ptr); if (ACPI_FAILURE(status)) return -ENODEV; printk(KERN_INFO PREFIX "Found ECDT\n"); /* * Generate a temporary ec context to use until the namespace is scanned */ ec_ecdt = kmalloc(sizeof(union acpi_ec), GFP_KERNEL); if (!ec_ecdt) return -ENOMEM; memset(ec_ecdt, 0, sizeof(union acpi_ec)); ec_ecdt->common.command_addr = ecdt_ptr->ec_control; ec_ecdt->common.status_addr = ecdt_ptr->ec_control; ec_ecdt->common.data_addr = ecdt_ptr->ec_data; ec_ecdt->common.gpe_bit = ecdt_ptr->gpe_bit; spin_lock_init(&ec_ecdt->poll.lock); /* use the GL just to be safe */ ec_ecdt->common.global_lock = TRUE; ec_ecdt->common.uid = ecdt_ptr->uid; status = acpi_get_handle(NULL, ecdt_ptr->ec_id, &ec_ecdt->common.handle); if (ACPI_FAILURE(status)) { goto error; } return 0; error: printk(KERN_ERR PREFIX "Could not use ECDT\n"); kfree(ec_ecdt); ec_ecdt = NULL; return -ENODEV; } static int __init acpi_ec_intr_get_real_ecdt(void) { acpi_status status; struct acpi_table_ecdt *ecdt_ptr; status = acpi_get_firmware_table("ECDT", 1, ACPI_LOGICAL_ADDRESSING, (struct acpi_table_header **) &ecdt_ptr); if (ACPI_FAILURE(status)) return -ENODEV; printk(KERN_INFO PREFIX "Found ECDT\n"); /* * Generate a temporary ec context to use until the namespace is scanned */ ec_ecdt = kmalloc(sizeof(union acpi_ec), GFP_KERNEL); if (!ec_ecdt) return -ENOMEM; memset(ec_ecdt, 0, sizeof(union acpi_ec)); init_MUTEX(&ec_ecdt->intr.sem); init_waitqueue_head(&ec_ecdt->intr.wait); ec_ecdt->common.command_addr = ecdt_ptr->ec_control; ec_ecdt->common.status_addr = ecdt_ptr->ec_control; ec_ecdt->common.data_addr = ecdt_ptr->ec_data; ec_ecdt->common.gpe_bit = ecdt_ptr->gpe_bit; /* use the GL just to be safe */ ec_ecdt->common.global_lock = TRUE; ec_ecdt->common.uid = ecdt_ptr->uid; status = acpi_get_handle(NULL, ecdt_ptr->ec_id, &ec_ecdt->common.handle); if (ACPI_FAILURE(status)) { goto error; } return 0; error: printk(KERN_ERR PREFIX "Could not use ECDT\n"); kfree(ec_ecdt); ec_ecdt = NULL; return -ENODEV; } static int __initdata acpi_fake_ecdt_enabled; int __init acpi_ec_ecdt_probe(void) { acpi_status status; int ret; ret = acpi_ec_get_real_ecdt(); /* Try to make a fake ECDT */ if (ret && acpi_fake_ecdt_enabled) { ret = acpi_ec_fake_ecdt(); } if (ret) return 0; /* * Install GPE handler */ status = acpi_install_gpe_handler(NULL, ec_ecdt->common.gpe_bit, ACPI_GPE_EDGE_TRIGGERED, &acpi_ec_gpe_handler, ec_ecdt); if (ACPI_FAILURE(status)) { goto error; } acpi_set_gpe_type(NULL, ec_ecdt->common.gpe_bit, ACPI_GPE_TYPE_RUNTIME); acpi_enable_gpe(NULL, ec_ecdt->common.gpe_bit, ACPI_NOT_ISR); status = acpi_install_address_space_handler(ACPI_ROOT_OBJECT, ACPI_ADR_SPACE_EC, &acpi_ec_space_handler, &acpi_ec_space_setup, ec_ecdt); if (ACPI_FAILURE(status)) { acpi_remove_gpe_handler(NULL, ec_ecdt->common.gpe_bit, &acpi_ec_gpe_handler); goto error; } return 0; error: printk(KERN_ERR PREFIX "Could not use ECDT\n"); kfree(ec_ecdt); ec_ecdt = NULL; return -ENODEV; } static int __init acpi_ec_init(void) { int result = 0; ACPI_FUNCTION_TRACE("acpi_ec_init"); if (acpi_disabled) return_VALUE(0); acpi_ec_dir = proc_mkdir(ACPI_EC_CLASS, acpi_root_dir); if (!acpi_ec_dir) return_VALUE(-ENODEV); /* Now register the driver for the EC */ result = acpi_bus_register_driver(&acpi_ec_driver); if (result < 0) { remove_proc_entry(ACPI_EC_CLASS, acpi_root_dir); return_VALUE(-ENODEV); } return_VALUE(result); } subsys_initcall(acpi_ec_init); /* EC driver currently not unloadable */ #if 0 static void __exit acpi_ec_exit(void) { ACPI_FUNCTION_TRACE("acpi_ec_exit"); acpi_bus_unregister_driver(&acpi_ec_driver); remove_proc_entry(ACPI_EC_CLASS, acpi_root_dir); return_VOID; } #endif /* 0 */ static int __init acpi_fake_ecdt_setup(char *str) { acpi_fake_ecdt_enabled = 1; return 0; } __setup("acpi_fake_ecdt", acpi_fake_ecdt_setup); static int __init acpi_ec_set_intr_mode(char *str) { int intr; if (!get_option(&str, &intr)) return 0; if (intr) { acpi_ec_poll_mode = EC_INTR; acpi_ec_driver.ops.add = acpi_ec_intr_add; } else { acpi_ec_poll_mode = EC_POLL; acpi_ec_driver.ops.add = acpi_ec_poll_add; } printk(KERN_INFO PREFIX "EC %s mode.\n", intr ? "interrupt" : "polling"); return 0; } __setup("ec_intr=", acpi_ec_set_intr_mode);