/* * acpi_numa.c - ACPI NUMA support * * Copyright (C) 2002 Takayoshi Kochi <t-kochi@bq.jp.nec.com> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/acpi.h> #include <acpi/acpi_bus.h> #include <acpi/acmacros.h> #define ACPI_NUMA 0x80000000 #define _COMPONENT ACPI_NUMA ACPI_MODULE_NAME("numa"); static nodemask_t nodes_found_map = NODE_MASK_NONE; #define PXM_INVAL -1 #define NID_INVAL -1 /* maps to convert between proximity domain and logical node ID */ static int pxm_to_node_map[MAX_PXM_DOMAINS] = { [0 ... MAX_PXM_DOMAINS - 1] = NID_INVAL }; static int node_to_pxm_map[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = PXM_INVAL }; int pxm_to_node(int pxm) { if (pxm < 0) return NID_INVAL; return pxm_to_node_map[pxm]; } int node_to_pxm(int node) { if (node < 0) return PXM_INVAL; return node_to_pxm_map[node]; } int __cpuinit acpi_map_pxm_to_node(int pxm) { int node = pxm_to_node_map[pxm]; if (node < 0){ if (nodes_weight(nodes_found_map) >= MAX_NUMNODES) return NID_INVAL; node = first_unset_node(nodes_found_map); pxm_to_node_map[pxm] = node; node_to_pxm_map[node] = pxm; node_set(node, nodes_found_map); } return node; } void __cpuinit acpi_unmap_pxm_to_node(int node) { int pxm = node_to_pxm_map[node]; pxm_to_node_map[pxm] = NID_INVAL; node_to_pxm_map[node] = PXM_INVAL; node_clear(node, nodes_found_map); } void __init acpi_table_print_srat_entry(struct acpi_subtable_header * header) { ACPI_FUNCTION_NAME("acpi_table_print_srat_entry"); if (!header) return; switch (header->type) { case ACPI_SRAT_TYPE_CPU_AFFINITY: #ifdef ACPI_DEBUG_OUTPUT { struct acpi_srat_cpu_affinity *p = (struct acpi_srat_cpu_affinity *)header; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "SRAT Processor (id[0x%02x] eid[0x%02x]) in proximity domain %d %s\n", p->apic_id, p->local_sapic_eid, p->proximity_domain_lo, (p->flags & ACPI_SRAT_CPU_ENABLED)? "enabled" : "disabled")); } #endif /* ACPI_DEBUG_OUTPUT */ break; case ACPI_SRAT_TYPE_MEMORY_AFFINITY: #ifdef ACPI_DEBUG_OUTPUT { struct acpi_srat_mem_affinity *p = (struct acpi_srat_mem_affinity *)header; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "SRAT Memory (0x%lx length 0x%lx type 0x%x) in proximity domain %d %s%s\n", (unsigned long)p->base_address, (unsigned long)p->length, p->memory_type, p->proximity_domain, (p->flags & ACPI_SRAT_MEM_ENABLED)? "enabled" : "disabled", (p->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE)? " hot-pluggable" : "")); } #endif /* ACPI_DEBUG_OUTPUT */ break; default: printk(KERN_WARNING PREFIX "Found unsupported SRAT entry (type = 0x%x)\n", header->type); break; } } static int __init acpi_parse_slit(struct acpi_table_header *table) { struct acpi_table_slit *slit; u32 localities; if (!table) return -EINVAL; slit = (struct acpi_table_slit *)table; /* downcast just for %llu vs %lu for i386/ia64 */ localities = (u32) slit->locality_count; acpi_numa_slit_init(slit); return 0; } static int __init acpi_parse_processor_affinity(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_srat_cpu_affinity *processor_affinity; processor_affinity = (struct acpi_srat_cpu_affinity *)header; if (!processor_affinity) return -EINVAL; acpi_table_print_srat_entry(header); /* let architecture-dependent part to do it */ acpi_numa_processor_affinity_init(processor_affinity); return 0; } static int __init acpi_parse_memory_affinity(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_srat_mem_affinity *memory_affinity; memory_affinity = (struct acpi_srat_mem_affinity *)header; if (!memory_affinity) return -EINVAL; acpi_table_print_srat_entry(header); /* let architecture-dependent part to do it */ acpi_numa_memory_affinity_init(memory_affinity); return 0; } static int __init acpi_parse_srat(struct acpi_table_header *table) { struct acpi_table_srat *srat; if (!table) return -EINVAL; srat = (struct acpi_table_srat *)table; return 0; } int __init acpi_table_parse_srat(enum acpi_srat_type id, acpi_table_entry_handler handler, unsigned int max_entries) { return acpi_table_parse_entries(ACPI_SIG_SRAT, sizeof(struct acpi_table_srat), id, handler, max_entries); } int __init acpi_numa_init(void) { int result; /* SRAT: Static Resource Affinity Table */ if (!acpi_table_parse(ACPI_SIG_SRAT, acpi_parse_srat)) { result = acpi_table_parse_srat(ACPI_SRAT_TYPE_CPU_AFFINITY, acpi_parse_processor_affinity, NR_CPUS); result = acpi_table_parse_srat(ACPI_SRAT_TYPE_MEMORY_AFFINITY, acpi_parse_memory_affinity, NR_NODE_MEMBLKS); // IA64 specific } /* SLIT: System Locality Information Table */ acpi_table_parse(ACPI_SIG_SLIT, acpi_parse_slit); acpi_numa_arch_fixup(); return 0; } int acpi_get_pxm(acpi_handle h) { unsigned long pxm; acpi_status status; acpi_handle handle; acpi_handle phandle = h; do { handle = phandle; status = acpi_evaluate_integer(handle, "_PXM", NULL, &pxm); if (ACPI_SUCCESS(status)) return pxm; status = acpi_get_parent(handle, &phandle); } while (ACPI_SUCCESS(status)); return -1; } EXPORT_SYMBOL(acpi_get_pxm); int acpi_get_node(acpi_handle *handle) { int pxm, node = -1; pxm = acpi_get_pxm(handle); if (pxm >= 0) node = acpi_map_pxm_to_node(pxm); return node; } EXPORT_SYMBOL(acpi_get_node);