#include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/suspend.h> #include <linux/bcd.h> #include <asm/uaccess.h> #include <acpi/acpi_bus.h> #include <acpi/acpi_drivers.h> #ifdef CONFIG_X86 #include <linux/mc146818rtc.h> #endif #include "sleep.h" #define _COMPONENT ACPI_SYSTEM_COMPONENT /* * this file provides support for: * /proc/acpi/sleep * /proc/acpi/alarm * /proc/acpi/wakeup */ ACPI_MODULE_NAME("sleep") #ifdef CONFIG_ACPI_PROCFS static int acpi_system_sleep_seq_show(struct seq_file *seq, void *offset) { int i; for (i = 0; i <= ACPI_STATE_S5; i++) { if (sleep_states[i]) { seq_printf(seq, "S%d ", i); } } seq_puts(seq, "\n"); return 0; } static int acpi_system_sleep_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_system_sleep_seq_show, PDE(inode)->data); } static ssize_t acpi_system_write_sleep(struct file *file, const char __user * buffer, size_t count, loff_t * ppos) { char str[12]; u32 state = 0; int error = 0; if (count > sizeof(str) - 1) goto Done; memset(str, 0, sizeof(str)); if (copy_from_user(str, buffer, count)) return -EFAULT; /* Check for S4 bios request */ if (!strcmp(str, "4b")) { error = acpi_suspend(4); goto Done; } state = simple_strtoul(str, NULL, 0); #ifdef CONFIG_HIBERNATION if (state == 4) { error = hibernate(); goto Done; } #endif error = acpi_suspend(state); Done: return error ? error : count; } #endif /* CONFIG_ACPI_PROCFS */ #if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE) || !defined(CONFIG_X86) /* use /sys/class/rtc/rtcX/wakealarm instead; it's not ACPI-specific */ #else #define HAVE_ACPI_LEGACY_ALARM #endif #ifdef HAVE_ACPI_LEGACY_ALARM static u32 cmos_bcd_read(int offset, int rtc_control); static int acpi_system_alarm_seq_show(struct seq_file *seq, void *offset) { u32 sec, min, hr; u32 day, mo, yr, cent = 0; u32 today = 0; unsigned char rtc_control = 0; unsigned long flags; spin_lock_irqsave(&rtc_lock, flags); rtc_control = CMOS_READ(RTC_CONTROL); sec = cmos_bcd_read(RTC_SECONDS_ALARM, rtc_control); min = cmos_bcd_read(RTC_MINUTES_ALARM, rtc_control); hr = cmos_bcd_read(RTC_HOURS_ALARM, rtc_control); /* If we ever get an FACP with proper values... */ if (acpi_gbl_FADT.day_alarm) { /* ACPI spec: only low 6 its should be cared */ day = CMOS_READ(acpi_gbl_FADT.day_alarm) & 0x3F; if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) day = bcd2bin(day); } else day = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control); if (acpi_gbl_FADT.month_alarm) mo = cmos_bcd_read(acpi_gbl_FADT.month_alarm, rtc_control); else { mo = cmos_bcd_read(RTC_MONTH, rtc_control); today = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control); } if (acpi_gbl_FADT.century) cent = cmos_bcd_read(acpi_gbl_FADT.century, rtc_control); yr = cmos_bcd_read(RTC_YEAR, rtc_control); spin_unlock_irqrestore(&rtc_lock, flags); /* we're trusting the FADT (see above) */ if (!acpi_gbl_FADT.century) /* If we're not trusting the FADT, we should at least make it * right for _this_ century... ehm, what is _this_ century? * * TBD: * ASAP: find piece of code in the kernel, e.g. star tracker driver, * which we can trust to determine the century correctly. Atom * watch driver would be nice, too... * * if that has not happened, change for first release in 2050: * if (yr<50) * yr += 2100; * else * yr += 2000; // current line of code * * if that has not happened either, please do on 2099/12/31:23:59:59 * s/2000/2100 * */ yr += 2000; else yr += cent * 100; /* * Show correct dates for alarms up to a month into the future. * This solves issues for nearly all situations with the common * 30-day alarm clocks in PC hardware. */ if (day < today) { if (mo < 12) { mo += 1; } else { mo = 1; yr += 1; } } seq_printf(seq, "%4.4u-", yr); (mo > 12) ? seq_puts(seq, "**-") : seq_printf(seq, "%2.2u-", mo); (day > 31) ? seq_puts(seq, "** ") : seq_printf(seq, "%2.2u ", day); (hr > 23) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", hr); (min > 59) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", min); (sec > 59) ? seq_puts(seq, "**\n") : seq_printf(seq, "%2.2u\n", sec); return 0; } static int acpi_system_alarm_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_system_alarm_seq_show, PDE(inode)->data); } static int get_date_field(char **p, u32 * value) { char *next = NULL; char *string_end = NULL; int result = -EINVAL; /* * Try to find delimeter, only to insert null. The end of the * string won't have one, but is still valid. */ if (*p == NULL) return result; next = strpbrk(*p, "- :"); if (next) *next++ = '\0'; *value = simple_strtoul(*p, &string_end, 10); /* Signal success if we got a good digit */ if (string_end != *p) result = 0; if (next) *p = next; else *p = NULL; return result; } /* Read a possibly BCD register, always return binary */ static u32 cmos_bcd_read(int offset, int rtc_control) { u32 val = CMOS_READ(offset); if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) val = bcd2bin(val); return val; } /* Write binary value into possibly BCD register */ static void cmos_bcd_write(u32 val, int offset, int rtc_control) { if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) val = bin2bcd(val); CMOS_WRITE(val, offset); } static ssize_t acpi_system_write_alarm(struct file *file, const char __user * buffer, size_t count, loff_t * ppos) { int result = 0; char alarm_string[30] = { '\0' }; char *p = alarm_string; u32 sec, min, hr, day, mo, yr; int adjust = 0; unsigned char rtc_control = 0; if (count > sizeof(alarm_string) - 1) return -EINVAL; if (copy_from_user(alarm_string, buffer, count)) return -EFAULT; alarm_string[count] = '\0'; /* check for time adjustment */ if (alarm_string[0] == '+') { p++; adjust = 1; } if ((result = get_date_field(&p, &yr))) goto end; if ((result = get_date_field(&p, &mo))) goto end; if ((result = get_date_field(&p, &day))) goto end; if ((result = get_date_field(&p, &hr))) goto end; if ((result = get_date_field(&p, &min))) goto end; if ((result = get_date_field(&p, &sec))) goto end; spin_lock_irq(&rtc_lock); rtc_control = CMOS_READ(RTC_CONTROL); if (adjust) { yr += cmos_bcd_read(RTC_YEAR, rtc_control); mo += cmos_bcd_read(RTC_MONTH, rtc_control); day += cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control); hr += cmos_bcd_read(RTC_HOURS, rtc_control); min += cmos_bcd_read(RTC_MINUTES, rtc_control); sec += cmos_bcd_read(RTC_SECONDS, rtc_control); } spin_unlock_irq(&rtc_lock); if (sec > 59) { min += sec/60; sec = sec%60; } if (min > 59) { hr += min/60; min = min%60; } if (hr > 23) { day += hr/24; hr = hr%24; } if (day > 31) { mo += day/32; day = day%32; } if (mo > 12) { yr += mo/13; mo = mo%13; } spin_lock_irq(&rtc_lock); /* * Disable alarm interrupt before setting alarm timer or else * when ACPI_EVENT_RTC is enabled, a spurious ACPI interrupt occurs */ rtc_control &= ~RTC_AIE; CMOS_WRITE(rtc_control, RTC_CONTROL); CMOS_READ(RTC_INTR_FLAGS); /* write the fields the rtc knows about */ cmos_bcd_write(hr, RTC_HOURS_ALARM, rtc_control); cmos_bcd_write(min, RTC_MINUTES_ALARM, rtc_control); cmos_bcd_write(sec, RTC_SECONDS_ALARM, rtc_control); /* * If the system supports an enhanced alarm it will have non-zero * offsets into the CMOS RAM here -- which for some reason are pointing * to the RTC area of memory. */ if (acpi_gbl_FADT.day_alarm) cmos_bcd_write(day, acpi_gbl_FADT.day_alarm, rtc_control); if (acpi_gbl_FADT.month_alarm) cmos_bcd_write(mo, acpi_gbl_FADT.month_alarm, rtc_control); if (acpi_gbl_FADT.century) { if (adjust) yr += cmos_bcd_read(acpi_gbl_FADT.century, rtc_control) * 100; cmos_bcd_write(yr / 100, acpi_gbl_FADT.century, rtc_control); } /* enable the rtc alarm interrupt */ rtc_control |= RTC_AIE; CMOS_WRITE(rtc_control, RTC_CONTROL); CMOS_READ(RTC_INTR_FLAGS); spin_unlock_irq(&rtc_lock); acpi_clear_event(ACPI_EVENT_RTC); acpi_enable_event(ACPI_EVENT_RTC, 0); *ppos += count; result = 0; end: return result ? result : count; } #endif /* HAVE_ACPI_LEGACY_ALARM */ static int acpi_system_wakeup_device_seq_show(struct seq_file *seq, void *offset) { struct list_head *node, *next; seq_printf(seq, "Device\tS-state\t Status Sysfs node\n"); mutex_lock(&acpi_device_lock); list_for_each_safe(node, next, &acpi_wakeup_device_list) { struct acpi_device *dev = container_of(node, struct acpi_device, wakeup_list); struct device *ldev; if (!dev->wakeup.flags.valid) continue; ldev = acpi_get_physical_device(dev->handle); seq_printf(seq, "%s\t S%d\t%c%-8s ", dev->pnp.bus_id, (u32) dev->wakeup.sleep_state, dev->wakeup.flags.run_wake ? '*' : ' ', dev->wakeup.state.enabled ? "enabled" : "disabled"); if (ldev) seq_printf(seq, "%s:%s", ldev->bus ? ldev->bus->name : "no-bus", dev_name(ldev)); seq_printf(seq, "\n"); put_device(ldev); } mutex_unlock(&acpi_device_lock); return 0; } static void physical_device_enable_wakeup(struct acpi_device *adev) { struct device *dev = acpi_get_physical_device(adev->handle); if (dev && device_can_wakeup(dev)) device_set_wakeup_enable(dev, adev->wakeup.state.enabled); } static ssize_t acpi_system_write_wakeup_device(struct file *file, const char __user * buffer, size_t count, loff_t * ppos) { struct list_head *node, *next; char strbuf[5]; char str[5] = ""; int len = count; struct acpi_device *found_dev = NULL; if (len > 4) len = 4; if (copy_from_user(strbuf, buffer, len)) return -EFAULT; strbuf[len] = '\0'; sscanf(strbuf, "%s", str); mutex_lock(&acpi_device_lock); list_for_each_safe(node, next, &acpi_wakeup_device_list) { struct acpi_device *dev = container_of(node, struct acpi_device, wakeup_list); if (!dev->wakeup.flags.valid) continue; if (!strncmp(dev->pnp.bus_id, str, 4)) { dev->wakeup.state.enabled = dev->wakeup.state.enabled ? 0 : 1; found_dev = dev; break; } } if (found_dev) { physical_device_enable_wakeup(found_dev); list_for_each_safe(node, next, &acpi_wakeup_device_list) { struct acpi_device *dev = container_of(node, struct acpi_device, wakeup_list); if ((dev != found_dev) && (dev->wakeup.gpe_number == found_dev->wakeup.gpe_number) && (dev->wakeup.gpe_device == found_dev->wakeup.gpe_device)) { printk(KERN_WARNING "ACPI: '%s' and '%s' have the same GPE, " "can't disable/enable one seperately\n", dev->pnp.bus_id, found_dev->pnp.bus_id); dev->wakeup.state.enabled = found_dev->wakeup.state.enabled; physical_device_enable_wakeup(dev); } } } mutex_unlock(&acpi_device_lock); return count; } static int acpi_system_wakeup_device_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_system_wakeup_device_seq_show, PDE(inode)->data); } static const struct file_operations acpi_system_wakeup_device_fops = { .owner = THIS_MODULE, .open = acpi_system_wakeup_device_open_fs, .read = seq_read, .write = acpi_system_write_wakeup_device, .llseek = seq_lseek, .release = single_release, }; #ifdef CONFIG_ACPI_PROCFS static const struct file_operations acpi_system_sleep_fops = { .owner = THIS_MODULE, .open = acpi_system_sleep_open_fs, .read = seq_read, .write = acpi_system_write_sleep, .llseek = seq_lseek, .release = single_release, }; #endif /* CONFIG_ACPI_PROCFS */ #ifdef HAVE_ACPI_LEGACY_ALARM static const struct file_operations acpi_system_alarm_fops = { .owner = THIS_MODULE, .open = acpi_system_alarm_open_fs, .read = seq_read, .write = acpi_system_write_alarm, .llseek = seq_lseek, .release = single_release, }; static u32 rtc_handler(void *context) { acpi_clear_event(ACPI_EVENT_RTC); acpi_disable_event(ACPI_EVENT_RTC, 0); return ACPI_INTERRUPT_HANDLED; } #endif /* HAVE_ACPI_LEGACY_ALARM */ int __init acpi_sleep_proc_init(void) { #ifdef CONFIG_ACPI_PROCFS /* 'sleep' [R/W] */ proc_create("sleep", S_IFREG | S_IRUGO | S_IWUSR, acpi_root_dir, &acpi_system_sleep_fops); #endif /* CONFIG_ACPI_PROCFS */ #ifdef HAVE_ACPI_LEGACY_ALARM /* 'alarm' [R/W] */ proc_create("alarm", S_IFREG | S_IRUGO | S_IWUSR, acpi_root_dir, &acpi_system_alarm_fops); acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL); /* * Disable the RTC event after installing RTC handler. * Only when RTC alarm is set will it be enabled. */ acpi_clear_event(ACPI_EVENT_RTC); acpi_disable_event(ACPI_EVENT_RTC, 0); #endif /* HAVE_ACPI_LEGACY_ALARM */ /* 'wakeup device' [R/W] */ proc_create("wakeup", S_IFREG | S_IRUGO | S_IWUSR, acpi_root_dir, &acpi_system_wakeup_device_fops); return 0; }