/* * acpi_thermal.c - ACPI Thermal Zone Driver ($Revision: 41 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This driver fully implements the ACPI thermal policy as described in the * ACPI 2.0 Specification. * * TBD: 1. Implement passive cooling hysteresis. * 2. Enhance passive cooling (CPU) states/limit interface to support * concepts of 'multiple limiters', upper/lower limits, etc. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/proc_fs.h> #include <linux/sched.h> #include <linux/kmod.h> #include <linux/seq_file.h> #include <asm/uaccess.h> #include <acpi/acpi_bus.h> #include <acpi/acpi_drivers.h> #define ACPI_THERMAL_COMPONENT 0x04000000 #define ACPI_THERMAL_CLASS "thermal_zone" #define ACPI_THERMAL_DRIVER_NAME "ACPI Thermal Zone Driver" #define ACPI_THERMAL_DEVICE_NAME "Thermal Zone" #define ACPI_THERMAL_FILE_STATE "state" #define ACPI_THERMAL_FILE_TEMPERATURE "temperature" #define ACPI_THERMAL_FILE_TRIP_POINTS "trip_points" #define ACPI_THERMAL_FILE_COOLING_MODE "cooling_mode" #define ACPI_THERMAL_FILE_POLLING_FREQ "polling_frequency" #define ACPI_THERMAL_NOTIFY_TEMPERATURE 0x80 #define ACPI_THERMAL_NOTIFY_THRESHOLDS 0x81 #define ACPI_THERMAL_NOTIFY_DEVICES 0x82 #define ACPI_THERMAL_NOTIFY_CRITICAL 0xF0 #define ACPI_THERMAL_NOTIFY_HOT 0xF1 #define ACPI_THERMAL_MODE_ACTIVE 0x00 #define ACPI_THERMAL_MODE_PASSIVE 0x01 #define ACPI_THERMAL_MODE_CRITICAL 0xff #define ACPI_THERMAL_PATH_POWEROFF "/sbin/poweroff" #define ACPI_THERMAL_MAX_ACTIVE 10 #define ACPI_THERMAL_MAX_LIMIT_STR_LEN 65 #define KELVIN_TO_CELSIUS(t) (long)(((long)t-2732>=0) ? ((long)t-2732+5)/10 : ((long)t-2732-5)/10) #define CELSIUS_TO_KELVIN(t) ((t+273)*10) #define _COMPONENT ACPI_THERMAL_COMPONENT ACPI_MODULE_NAME("acpi_thermal") MODULE_AUTHOR("Paul Diefenbaugh"); MODULE_DESCRIPTION(ACPI_THERMAL_DRIVER_NAME); MODULE_LICENSE("GPL"); static int tzp; module_param(tzp, int, 0); MODULE_PARM_DESC(tzp, "Thermal zone polling frequency, in 1/10 seconds.\n"); static int acpi_thermal_add(struct acpi_device *device); static int acpi_thermal_remove(struct acpi_device *device, int type); static int acpi_thermal_resume(struct acpi_device *device, int state); static int acpi_thermal_state_open_fs(struct inode *inode, struct file *file); static int acpi_thermal_temp_open_fs(struct inode *inode, struct file *file); static int acpi_thermal_trip_open_fs(struct inode *inode, struct file *file); static ssize_t acpi_thermal_write_trip_points(struct file *, const char __user *, size_t, loff_t *); static int acpi_thermal_cooling_open_fs(struct inode *inode, struct file *file); static ssize_t acpi_thermal_write_cooling_mode(struct file *, const char __user *, size_t, loff_t *); static int acpi_thermal_polling_open_fs(struct inode *inode, struct file *file); static ssize_t acpi_thermal_write_polling(struct file *, const char __user *, size_t, loff_t *); static struct acpi_driver acpi_thermal_driver = { .name = ACPI_THERMAL_DRIVER_NAME, .class = ACPI_THERMAL_CLASS, .ids = ACPI_THERMAL_HID, .ops = { .add = acpi_thermal_add, .remove = acpi_thermal_remove, .resume = acpi_thermal_resume, }, }; struct acpi_thermal_state { u8 critical:1; u8 hot:1; u8 passive:1; u8 active:1; u8 reserved:4; int active_index; }; struct acpi_thermal_state_flags { u8 valid:1; u8 enabled:1; u8 reserved:6; }; struct acpi_thermal_critical { struct acpi_thermal_state_flags flags; unsigned long temperature; }; struct acpi_thermal_hot { struct acpi_thermal_state_flags flags; unsigned long temperature; }; struct acpi_thermal_passive { struct acpi_thermal_state_flags flags; unsigned long temperature; unsigned long tc1; unsigned long tc2; unsigned long tsp; struct acpi_handle_list devices; }; struct acpi_thermal_active { struct acpi_thermal_state_flags flags; unsigned long temperature; struct acpi_handle_list devices; }; struct acpi_thermal_trips { struct acpi_thermal_critical critical; struct acpi_thermal_hot hot; struct acpi_thermal_passive passive; struct acpi_thermal_active active[ACPI_THERMAL_MAX_ACTIVE]; }; struct acpi_thermal_flags { u8 cooling_mode:1; /* _SCP */ u8 devices:1; /* _TZD */ u8 reserved:6; }; struct acpi_thermal { struct acpi_device * device; acpi_bus_id name; unsigned long temperature; unsigned long last_temperature; unsigned long polling_frequency; u8 cooling_mode; volatile u8 zombie; struct acpi_thermal_flags flags; struct acpi_thermal_state state; struct acpi_thermal_trips trips; struct acpi_handle_list devices; struct timer_list timer; }; static const struct file_operations acpi_thermal_state_fops = { .open = acpi_thermal_state_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations acpi_thermal_temp_fops = { .open = acpi_thermal_temp_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations acpi_thermal_trip_fops = { .open = acpi_thermal_trip_open_fs, .read = seq_read, .write = acpi_thermal_write_trip_points, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations acpi_thermal_cooling_fops = { .open = acpi_thermal_cooling_open_fs, .read = seq_read, .write = acpi_thermal_write_cooling_mode, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations acpi_thermal_polling_fops = { .open = acpi_thermal_polling_open_fs, .read = seq_read, .write = acpi_thermal_write_polling, .llseek = seq_lseek, .release = single_release, }; /* -------------------------------------------------------------------------- Thermal Zone Management -------------------------------------------------------------------------- */ static int acpi_thermal_get_temperature(struct acpi_thermal *tz) { acpi_status status = AE_OK; if (!tz) return -EINVAL; tz->last_temperature = tz->temperature; status = acpi_evaluate_integer(tz->device->handle, "_TMP", NULL, &tz->temperature); if (ACPI_FAILURE(status)) return -ENODEV; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Temperature is %lu dK\n", tz->temperature)); return 0; } static int acpi_thermal_get_polling_frequency(struct acpi_thermal *tz) { acpi_status status = AE_OK; if (!tz) return -EINVAL; status = acpi_evaluate_integer(tz->device->handle, "_TZP", NULL, &tz->polling_frequency); if (ACPI_FAILURE(status)) return -ENODEV; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Polling frequency is %lu dS\n", tz->polling_frequency)); return 0; } static int acpi_thermal_set_polling(struct acpi_thermal *tz, int seconds) { if (!tz) return -EINVAL; tz->polling_frequency = seconds * 10; /* Convert value to deci-seconds */ ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Polling frequency set to %lu seconds\n", tz->polling_frequency)); return 0; } static int acpi_thermal_set_cooling_mode(struct acpi_thermal *tz, int mode) { acpi_status status = AE_OK; union acpi_object arg0 = { ACPI_TYPE_INTEGER }; struct acpi_object_list arg_list = { 1, &arg0 }; acpi_handle handle = NULL; if (!tz) return -EINVAL; status = acpi_get_handle(tz->device->handle, "_SCP", &handle); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "_SCP not present\n")); return -ENODEV; } arg0.integer.value = mode; status = acpi_evaluate_object(handle, NULL, &arg_list, NULL); if (ACPI_FAILURE(status)) return -ENODEV; tz->cooling_mode = mode; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cooling mode [%s]\n", mode ? "passive" : "active")); return 0; } static int acpi_thermal_get_trip_points(struct acpi_thermal *tz) { acpi_status status = AE_OK; int i = 0; if (!tz) return -EINVAL; /* Critical Shutdown (required) */ status = acpi_evaluate_integer(tz->device->handle, "_CRT", NULL, &tz->trips.critical.temperature); if (ACPI_FAILURE(status)) { tz->trips.critical.flags.valid = 0; ACPI_EXCEPTION((AE_INFO, status, "No critical threshold")); return -ENODEV; } else { tz->trips.critical.flags.valid = 1; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found critical threshold [%lu]\n", tz->trips.critical.temperature)); } /* Critical Sleep (optional) */ status = acpi_evaluate_integer(tz->device->handle, "_HOT", NULL, &tz->trips.hot.temperature); if (ACPI_FAILURE(status)) { tz->trips.hot.flags.valid = 0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No hot threshold\n")); } else { tz->trips.hot.flags.valid = 1; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found hot threshold [%lu]\n", tz->trips.hot.temperature)); } /* Passive: Processors (optional) */ status = acpi_evaluate_integer(tz->device->handle, "_PSV", NULL, &tz->trips.passive.temperature); if (ACPI_FAILURE(status)) { tz->trips.passive.flags.valid = 0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No passive threshold\n")); } else { tz->trips.passive.flags.valid = 1; status = acpi_evaluate_integer(tz->device->handle, "_TC1", NULL, &tz->trips.passive.tc1); if (ACPI_FAILURE(status)) tz->trips.passive.flags.valid = 0; status = acpi_evaluate_integer(tz->device->handle, "_TC2", NULL, &tz->trips.passive.tc2); if (ACPI_FAILURE(status)) tz->trips.passive.flags.valid = 0; status = acpi_evaluate_integer(tz->device->handle, "_TSP", NULL, &tz->trips.passive.tsp); if (ACPI_FAILURE(status)) tz->trips.passive.flags.valid = 0; status = acpi_evaluate_reference(tz->device->handle, "_PSL", NULL, &tz->trips.passive.devices); if (ACPI_FAILURE(status)) tz->trips.passive.flags.valid = 0; if (!tz->trips.passive.flags.valid) printk(KERN_WARNING PREFIX "Invalid passive threshold\n"); else ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found passive threshold [%lu]\n", tz->trips.passive.temperature)); } /* Active: Fans, etc. (optional) */ for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) { char name[5] = { '_', 'A', 'C', ('0' + i), '\0' }; status = acpi_evaluate_integer(tz->device->handle, name, NULL, &tz->trips.active[i].temperature); if (ACPI_FAILURE(status)) break; name[2] = 'L'; status = acpi_evaluate_reference(tz->device->handle, name, NULL, &tz->trips.active[i].devices); if (ACPI_SUCCESS(status)) { tz->trips.active[i].flags.valid = 1; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found active threshold [%d]:[%lu]\n", i, tz->trips.active[i].temperature)); } else ACPI_EXCEPTION((AE_INFO, status, "Invalid active threshold [%d]", i)); } return 0; } static int acpi_thermal_get_devices(struct acpi_thermal *tz) { acpi_status status = AE_OK; if (!tz) return -EINVAL; status = acpi_evaluate_reference(tz->device->handle, "_TZD", NULL, &tz->devices); if (ACPI_FAILURE(status)) return -ENODEV; return 0; } static int acpi_thermal_call_usermode(char *path) { char *argv[2] = { NULL, NULL }; char *envp[3] = { NULL, NULL, NULL }; if (!path) return -EINVAL; argv[0] = path; /* minimal command environment */ envp[0] = "HOME=/"; envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; call_usermodehelper(argv[0], argv, envp, 0); return 0; } static int acpi_thermal_critical(struct acpi_thermal *tz) { if (!tz || !tz->trips.critical.flags.valid) return -EINVAL; if (tz->temperature >= tz->trips.critical.temperature) { printk(KERN_WARNING PREFIX "Critical trip point\n"); tz->trips.critical.flags.enabled = 1; } else if (tz->trips.critical.flags.enabled) tz->trips.critical.flags.enabled = 0; printk(KERN_EMERG "Critical temperature reached (%ld C), shutting down.\n", KELVIN_TO_CELSIUS(tz->temperature)); acpi_bus_generate_event(tz->device, ACPI_THERMAL_NOTIFY_CRITICAL, tz->trips.critical.flags.enabled); acpi_thermal_call_usermode(ACPI_THERMAL_PATH_POWEROFF); return 0; } static int acpi_thermal_hot(struct acpi_thermal *tz) { if (!tz || !tz->trips.hot.flags.valid) return -EINVAL; if (tz->temperature >= tz->trips.hot.temperature) { printk(KERN_WARNING PREFIX "Hot trip point\n"); tz->trips.hot.flags.enabled = 1; } else if (tz->trips.hot.flags.enabled) tz->trips.hot.flags.enabled = 0; acpi_bus_generate_event(tz->device, ACPI_THERMAL_NOTIFY_HOT, tz->trips.hot.flags.enabled); /* TBD: Call user-mode "sleep(S4)" function */ return 0; } static void acpi_thermal_passive(struct acpi_thermal *tz) { int result = 1; struct acpi_thermal_passive *passive = NULL; int trend = 0; int i = 0; if (!tz || !tz->trips.passive.flags.valid) return; passive = &(tz->trips.passive); /* * Above Trip? * ----------- * Calculate the thermal trend (using the passive cooling equation) * and modify the performance limit for all passive cooling devices * accordingly. Note that we assume symmetry. */ if (tz->temperature >= passive->temperature) { trend = (passive->tc1 * (tz->temperature - tz->last_temperature)) + (passive->tc2 * (tz->temperature - passive->temperature)); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "trend[%d]=(tc1[%lu]*(tmp[%lu]-last[%lu]))+(tc2[%lu]*(tmp[%lu]-psv[%lu]))\n", trend, passive->tc1, tz->temperature, tz->last_temperature, passive->tc2, tz->temperature, passive->temperature)); passive->flags.enabled = 1; /* Heating up? */ if (trend > 0) for (i = 0; i < passive->devices.count; i++) acpi_processor_set_thermal_limit(passive-> devices. handles[i], ACPI_PROCESSOR_LIMIT_INCREMENT); /* Cooling off? */ else if (trend < 0) { for (i = 0; i < passive->devices.count; i++) /* * assume that we are on highest * freq/lowest thrott and can leave * passive mode, even in error case */ if (!acpi_processor_set_thermal_limit (passive->devices.handles[i], ACPI_PROCESSOR_LIMIT_DECREMENT)) result = 0; /* * Leave cooling mode, even if the temp might * higher than trip point This is because some * machines might have long thermal polling * frequencies (tsp) defined. We will fall back * into passive mode in next cycle (probably quicker) */ if (result) { passive->flags.enabled = 0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Disabling passive cooling, still above threshold," " but we are cooling down\n")); } } return; } /* * Below Trip? * ----------- * Implement passive cooling hysteresis to slowly increase performance * and avoid thrashing around the passive trip point. Note that we * assume symmetry. */ if (!passive->flags.enabled) return; for (i = 0; i < passive->devices.count; i++) if (!acpi_processor_set_thermal_limit (passive->devices.handles[i], ACPI_PROCESSOR_LIMIT_DECREMENT)) result = 0; if (result) { passive->flags.enabled = 0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Disabling passive cooling (zone is cool)\n")); } } static void acpi_thermal_active(struct acpi_thermal *tz) { int result = 0; struct acpi_thermal_active *active = NULL; int i = 0; int j = 0; unsigned long maxtemp = 0; if (!tz) return; for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) { active = &(tz->trips.active[i]); if (!active || !active->flags.valid) break; if (tz->temperature >= active->temperature) { /* * Above Threshold? * ---------------- * If not already enabled, turn ON all cooling devices * associated with this active threshold. */ if (active->temperature > maxtemp) tz->state.active_index = i; maxtemp = active->temperature; if (active->flags.enabled) continue; for (j = 0; j < active->devices.count; j++) { result = acpi_bus_set_power(active->devices. handles[j], ACPI_STATE_D0); if (result) { printk(KERN_WARNING PREFIX "Unable to turn cooling device [%p] 'on'\n", active->devices. handles[j]); continue; } active->flags.enabled = 1; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cooling device [%p] now 'on'\n", active->devices.handles[j])); } continue; } if (!active->flags.enabled) continue; /* * Below Threshold? * ---------------- * Turn OFF all cooling devices associated with this * threshold. */ for (j = 0; j < active->devices.count; j++) { result = acpi_bus_set_power(active->devices.handles[j], ACPI_STATE_D3); if (result) { printk(KERN_WARNING PREFIX "Unable to turn cooling device [%p] 'off'\n", active->devices.handles[j]); continue; } active->flags.enabled = 0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cooling device [%p] now 'off'\n", active->devices.handles[j])); } } } static void acpi_thermal_check(void *context); static void acpi_thermal_run(unsigned long data) { struct acpi_thermal *tz = (struct acpi_thermal *)data; if (!tz->zombie) acpi_os_execute(OSL_GPE_HANDLER, acpi_thermal_check, (void *)data); } static void acpi_thermal_check(void *data) { int result = 0; struct acpi_thermal *tz = (struct acpi_thermal *)data; unsigned long sleep_time = 0; int i = 0; struct acpi_thermal_state state; if (!tz) { printk(KERN_ERR PREFIX "Invalid (NULL) context\n"); return; } state = tz->state; result = acpi_thermal_get_temperature(tz); if (result) return; memset(&tz->state, 0, sizeof(tz->state)); /* * Check Trip Points * ----------------- * Compare the current temperature to the trip point values to see * if we've entered one of the thermal policy states. Note that * this function determines when a state is entered, but the * individual policy decides when it is exited (e.g. hysteresis). */ if (tz->trips.critical.flags.valid) state.critical |= (tz->temperature >= tz->trips.critical.temperature); if (tz->trips.hot.flags.valid) state.hot |= (tz->temperature >= tz->trips.hot.temperature); if (tz->trips.passive.flags.valid) state.passive |= (tz->temperature >= tz->trips.passive.temperature); for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) if (tz->trips.active[i].flags.valid) state.active |= (tz->temperature >= tz->trips.active[i].temperature); /* * Invoke Policy * ------------- * Separated from the above check to allow individual policy to * determine when to exit a given state. */ if (state.critical) acpi_thermal_critical(tz); if (state.hot) acpi_thermal_hot(tz); if (state.passive) acpi_thermal_passive(tz); if (state.active) acpi_thermal_active(tz); /* * Calculate State * --------------- * Again, separated from the above two to allow independent policy * decisions. */ tz->state.critical = tz->trips.critical.flags.enabled; tz->state.hot = tz->trips.hot.flags.enabled; tz->state.passive = tz->trips.passive.flags.enabled; tz->state.active = 0; for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) tz->state.active |= tz->trips.active[i].flags.enabled; /* * Calculate Sleep Time * -------------------- * If we're in the passive state, use _TSP's value. Otherwise * use the default polling frequency (e.g. _TZP). If no polling * frequency is specified then we'll wait forever (at least until * a thermal event occurs). Note that _TSP and _TZD values are * given in 1/10th seconds (we must covert to milliseconds). */ if (tz->state.passive) sleep_time = tz->trips.passive.tsp * 100; else if (tz->polling_frequency > 0) sleep_time = tz->polling_frequency * 100; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "%s: temperature[%lu] sleep[%lu]\n", tz->name, tz->temperature, sleep_time)); /* * Schedule Next Poll * ------------------ */ if (!sleep_time) { if (timer_pending(&(tz->timer))) del_timer(&(tz->timer)); } else { if (timer_pending(&(tz->timer))) mod_timer(&(tz->timer), (HZ * sleep_time) / 1000); else { tz->timer.data = (unsigned long)tz; tz->timer.function = acpi_thermal_run; tz->timer.expires = jiffies + (HZ * sleep_time) / 1000; add_timer(&(tz->timer)); } } return; } /* -------------------------------------------------------------------------- FS Interface (/proc) -------------------------------------------------------------------------- */ static struct proc_dir_entry *acpi_thermal_dir; static int acpi_thermal_state_seq_show(struct seq_file *seq, void *offset) { struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; if (!tz) goto end; seq_puts(seq, "state: "); if (!tz->state.critical && !tz->state.hot && !tz->state.passive && !tz->state.active) seq_puts(seq, "ok\n"); else { if (tz->state.critical) seq_puts(seq, "critical "); if (tz->state.hot) seq_puts(seq, "hot "); if (tz->state.passive) seq_puts(seq, "passive "); if (tz->state.active) seq_printf(seq, "active[%d]", tz->state.active_index); seq_puts(seq, "\n"); } end: return 0; } static int acpi_thermal_state_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_thermal_state_seq_show, PDE(inode)->data); } static int acpi_thermal_temp_seq_show(struct seq_file *seq, void *offset) { int result = 0; struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; if (!tz) goto end; result = acpi_thermal_get_temperature(tz); if (result) goto end; seq_printf(seq, "temperature: %ld C\n", KELVIN_TO_CELSIUS(tz->temperature)); end: return 0; } static int acpi_thermal_temp_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_thermal_temp_seq_show, PDE(inode)->data); } static int acpi_thermal_trip_seq_show(struct seq_file *seq, void *offset) { struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; int i = 0; int j = 0; if (!tz) goto end; if (tz->trips.critical.flags.valid) seq_printf(seq, "critical (S5): %ld C\n", KELVIN_TO_CELSIUS(tz->trips.critical.temperature)); if (tz->trips.hot.flags.valid) seq_printf(seq, "hot (S4): %ld C\n", KELVIN_TO_CELSIUS(tz->trips.hot.temperature)); if (tz->trips.passive.flags.valid) { seq_printf(seq, "passive: %ld C: tc1=%lu tc2=%lu tsp=%lu devices=", KELVIN_TO_CELSIUS(tz->trips.passive.temperature), tz->trips.passive.tc1, tz->trips.passive.tc2, tz->trips.passive.tsp); for (j = 0; j < tz->trips.passive.devices.count; j++) { seq_printf(seq, "0x%p ", tz->trips.passive.devices.handles[j]); } seq_puts(seq, "\n"); } for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) { if (!(tz->trips.active[i].flags.valid)) break; seq_printf(seq, "active[%d]: %ld C: devices=", i, KELVIN_TO_CELSIUS(tz->trips.active[i].temperature)); for (j = 0; j < tz->trips.active[i].devices.count; j++) seq_printf(seq, "0x%p ", tz->trips.active[i].devices.handles[j]); seq_puts(seq, "\n"); } end: return 0; } static int acpi_thermal_trip_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_thermal_trip_seq_show, PDE(inode)->data); } static ssize_t acpi_thermal_write_trip_points(struct file *file, const char __user * buffer, size_t count, loff_t * ppos) { struct seq_file *m = (struct seq_file *)file->private_data; struct acpi_thermal *tz = (struct acpi_thermal *)m->private; char *limit_string; int num, critical, hot, passive; int *active; int i = 0; limit_string = kmalloc(ACPI_THERMAL_MAX_LIMIT_STR_LEN, GFP_KERNEL); if (!limit_string) return -ENOMEM; memset(limit_string, 0, ACPI_THERMAL_MAX_LIMIT_STR_LEN); active = kmalloc(ACPI_THERMAL_MAX_ACTIVE * sizeof(int), GFP_KERNEL); if (!active) { kfree(limit_string); return -ENOMEM; } if (!tz || (count > ACPI_THERMAL_MAX_LIMIT_STR_LEN - 1)) { count = -EINVAL; goto end; } if (copy_from_user(limit_string, buffer, count)) { count = -EFAULT; goto end; } limit_string[count] = '\0'; num = sscanf(limit_string, "%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d:%d", &critical, &hot, &passive, &active[0], &active[1], &active[2], &active[3], &active[4], &active[5], &active[6], &active[7], &active[8], &active[9]); if (!(num >= 5 && num < (ACPI_THERMAL_MAX_ACTIVE + 3))) { count = -EINVAL; goto end; } tz->trips.critical.temperature = CELSIUS_TO_KELVIN(critical); tz->trips.hot.temperature = CELSIUS_TO_KELVIN(hot); tz->trips.passive.temperature = CELSIUS_TO_KELVIN(passive); for (i = 0; i < num - 3; i++) { if (!(tz->trips.active[i].flags.valid)) break; tz->trips.active[i].temperature = CELSIUS_TO_KELVIN(active[i]); } end: kfree(active); kfree(limit_string); return count; } static int acpi_thermal_cooling_seq_show(struct seq_file *seq, void *offset) { struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; if (!tz) goto end; if (!tz->flags.cooling_mode) { seq_puts(seq, "<setting not supported>\n"); } if (tz->cooling_mode == ACPI_THERMAL_MODE_CRITICAL) seq_printf(seq, "cooling mode: critical\n"); else seq_printf(seq, "cooling mode: %s\n", tz->cooling_mode ? "passive" : "active"); end: return 0; } static int acpi_thermal_cooling_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_thermal_cooling_seq_show, PDE(inode)->data); } static ssize_t acpi_thermal_write_cooling_mode(struct file *file, const char __user * buffer, size_t count, loff_t * ppos) { struct seq_file *m = (struct seq_file *)file->private_data; struct acpi_thermal *tz = (struct acpi_thermal *)m->private; int result = 0; char mode_string[12] = { '\0' }; if (!tz || (count > sizeof(mode_string) - 1)) return -EINVAL; if (!tz->flags.cooling_mode) return -ENODEV; if (copy_from_user(mode_string, buffer, count)) return -EFAULT; mode_string[count] = '\0'; result = acpi_thermal_set_cooling_mode(tz, simple_strtoul(mode_string, NULL, 0)); if (result) return result; acpi_thermal_check(tz); return count; } static int acpi_thermal_polling_seq_show(struct seq_file *seq, void *offset) { struct acpi_thermal *tz = (struct acpi_thermal *)seq->private; if (!tz) goto end; if (!tz->polling_frequency) { seq_puts(seq, "<polling disabled>\n"); goto end; } seq_printf(seq, "polling frequency: %lu seconds\n", (tz->polling_frequency / 10)); end: return 0; } static int acpi_thermal_polling_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_thermal_polling_seq_show, PDE(inode)->data); } static ssize_t acpi_thermal_write_polling(struct file *file, const char __user * buffer, size_t count, loff_t * ppos) { struct seq_file *m = (struct seq_file *)file->private_data; struct acpi_thermal *tz = (struct acpi_thermal *)m->private; int result = 0; char polling_string[12] = { '\0' }; int seconds = 0; if (!tz || (count > sizeof(polling_string) - 1)) return -EINVAL; if (copy_from_user(polling_string, buffer, count)) return -EFAULT; polling_string[count] = '\0'; seconds = simple_strtoul(polling_string, NULL, 0); result = acpi_thermal_set_polling(tz, seconds); if (result) return result; acpi_thermal_check(tz); return count; } static int acpi_thermal_add_fs(struct acpi_device *device) { struct proc_dir_entry *entry = NULL; if (!acpi_device_dir(device)) { acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device), acpi_thermal_dir); if (!acpi_device_dir(device)) return -ENODEV; acpi_device_dir(device)->owner = THIS_MODULE; } /* 'state' [R] */ entry = create_proc_entry(ACPI_THERMAL_FILE_STATE, S_IRUGO, acpi_device_dir(device)); if (!entry) return -ENODEV; else { entry->proc_fops = &acpi_thermal_state_fops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } /* 'temperature' [R] */ entry = create_proc_entry(ACPI_THERMAL_FILE_TEMPERATURE, S_IRUGO, acpi_device_dir(device)); if (!entry) return -ENODEV; else { entry->proc_fops = &acpi_thermal_temp_fops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } /* 'trip_points' [R/W] */ entry = create_proc_entry(ACPI_THERMAL_FILE_TRIP_POINTS, S_IFREG | S_IRUGO | S_IWUSR, acpi_device_dir(device)); if (!entry) return -ENODEV; else { entry->proc_fops = &acpi_thermal_trip_fops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } /* 'cooling_mode' [R/W] */ entry = create_proc_entry(ACPI_THERMAL_FILE_COOLING_MODE, S_IFREG | S_IRUGO | S_IWUSR, acpi_device_dir(device)); if (!entry) return -ENODEV; else { entry->proc_fops = &acpi_thermal_cooling_fops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } /* 'polling_frequency' [R/W] */ entry = create_proc_entry(ACPI_THERMAL_FILE_POLLING_FREQ, S_IFREG | S_IRUGO | S_IWUSR, acpi_device_dir(device)); if (!entry) return -ENODEV; else { entry->proc_fops = &acpi_thermal_polling_fops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } return 0; } static int acpi_thermal_remove_fs(struct acpi_device *device) { if (acpi_device_dir(device)) { remove_proc_entry(ACPI_THERMAL_FILE_POLLING_FREQ, acpi_device_dir(device)); remove_proc_entry(ACPI_THERMAL_FILE_COOLING_MODE, acpi_device_dir(device)); remove_proc_entry(ACPI_THERMAL_FILE_TRIP_POINTS, acpi_device_dir(device)); remove_proc_entry(ACPI_THERMAL_FILE_TEMPERATURE, acpi_device_dir(device)); remove_proc_entry(ACPI_THERMAL_FILE_STATE, acpi_device_dir(device)); remove_proc_entry(acpi_device_bid(device), acpi_thermal_dir); acpi_device_dir(device) = NULL; } return 0; } /* -------------------------------------------------------------------------- Driver Interface -------------------------------------------------------------------------- */ static void acpi_thermal_notify(acpi_handle handle, u32 event, void *data) { struct acpi_thermal *tz = (struct acpi_thermal *)data; struct acpi_device *device = NULL; if (!tz) return; device = tz->device; switch (event) { case ACPI_THERMAL_NOTIFY_TEMPERATURE: acpi_thermal_check(tz); break; case ACPI_THERMAL_NOTIFY_THRESHOLDS: acpi_thermal_get_trip_points(tz); acpi_thermal_check(tz); acpi_bus_generate_event(device, event, 0); break; case ACPI_THERMAL_NOTIFY_DEVICES: if (tz->flags.devices) acpi_thermal_get_devices(tz); acpi_bus_generate_event(device, event, 0); break; default: ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Unsupported event [0x%x]\n", event)); break; } return; } static int acpi_thermal_get_info(struct acpi_thermal *tz) { int result = 0; if (!tz) return -EINVAL; /* Get temperature [_TMP] (required) */ result = acpi_thermal_get_temperature(tz); if (result) return result; /* Get trip points [_CRT, _PSV, etc.] (required) */ result = acpi_thermal_get_trip_points(tz); if (result) return result; /* Set the cooling mode [_SCP] to active cooling (default) */ result = acpi_thermal_set_cooling_mode(tz, ACPI_THERMAL_MODE_ACTIVE); if (!result) tz->flags.cooling_mode = 1; else { /* Oh,we have not _SCP method. Generally show cooling_mode by _ACx, _PSV,spec 12.2 */ tz->flags.cooling_mode = 0; if (tz->trips.active[0].flags.valid && tz->trips.passive.flags.valid) { if (tz->trips.passive.temperature > tz->trips.active[0].temperature) tz->cooling_mode = ACPI_THERMAL_MODE_ACTIVE; else tz->cooling_mode = ACPI_THERMAL_MODE_PASSIVE; } else if (!tz->trips.active[0].flags.valid && tz->trips.passive.flags.valid) { tz->cooling_mode = ACPI_THERMAL_MODE_PASSIVE; } else if (tz->trips.active[0].flags.valid && !tz->trips.passive.flags.valid) { tz->cooling_mode = ACPI_THERMAL_MODE_ACTIVE; } else { /* _ACx and _PSV are optional, but _CRT is required */ tz->cooling_mode = ACPI_THERMAL_MODE_CRITICAL; } } /* Get default polling frequency [_TZP] (optional) */ if (tzp) tz->polling_frequency = tzp; else acpi_thermal_get_polling_frequency(tz); /* Get devices in this thermal zone [_TZD] (optional) */ result = acpi_thermal_get_devices(tz); if (!result) tz->flags.devices = 1; return 0; } static int acpi_thermal_add(struct acpi_device *device) { int result = 0; acpi_status status = AE_OK; struct acpi_thermal *tz = NULL; if (!device) return -EINVAL; tz = kmalloc(sizeof(struct acpi_thermal), GFP_KERNEL); if (!tz) return -ENOMEM; memset(tz, 0, sizeof(struct acpi_thermal)); tz->device = device; strcpy(tz->name, device->pnp.bus_id); strcpy(acpi_device_name(device), ACPI_THERMAL_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_THERMAL_CLASS); acpi_driver_data(device) = tz; result = acpi_thermal_get_info(tz); if (result) goto end; result = acpi_thermal_add_fs(device); if (result) goto end; init_timer(&tz->timer); acpi_thermal_check(tz); status = acpi_install_notify_handler(device->handle, ACPI_DEVICE_NOTIFY, acpi_thermal_notify, tz); if (ACPI_FAILURE(status)) { result = -ENODEV; goto end; } printk(KERN_INFO PREFIX "%s [%s] (%ld C)\n", acpi_device_name(device), acpi_device_bid(device), KELVIN_TO_CELSIUS(tz->temperature)); end: if (result) { acpi_thermal_remove_fs(device); kfree(tz); } return result; } static int acpi_thermal_remove(struct acpi_device *device, int type) { acpi_status status = AE_OK; struct acpi_thermal *tz = NULL; if (!device || !acpi_driver_data(device)) return -EINVAL; tz = (struct acpi_thermal *)acpi_driver_data(device); /* avoid timer adding new defer task */ tz->zombie = 1; /* wait for running timer (on other CPUs) finish */ del_timer_sync(&(tz->timer)); /* synchronize deferred task */ acpi_os_wait_events_complete(NULL); /* deferred task may reinsert timer */ del_timer_sync(&(tz->timer)); status = acpi_remove_notify_handler(device->handle, ACPI_DEVICE_NOTIFY, acpi_thermal_notify); /* Terminate policy */ if (tz->trips.passive.flags.valid && tz->trips.passive.flags.enabled) { tz->trips.passive.flags.enabled = 0; acpi_thermal_passive(tz); } if (tz->trips.active[0].flags.valid && tz->trips.active[0].flags.enabled) { tz->trips.active[0].flags.enabled = 0; acpi_thermal_active(tz); } acpi_thermal_remove_fs(device); kfree(tz); return 0; } static int acpi_thermal_resume(struct acpi_device *device, int state) { struct acpi_thermal *tz = NULL; int i; if (!device || !acpi_driver_data(device)) return -EINVAL; tz = (struct acpi_thermal *)acpi_driver_data(device); acpi_thermal_get_temperature(tz); for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE; i++) { if (tz->trips.active[i].flags.valid) { tz->temperature = tz->trips.active[i].temperature; tz->trips.active[i].flags.enabled = 0; acpi_thermal_active(tz); tz->state.active |= tz->trips.active[i].flags.enabled; tz->state.active_index = i; } } acpi_thermal_check(tz); return AE_OK; } static int __init acpi_thermal_init(void) { int result = 0; acpi_thermal_dir = proc_mkdir(ACPI_THERMAL_CLASS, acpi_root_dir); if (!acpi_thermal_dir) return -ENODEV; acpi_thermal_dir->owner = THIS_MODULE; result = acpi_bus_register_driver(&acpi_thermal_driver); if (result < 0) { remove_proc_entry(ACPI_THERMAL_CLASS, acpi_root_dir); return -ENODEV; } return 0; } static void __exit acpi_thermal_exit(void) { acpi_bus_unregister_driver(&acpi_thermal_driver); remove_proc_entry(ACPI_THERMAL_CLASS, acpi_root_dir); return; } module_init(acpi_thermal_init); module_exit(acpi_thermal_exit);