/* * AR6K device layer that handles register level I/O * * Copyright (c) 2007 Atheros Communications Inc. * All rights reserved. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation; * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * * */ #include "a_config.h" #include "athdefs.h" #include "a_types.h" #include "AR6Khwreg.h" #include "a_osapi.h" #include "a_debug.h" #include "hif.h" #include "htc_packet.h" #include "ar6k.h" #define MAILBOX_FOR_BLOCK_SIZE 1 extern A_UINT32 resetok; static A_STATUS DevEnableInterrupts(AR6K_DEVICE *pDev); static A_STATUS DevDisableInterrupts(AR6K_DEVICE *pDev); #define LOCK_AR6K(p) A_MUTEX_LOCK(&(p)->Lock); #define UNLOCK_AR6K(p) A_MUTEX_UNLOCK(&(p)->Lock); void AR6KFreeIOPacket(AR6K_DEVICE *pDev, HTC_PACKET *pPacket) { LOCK_AR6K(pDev); HTC_PACKET_ENQUEUE(&pDev->RegisterIOList,pPacket); UNLOCK_AR6K(pDev); } HTC_PACKET *AR6KAllocIOPacket(AR6K_DEVICE *pDev) { HTC_PACKET *pPacket; LOCK_AR6K(pDev); pPacket = HTC_PACKET_DEQUEUE(&pDev->RegisterIOList); UNLOCK_AR6K(pDev); return pPacket; } A_STATUS DevSetup(AR6K_DEVICE *pDev) { A_UINT32 mailboxaddrs[AR6K_MAILBOXES]; A_UINT32 blocksizes[AR6K_MAILBOXES]; A_STATUS status = A_OK; int i; AR_DEBUG_ASSERT(AR6K_IRQ_PROC_REGS_SIZE == 16); AR_DEBUG_ASSERT(AR6K_IRQ_ENABLE_REGS_SIZE == 4); do { /* give a handle to HIF for this target */ HIFSetHandle(pDev->HIFDevice, (void *)pDev); /* initialize our free list of IO packets */ INIT_HTC_PACKET_QUEUE(&pDev->RegisterIOList); A_MUTEX_INIT(&pDev->Lock); /* get the addresses for all 4 mailboxes */ status = HIFConfigureDevice(pDev->HIFDevice, HIF_DEVICE_GET_MBOX_ADDR, mailboxaddrs, sizeof(mailboxaddrs)); if (status != A_OK) { AR_DEBUG_ASSERT(FALSE); break; } /* carve up register I/O packets (these are for ASYNC register I/O ) */ for (i = 0; i < AR6K_MAX_REG_IO_BUFFERS; i++) { HTC_PACKET *pIOPacket; pIOPacket = &pDev->RegIOBuffers[i].HtcPacket; SET_HTC_PACKET_INFO_RX_REFILL(pIOPacket, pDev, pDev->RegIOBuffers[i].Buffer, AR6K_REG_IO_BUFFER_SIZE, 0); /* don't care */ AR6KFreeIOPacket(pDev,pIOPacket); } /* get the address of the mailbox we are using */ pDev->MailboxAddress = mailboxaddrs[HTC_MAILBOX]; /* get the block sizes */ status = HIFConfigureDevice(pDev->HIFDevice, HIF_DEVICE_GET_MBOX_BLOCK_SIZE, blocksizes, sizeof(blocksizes)); if (status != A_OK) { AR_DEBUG_ASSERT(FALSE); break; } /* note: we actually get the block size of a mailbox other than 0, for SDIO the block * size on mailbox 0 is artificially set to 1. So we use the block size that is set * for the other 3 mailboxes */ pDev->BlockSize = blocksizes[MAILBOX_FOR_BLOCK_SIZE]; /* must be a power of 2 */ AR_DEBUG_ASSERT((pDev->BlockSize & (pDev->BlockSize - 1)) == 0); /* assemble mask, used for padding to a block */ pDev->BlockMask = pDev->BlockSize - 1; AR_DEBUG_PRINTF(ATH_DEBUG_TRC,("BlockSize: %d, MailboxAddress:0x%X \n", pDev->BlockSize, pDev->MailboxAddress)); pDev->GetPendingEventsFunc = NULL; /* see if the HIF layer implements the get pending events function */ HIFConfigureDevice(pDev->HIFDevice, HIF_DEVICE_GET_PENDING_EVENTS_FUNC, &pDev->GetPendingEventsFunc, sizeof(pDev->GetPendingEventsFunc)); /* assume we can process HIF interrupt events asynchronously */ pDev->HifIRQProcessingMode = HIF_DEVICE_IRQ_ASYNC_SYNC; /* see if the HIF layer overrides this assumption */ HIFConfigureDevice(pDev->HIFDevice, HIF_DEVICE_GET_IRQ_PROC_MODE, &pDev->HifIRQProcessingMode, sizeof(pDev->HifIRQProcessingMode)); switch (pDev->HifIRQProcessingMode) { case HIF_DEVICE_IRQ_SYNC_ONLY: AR_DEBUG_PRINTF(ATH_DEBUG_TRC,("HIF Interrupt processing is SYNC ONLY\n")); break; case HIF_DEVICE_IRQ_ASYNC_SYNC: AR_DEBUG_PRINTF(ATH_DEBUG_TRC,("HIF Interrupt processing is ASYNC and SYNC\n")); break; default: AR_DEBUG_ASSERT(FALSE); } pDev->HifMaskUmaskRecvEvent = NULL; /* see if the HIF layer implements the mask/unmask recv events function */ HIFConfigureDevice(pDev->HIFDevice, HIF_DEVICE_GET_RECV_EVENT_MASK_UNMASK_FUNC, &pDev->HifMaskUmaskRecvEvent, sizeof(pDev->HifMaskUmaskRecvEvent)); AR_DEBUG_PRINTF(ATH_DEBUG_TRC,("HIF special overrides : 0x%X , 0x%X\n", (A_UINT32)pDev->GetPendingEventsFunc, (A_UINT32)pDev->HifMaskUmaskRecvEvent)); status = DevDisableInterrupts(pDev); } while (FALSE); if (A_FAILED(status)) { /* make sure handle is cleared */ HIFSetHandle(pDev->HIFDevice, NULL); } return status; } static A_STATUS DevEnableInterrupts(AR6K_DEVICE *pDev) { A_STATUS status; AR6K_IRQ_ENABLE_REGISTERS regs; LOCK_AR6K(pDev); /* Enable all the interrupts except for the dragon interrupt */ pDev->IrqEnableRegisters.int_status_enable = INT_STATUS_ENABLE_ERROR_SET(0x01) | INT_STATUS_ENABLE_CPU_SET(0x01) | INT_STATUS_ENABLE_COUNTER_SET(0x01); if (NULL == pDev->GetPendingEventsFunc) { pDev->IrqEnableRegisters.int_status_enable |= INT_STATUS_ENABLE_MBOX_DATA_SET(0x01); } else { /* The HIF layer provided us with a pending events function which means that * the detection of pending mbox messages is handled in the HIF layer. * This is the case for the SPI2 interface. * In the normal case we enable MBOX interrupts, for the case * with HIFs that offer this mechanism, we keep these interrupts * masked */ pDev->IrqEnableRegisters.int_status_enable &= ~INT_STATUS_ENABLE_MBOX_DATA_SET(0x01); } /* Set up the CPU Interrupt Status Register */ pDev->IrqEnableRegisters.cpu_int_status_enable = CPU_INT_STATUS_ENABLE_BIT_SET(0x00); /* Set up the Error Interrupt Status Register */ pDev->IrqEnableRegisters.error_status_enable = ERROR_STATUS_ENABLE_RX_UNDERFLOW_SET(0x01) | ERROR_STATUS_ENABLE_TX_OVERFLOW_SET(0x01); /* Set up the Counter Interrupt Status Register (only for debug interrupt to catch fatal errors) */ pDev->IrqEnableRegisters.counter_int_status_enable = COUNTER_INT_STATUS_ENABLE_BIT_SET(AR6K_TARGET_DEBUG_INTR_MASK); /* copy into our temp area */ A_MEMCPY(®s,&pDev->IrqEnableRegisters,AR6K_IRQ_ENABLE_REGS_SIZE); UNLOCK_AR6K(pDev); /* always synchronous */ status = HIFReadWrite(pDev->HIFDevice, INT_STATUS_ENABLE_ADDRESS, ®s.int_status_enable, AR6K_IRQ_ENABLE_REGS_SIZE, HIF_WR_SYNC_BYTE_INC, NULL); if (status != A_OK) { /* Can't write it for some reason */ AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to update interrupt control registers err: %d\n", status)); } return status; } static A_STATUS DevDisableInterrupts(AR6K_DEVICE *pDev) { AR6K_IRQ_ENABLE_REGISTERS regs; LOCK_AR6K(pDev); /* Disable all interrupts */ pDev->IrqEnableRegisters.int_status_enable = 0; pDev->IrqEnableRegisters.cpu_int_status_enable = 0; pDev->IrqEnableRegisters.error_status_enable = 0; pDev->IrqEnableRegisters.counter_int_status_enable = 0; /* copy into our temp area */ A_MEMCPY(®s,&pDev->IrqEnableRegisters,AR6K_IRQ_ENABLE_REGS_SIZE); UNLOCK_AR6K(pDev); /* always synchronous */ return HIFReadWrite(pDev->HIFDevice, INT_STATUS_ENABLE_ADDRESS, ®s.int_status_enable, AR6K_IRQ_ENABLE_REGS_SIZE, HIF_WR_SYNC_BYTE_INC, NULL); } /* enable device interrupts */ A_STATUS DevUnmaskInterrupts(AR6K_DEVICE *pDev) { /* Unmask the host controller interrupts */ HIFUnMaskInterrupt(pDev->HIFDevice); return DevEnableInterrupts(pDev); } /* disable all device interrupts */ A_STATUS DevMaskInterrupts(AR6K_DEVICE *pDev) { A_STATUS status; status = DevDisableInterrupts(pDev); if (A_SUCCESS(status)) { /* Disable the interrupt at the HIF layer */ HIFMaskInterrupt(pDev->HIFDevice); } return status; } /* callback when our fetch to enable/disable completes */ static void DevDoEnableDisableRecvAsyncHandler(void *Context, HTC_PACKET *pPacket) { AR6K_DEVICE *pDev = (AR6K_DEVICE *)Context; AR_DEBUG_PRINTF(ATH_DEBUG_IRQ,("+DevDoEnableDisableRecvAsyncHandler: (dev: 0x%X)\n", (A_UINT32)pDev)); if (A_FAILED(pPacket->Status)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, (" Failed to disable receiver, status:%d \n", pPacket->Status)); } /* free this IO packet */ AR6KFreeIOPacket(pDev,pPacket); AR_DEBUG_PRINTF(ATH_DEBUG_IRQ,("-DevDoEnableDisableRecvAsyncHandler \n")); } /* disable packet reception (used in case the host runs out of buffers) * this is the "override" method when the HIF reports another methods to * disable recv events */ static A_STATUS DevDoEnableDisableRecvOverride(AR6K_DEVICE *pDev, A_BOOL EnableRecv, A_BOOL AsyncMode) { A_STATUS status = A_OK; HTC_PACKET *pIOPacket = NULL; AR_DEBUG_PRINTF(ATH_DEBUG_TRC,("DevDoEnableDisableRecvOverride: Enable:%d Mode:%d\n", EnableRecv,AsyncMode)); do { if (AsyncMode) { pIOPacket = AR6KAllocIOPacket(pDev); if (NULL == pIOPacket) { status = A_NO_MEMORY; AR_DEBUG_ASSERT(FALSE); break; } /* stick in our completion routine when the I/O operation completes */ pIOPacket->Completion = DevDoEnableDisableRecvAsyncHandler; pIOPacket->pContext = pDev; /* call the HIF layer override and do this asynchronously */ status = pDev->HifMaskUmaskRecvEvent(pDev->HIFDevice, EnableRecv ? HIF_UNMASK_RECV : HIF_MASK_RECV, pIOPacket); break; } /* if we get here we are doing it synchronously */ status = pDev->HifMaskUmaskRecvEvent(pDev->HIFDevice, EnableRecv ? HIF_UNMASK_RECV : HIF_MASK_RECV, NULL); } while (FALSE); if (A_FAILED(status) && (pIOPacket != NULL)) { AR6KFreeIOPacket(pDev,pIOPacket); } return status; } /* disable packet reception (used in case the host runs out of buffers) * this is the "normal" method using the interrupt enable registers through * the host I/F */ static A_STATUS DevDoEnableDisableRecvNormal(AR6K_DEVICE *pDev, A_BOOL EnableRecv, A_BOOL AsyncMode) { A_STATUS status = A_OK; HTC_PACKET *pIOPacket = NULL; AR6K_IRQ_ENABLE_REGISTERS regs; /* take the lock to protect interrupt enable shadows */ LOCK_AR6K(pDev); if (EnableRecv) { pDev->IrqEnableRegisters.int_status_enable |= INT_STATUS_ENABLE_MBOX_DATA_SET(0x01); } else { pDev->IrqEnableRegisters.int_status_enable &= ~INT_STATUS_ENABLE_MBOX_DATA_SET(0x01); } /* copy into our temp area */ A_MEMCPY(®s,&pDev->IrqEnableRegisters,AR6K_IRQ_ENABLE_REGS_SIZE); UNLOCK_AR6K(pDev); do { if (AsyncMode) { pIOPacket = AR6KAllocIOPacket(pDev); if (NULL == pIOPacket) { status = A_NO_MEMORY; AR_DEBUG_ASSERT(FALSE); break; } /* copy values to write to our async I/O buffer */ A_MEMCPY(pIOPacket->pBuffer,®s,AR6K_IRQ_ENABLE_REGS_SIZE); /* stick in our completion routine when the I/O operation completes */ pIOPacket->Completion = DevDoEnableDisableRecvAsyncHandler; pIOPacket->pContext = pDev; /* write it out asynchronously */ HIFReadWrite(pDev->HIFDevice, INT_STATUS_ENABLE_ADDRESS, pIOPacket->pBuffer, AR6K_IRQ_ENABLE_REGS_SIZE, HIF_WR_ASYNC_BYTE_INC, pIOPacket); break; } /* if we get here we are doing it synchronously */ status = HIFReadWrite(pDev->HIFDevice, INT_STATUS_ENABLE_ADDRESS, ®s.int_status_enable, AR6K_IRQ_ENABLE_REGS_SIZE, HIF_WR_SYNC_BYTE_INC, NULL); } while (FALSE); if (A_FAILED(status) && (pIOPacket != NULL)) { AR6KFreeIOPacket(pDev,pIOPacket); } return status; } A_STATUS DevStopRecv(AR6K_DEVICE *pDev, A_BOOL AsyncMode) { if (NULL == pDev->HifMaskUmaskRecvEvent) { return DevDoEnableDisableRecvNormal(pDev,FALSE,AsyncMode); } else { return DevDoEnableDisableRecvOverride(pDev,FALSE,AsyncMode); } } A_STATUS DevEnableRecv(AR6K_DEVICE *pDev, A_BOOL AsyncMode) { if (NULL == pDev->HifMaskUmaskRecvEvent) { return DevDoEnableDisableRecvNormal(pDev,TRUE,AsyncMode); } else { return DevDoEnableDisableRecvOverride(pDev,TRUE,AsyncMode); } } void DevDumpRegisters(AR6K_IRQ_PROC_REGISTERS *pIrqProcRegs, AR6K_IRQ_ENABLE_REGISTERS *pIrqEnableRegs) { AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("\n<------- Register Table -------->\n")); if (pIrqProcRegs != NULL) { AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Int Status: 0x%x\n",pIrqProcRegs->host_int_status)); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("CPU Int Status: 0x%x\n",pIrqProcRegs->cpu_int_status)); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Error Int Status: 0x%x\n",pIrqProcRegs->error_int_status)); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Counter Int Status: 0x%x\n",pIrqProcRegs->counter_int_status)); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Mbox Frame: 0x%x\n",pIrqProcRegs->mbox_frame)); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Rx Lookahead Valid: 0x%x\n",pIrqProcRegs->rx_lookahead_valid)); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Rx Lookahead 0: 0x%x\n",pIrqProcRegs->rx_lookahead[0])); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Rx Lookahead 1: 0x%x\n",pIrqProcRegs->rx_lookahead[1])); } if (pIrqEnableRegs != NULL) { AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Int Status Enable: 0x%x\n",pIrqEnableRegs->int_status_enable)); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("Counter Int Status Enable: 0x%x\n",pIrqEnableRegs->counter_int_status_enable)); AR_DEBUG_PRINTF(ATH_DEBUG_DUMP, ("<------------------------------->\n")); } } #ifdef MBOXHW_UNIT_TEST /* This is a mailbox hardware unit test that must be called in a schedulable context * This test is very simple, it will send a list of buffers with a counting pattern * and the target will invert the data and send the message back * * the unit test has the following constraints: * * The target has at least 8 buffers of 256 bytes each. The host will send * the following pattern of buffers in rapid succession : * * 1 buffer - 128 bytes * 1 buffer - 256 bytes * 1 buffer - 512 bytes * 1 buffer - 1024 bytes * * The host will send the buffers to one mailbox and wait for buffers to be reflected * back from the same mailbox. The target sends the buffers FIFO order. * Once the final buffer has been received for a mailbox, the next mailbox is tested. * * * Note: To simplifythe test , we assume that the chosen buffer sizes * will fall on a nice block pad * * It is expected that higher-order tests will be written to stress the mailboxes using * a message-based protocol (with some performance timming) that can create more * randomness in the packets sent over mailboxes. * * */ #define A_ROUND_UP_PWR2(x, align) (((int) (x) + ((align)-1)) & ~((align)-1)) #define BUFFER_BLOCK_PAD 128 #if 0 #define BUFFER1 128 #define BUFFER2 256 #define BUFFER3 512 #define BUFFER4 1024 #endif #if 1 #define BUFFER1 80 #define BUFFER2 200 #define BUFFER3 444 #define BUFFER4 800 #endif #define TOTAL_BYTES (A_ROUND_UP_PWR2(BUFFER1,BUFFER_BLOCK_PAD) + \ A_ROUND_UP_PWR2(BUFFER2,BUFFER_BLOCK_PAD) + \ A_ROUND_UP_PWR2(BUFFER3,BUFFER_BLOCK_PAD) + \ A_ROUND_UP_PWR2(BUFFER4,BUFFER_BLOCK_PAD) ) #define TEST_BYTES (BUFFER1 + BUFFER2 + BUFFER3 + BUFFER4) #define TEST_CREDITS_RECV_TIMEOUT 100 static A_UINT8 g_Buffer[TOTAL_BYTES]; static A_UINT32 g_MailboxAddrs[AR6K_MAILBOXES]; static A_UINT32 g_BlockSizes[AR6K_MAILBOXES]; #define BUFFER_PROC_LIST_DEPTH 4 typedef struct _BUFFER_PROC_LIST{ A_UINT8 *pBuffer; A_UINT32 length; }BUFFER_PROC_LIST; #define PUSH_BUFF_PROC_ENTRY(pList,len,pCurrpos) \ { \ (pList)->pBuffer = (pCurrpos); \ (pList)->length = (len); \ (pCurrpos) += (len); \ (pList)++; \ } /* a simple and crude way to send different "message" sizes */ static void AssembleBufferList(BUFFER_PROC_LIST *pList) { A_UINT8 *pBuffer = g_Buffer; #if BUFFER_PROC_LIST_DEPTH < 4 #error "Buffer processing list depth is not deep enough!!" #endif PUSH_BUFF_PROC_ENTRY(pList,BUFFER1,pBuffer); PUSH_BUFF_PROC_ENTRY(pList,BUFFER2,pBuffer); PUSH_BUFF_PROC_ENTRY(pList,BUFFER3,pBuffer); PUSH_BUFF_PROC_ENTRY(pList,BUFFER4,pBuffer); } #define FILL_ZERO TRUE #define FILL_COUNTING FALSE static void InitBuffers(A_BOOL Zero) { A_UINT16 *pBuffer16 = (A_UINT16 *)g_Buffer; int i; /* fill buffer with 16 bit counting pattern or zeros */ for (i = 0; i < (TOTAL_BYTES / 2) ; i++) { if (!Zero) { pBuffer16[i] = (A_UINT16)i; } else { pBuffer16[i] = 0; } } } static A_BOOL CheckOneBuffer(A_UINT16 *pBuffer16, int Length) { int i; A_UINT16 startCount; A_BOOL success = TRUE; /* get the starting count */ startCount = pBuffer16[0]; /* invert it, this is the expected value */ startCount = ~startCount; /* scan the buffer and verify */ for (i = 0; i < (Length / 2) ; i++,startCount++) { /* target will invert all the data */ if ((A_UINT16)pBuffer16[i] != (A_UINT16)~startCount) { success = FALSE; AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Invalid Data Got:0x%X, Expecting:0x%X (offset:%d, total:%d) \n", pBuffer16[i], ((A_UINT16)~startCount), i, Length)); AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("0x%X 0x%X 0x%X 0x%X \n", pBuffer16[i], pBuffer16[i + 1], pBuffer16[i + 2],pBuffer16[i+3])); break; } } return success; } static A_BOOL CheckBuffers(void) { int i; A_BOOL success = TRUE; BUFFER_PROC_LIST checkList[BUFFER_PROC_LIST_DEPTH]; /* assemble the list */ AssembleBufferList(checkList); /* scan the buffers and verify */ for (i = 0; i < BUFFER_PROC_LIST_DEPTH ; i++) { success = CheckOneBuffer((A_UINT16 *)checkList[i].pBuffer, checkList[i].length); if (!success) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Buffer : 0x%X, Length:%d failed verify \n", (A_UINT32)checkList[i].pBuffer, checkList[i].length)); break; } } return success; } /* find the end marker for the last buffer we will be sending */ static A_UINT16 GetEndMarker(void) { A_UINT8 *pBuffer; BUFFER_PROC_LIST checkList[BUFFER_PROC_LIST_DEPTH]; /* fill up buffers with the normal counting pattern */ InitBuffers(FILL_COUNTING); /* assemble the list we will be sending down */ AssembleBufferList(checkList); /* point to the last 2 bytes of the last buffer */ pBuffer = &(checkList[BUFFER_PROC_LIST_DEPTH - 1].pBuffer[(checkList[BUFFER_PROC_LIST_DEPTH - 1].length) - 2]); /* the last count in the last buffer is the marker */ return (A_UINT16)pBuffer[0] | ((A_UINT16)pBuffer[1] << 8); } #define ATH_PRINT_OUT_ZONE ATH_DEBUG_ERR /* send the ordered buffers to the target */ static A_STATUS SendBuffers(AR6K_DEVICE *pDev, int mbox) { A_STATUS status = A_OK; A_UINT32 request = HIF_WR_SYNC_BLOCK_INC; BUFFER_PROC_LIST sendList[BUFFER_PROC_LIST_DEPTH]; int i; int totalBytes = 0; int paddedLength; int totalwPadding = 0; AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Sending buffers on mailbox : %d \n",mbox)); /* fill buffer with counting pattern */ InitBuffers(FILL_COUNTING); /* assemble the order in which we send */ AssembleBufferList(sendList); for (i = 0; i < BUFFER_PROC_LIST_DEPTH; i++) { /* we are doing block transfers, so we need to pad everything to a block size */ paddedLength = (sendList[i].length + (g_BlockSizes[mbox] - 1)) & (~(g_BlockSizes[mbox] - 1)); /* send each buffer synchronously */ status = HIFReadWrite(pDev->HIFDevice, g_MailboxAddrs[mbox], sendList[i].pBuffer, paddedLength, request, NULL); if (status != A_OK) { break; } totalBytes += sendList[i].length; totalwPadding += paddedLength; } AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Sent %d bytes (%d padded bytes) to mailbox : %d \n",totalBytes,totalwPadding,mbox)); return status; } /* poll the mailbox credit counter until we get a credit or timeout */ static A_STATUS GetCredits(AR6K_DEVICE *pDev, int mbox, int *pCredits) { A_STATUS status = A_OK; int timeout = TEST_CREDITS_RECV_TIMEOUT; A_UINT8 credits = 0; A_UINT32 address; while (TRUE) { /* Read the counter register to get credits, this auto-decrements */ address = COUNT_DEC_ADDRESS + (AR6K_MAILBOXES + mbox) * 4; status = HIFReadWrite(pDev->HIFDevice, address, &credits, sizeof(credits), HIF_RD_SYNC_BYTE_FIX, NULL); if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unable to decrement the command credit count register (mbox=%d)\n",mbox)); status = A_ERROR; break; } if (credits) { break; } timeout--; if (timeout <= 0) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, (" Timeout reading credit registers (mbox=%d, address:0x%X) \n",mbox,address)); status = A_ERROR; break; } /* delay a little, target may not be ready */ msleep(1000); } if (status == A_OK) { *pCredits = credits; } return status; } /* wait for the buffers to come back */ static A_STATUS RecvBuffers(AR6K_DEVICE *pDev, int mbox) { A_STATUS status = A_OK; A_UINT32 request = HIF_RD_SYNC_BLOCK_INC; BUFFER_PROC_LIST recvList[BUFFER_PROC_LIST_DEPTH]; int curBuffer; int credits; int i; int totalBytes = 0; int paddedLength; int totalwPadding = 0; AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Waiting for buffers on mailbox : %d \n",mbox)); /* zero the buffers */ InitBuffers(FILL_ZERO); /* assemble the order in which we should receive */ AssembleBufferList(recvList); curBuffer = 0; while (curBuffer < BUFFER_PROC_LIST_DEPTH) { /* get number of buffers that have been completed, this blocks * until we get at least 1 credit or it times out */ status = GetCredits(pDev, mbox, &credits); if (status != A_OK) { break; } AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Got %d messages on mailbox : %d \n",credits, mbox)); /* get all the buffers that are sitting on the queue */ for (i = 0; i < credits; i++) { AR_DEBUG_ASSERT(curBuffer < BUFFER_PROC_LIST_DEPTH); /* recv the current buffer synchronously, the buffers should come back in * order... with padding applied by the target */ paddedLength = (recvList[curBuffer].length + (g_BlockSizes[mbox] - 1)) & (~(g_BlockSizes[mbox] - 1)); status = HIFReadWrite(pDev->HIFDevice, g_MailboxAddrs[mbox], recvList[curBuffer].pBuffer, paddedLength, request, NULL); if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to read %d bytes on mailbox:%d : address:0x%X \n", recvList[curBuffer].length, mbox, g_MailboxAddrs[mbox])); break; } totalwPadding += paddedLength; totalBytes += recvList[curBuffer].length; curBuffer++; } if (status != A_OK) { break; } /* go back and get some more */ credits = 0; } if (totalBytes != TEST_BYTES) { AR_DEBUG_ASSERT(FALSE); } else { AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Got all buffers on mbox:%d total recv :%d (w/Padding : %d) \n", mbox, totalBytes, totalwPadding)); } return status; } static A_STATUS DoOneMboxHWTest(AR6K_DEVICE *pDev, int mbox) { A_STATUS status; do { /* send out buffers */ status = SendBuffers(pDev,mbox); if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Sending buffers Failed : %d mbox:%d\n",status,mbox)); break; } /* go get them, this will block */ status = RecvBuffers(pDev, mbox); if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Recv buffers Failed : %d mbox:%d\n",status,mbox)); break; } /* check the returned data patterns */ if (!CheckBuffers()) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Buffer Verify Failed : mbox:%d\n",mbox)); status = A_ERROR; break; } AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, (" Send/Recv success! mailbox : %d \n",mbox)); } while (FALSE); return status; } /* here is where the test starts */ A_STATUS DoMboxHWTest(AR6K_DEVICE *pDev) { int i; A_STATUS status; int credits = 0; A_UINT8 params[4]; int numBufs; int bufferSize; A_UINT16 temp; AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, (" DoMboxHWTest START - \n")); do { /* get the addresses for all 4 mailboxes */ status = HIFConfigureDevice(pDev->HIFDevice, HIF_DEVICE_GET_MBOX_ADDR, g_MailboxAddrs, sizeof(g_MailboxAddrs)); if (status != A_OK) { AR_DEBUG_ASSERT(FALSE); break; } /* get the block sizes */ status = HIFConfigureDevice(pDev->HIFDevice, HIF_DEVICE_GET_MBOX_BLOCK_SIZE, g_BlockSizes, sizeof(g_BlockSizes)); if (status != A_OK) { AR_DEBUG_ASSERT(FALSE); break; } /* note, the HIF layer usually reports mbox 0 to have a block size of * 1, but our test wants to run in block-mode for all mailboxes, so we treat all mailboxes * the same. */ g_BlockSizes[0] = g_BlockSizes[1]; AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Block Size to use: %d \n",g_BlockSizes[0])); if (g_BlockSizes[1] > BUFFER_BLOCK_PAD) { AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("%d Block size is too large for buffer pad %d\n", g_BlockSizes[1], BUFFER_BLOCK_PAD)); break; } AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Waiting for target.... \n")); /* the target lets us know it is ready by giving us 1 credit on * mailbox 0 */ status = GetCredits(pDev, 0, &credits); if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to wait for target ready \n")); break; } AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Target is ready ...\n")); /* read the first 4 scratch registers */ status = HIFReadWrite(pDev->HIFDevice, SCRATCH_ADDRESS, params, 4, HIF_RD_SYNC_BYTE_INC, NULL); if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to wait get parameters \n")); break; } numBufs = params[0]; bufferSize = (int)(((A_UINT16)params[2] << 8) | (A_UINT16)params[1]); AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Target parameters: bufs per mailbox:%d, buffer size:%d bytes (total space: %d, minimum required space (w/padding): %d) \n", numBufs, bufferSize, (numBufs * bufferSize), TOTAL_BYTES)); if ((numBufs * bufferSize) < TOTAL_BYTES) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Not Enough buffer space to run test! need:%d, got:%d \n", TOTAL_BYTES, (numBufs*bufferSize))); status = A_ERROR; break; } temp = GetEndMarker(); status = HIFReadWrite(pDev->HIFDevice, SCRATCH_ADDRESS + 4, (A_UINT8 *)&temp, 2, HIF_WR_SYNC_BYTE_INC, NULL); if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to write end marker \n")); break; } AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("End Marker: 0x%X \n",temp)); temp = (A_UINT16)g_BlockSizes[1]; /* convert to a mask */ temp = temp - 1; status = HIFReadWrite(pDev->HIFDevice, SCRATCH_ADDRESS + 6, (A_UINT8 *)&temp, 2, HIF_WR_SYNC_BYTE_INC, NULL); if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to write block mask \n")); break; } AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, ("Set Block Mask: 0x%X \n",temp)); /* execute the test on each mailbox */ for (i = 0; i < AR6K_MAILBOXES; i++) { status = DoOneMboxHWTest(pDev, i); if (status != A_OK) { break; } } } while (FALSE); if (status == A_OK) { AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, (" DoMboxHWTest DONE - SUCCESS! - \n")); } else { AR_DEBUG_PRINTF(ATH_PRINT_OUT_ZONE, (" DoMboxHWTest DONE - FAILED! - \n")); } /* don't let HTC_Start continue, the target is actually not running any HTC code */ return A_ERROR; } #endif