/* * * A driver for Nokia Connectivity Card DTL-1 devices * * Copyright (C) 2001-2002 Marcel Holtmann <marcel@holtmann.org> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation; * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The initial developer of the original code is David A. Hinds * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds * are Copyright (C) 1999 David A. Hinds. All Rights Reserved. * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/spinlock.h> #include <linux/moduleparam.h> #include <linux/skbuff.h> #include <linux/string.h> #include <linux/serial.h> #include <linux/serial_reg.h> #include <linux/bitops.h> #include <asm/system.h> #include <asm/io.h> #include <pcmcia/cs_types.h> #include <pcmcia/cs.h> #include <pcmcia/cistpl.h> #include <pcmcia/ciscode.h> #include <pcmcia/ds.h> #include <pcmcia/cisreg.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> /* ======================== Module parameters ======================== */ MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); MODULE_DESCRIPTION("Bluetooth driver for Nokia Connectivity Card DTL-1"); MODULE_LICENSE("GPL"); /* ======================== Local structures ======================== */ typedef struct dtl1_info_t { struct pcmcia_device *p_dev; dev_node_t node; struct hci_dev *hdev; spinlock_t lock; /* For serializing operations */ unsigned long flowmask; /* HCI flow mask */ int ri_latch; struct sk_buff_head txq; unsigned long tx_state; unsigned long rx_state; unsigned long rx_count; struct sk_buff *rx_skb; } dtl1_info_t; static int dtl1_config(struct pcmcia_device *link); static void dtl1_release(struct pcmcia_device *link); static void dtl1_detach(struct pcmcia_device *p_dev); /* Transmit states */ #define XMIT_SENDING 1 #define XMIT_WAKEUP 2 #define XMIT_WAITING 8 /* Receiver States */ #define RECV_WAIT_NSH 0 #define RECV_WAIT_DATA 1 typedef struct { u8 type; u8 zero; u16 len; } __attribute__ ((packed)) nsh_t; /* Nokia Specific Header */ #define NSHL 4 /* Nokia Specific Header Length */ /* ======================== Interrupt handling ======================== */ static int dtl1_write(unsigned int iobase, int fifo_size, __u8 *buf, int len) { int actual = 0; /* Tx FIFO should be empty */ if (!(inb(iobase + UART_LSR) & UART_LSR_THRE)) return 0; /* Fill FIFO with current frame */ while ((fifo_size-- > 0) && (actual < len)) { /* Transmit next byte */ outb(buf[actual], iobase + UART_TX); actual++; } return actual; } static void dtl1_write_wakeup(dtl1_info_t *info) { if (!info) { BT_ERR("Unknown device"); return; } if (test_bit(XMIT_WAITING, &(info->tx_state))) { set_bit(XMIT_WAKEUP, &(info->tx_state)); return; } if (test_and_set_bit(XMIT_SENDING, &(info->tx_state))) { set_bit(XMIT_WAKEUP, &(info->tx_state)); return; } do { register unsigned int iobase = info->p_dev->io.BasePort1; register struct sk_buff *skb; register int len; clear_bit(XMIT_WAKEUP, &(info->tx_state)); if (!pcmcia_dev_present(info->p_dev)) return; if (!(skb = skb_dequeue(&(info->txq)))) break; /* Send frame */ len = dtl1_write(iobase, 32, skb->data, skb->len); if (len == skb->len) { set_bit(XMIT_WAITING, &(info->tx_state)); kfree_skb(skb); } else { skb_pull(skb, len); skb_queue_head(&(info->txq), skb); } info->hdev->stat.byte_tx += len; } while (test_bit(XMIT_WAKEUP, &(info->tx_state))); clear_bit(XMIT_SENDING, &(info->tx_state)); } static void dtl1_control(dtl1_info_t *info, struct sk_buff *skb) { u8 flowmask = *(u8 *)skb->data; int i; printk(KERN_INFO "Bluetooth: Nokia control data ="); for (i = 0; i < skb->len; i++) { printk(" %02x", skb->data[i]); } printk("\n"); /* transition to active state */ if (((info->flowmask & 0x07) == 0) && ((flowmask & 0x07) != 0)) { clear_bit(XMIT_WAITING, &(info->tx_state)); dtl1_write_wakeup(info); } info->flowmask = flowmask; kfree_skb(skb); } static void dtl1_receive(dtl1_info_t *info) { unsigned int iobase; nsh_t *nsh; int boguscount = 0; if (!info) { BT_ERR("Unknown device"); return; } iobase = info->p_dev->io.BasePort1; do { info->hdev->stat.byte_rx++; /* Allocate packet */ if (info->rx_skb == NULL) if (!(info->rx_skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC))) { BT_ERR("Can't allocate mem for new packet"); info->rx_state = RECV_WAIT_NSH; info->rx_count = NSHL; return; } *skb_put(info->rx_skb, 1) = inb(iobase + UART_RX); nsh = (nsh_t *)info->rx_skb->data; info->rx_count--; if (info->rx_count == 0) { switch (info->rx_state) { case RECV_WAIT_NSH: info->rx_state = RECV_WAIT_DATA; info->rx_count = nsh->len + (nsh->len & 0x0001); break; case RECV_WAIT_DATA: bt_cb(info->rx_skb)->pkt_type = nsh->type; /* remove PAD byte if it exists */ if (nsh->len & 0x0001) { info->rx_skb->tail--; info->rx_skb->len--; } /* remove NSH */ skb_pull(info->rx_skb, NSHL); switch (bt_cb(info->rx_skb)->pkt_type) { case 0x80: /* control data for the Nokia Card */ dtl1_control(info, info->rx_skb); break; case 0x82: case 0x83: case 0x84: /* send frame to the HCI layer */ info->rx_skb->dev = (void *) info->hdev; bt_cb(info->rx_skb)->pkt_type &= 0x0f; hci_recv_frame(info->rx_skb); break; default: /* unknown packet */ BT_ERR("Unknown HCI packet with type 0x%02x received", bt_cb(info->rx_skb)->pkt_type); kfree_skb(info->rx_skb); break; } info->rx_state = RECV_WAIT_NSH; info->rx_count = NSHL; info->rx_skb = NULL; break; } } /* Make sure we don't stay here too long */ if (boguscount++ > 32) break; } while (inb(iobase + UART_LSR) & UART_LSR_DR); } static irqreturn_t dtl1_interrupt(int irq, void *dev_inst) { dtl1_info_t *info = dev_inst; unsigned int iobase; unsigned char msr; int boguscount = 0; int iir, lsr; if (!info || !info->hdev) { BT_ERR("Call of irq %d for unknown device", irq); return IRQ_NONE; } iobase = info->p_dev->io.BasePort1; spin_lock(&(info->lock)); iir = inb(iobase + UART_IIR) & UART_IIR_ID; while (iir) { /* Clear interrupt */ lsr = inb(iobase + UART_LSR); switch (iir) { case UART_IIR_RLSI: BT_ERR("RLSI"); break; case UART_IIR_RDI: /* Receive interrupt */ dtl1_receive(info); break; case UART_IIR_THRI: if (lsr & UART_LSR_THRE) { /* Transmitter ready for data */ dtl1_write_wakeup(info); } break; default: BT_ERR("Unhandled IIR=%#x", iir); break; } /* Make sure we don't stay here too long */ if (boguscount++ > 100) break; iir = inb(iobase + UART_IIR) & UART_IIR_ID; } msr = inb(iobase + UART_MSR); if (info->ri_latch ^ (msr & UART_MSR_RI)) { info->ri_latch = msr & UART_MSR_RI; clear_bit(XMIT_WAITING, &(info->tx_state)); dtl1_write_wakeup(info); } spin_unlock(&(info->lock)); return IRQ_HANDLED; } /* ======================== HCI interface ======================== */ static int dtl1_hci_open(struct hci_dev *hdev) { set_bit(HCI_RUNNING, &(hdev->flags)); return 0; } static int dtl1_hci_flush(struct hci_dev *hdev) { dtl1_info_t *info = (dtl1_info_t *)(hdev->driver_data); /* Drop TX queue */ skb_queue_purge(&(info->txq)); return 0; } static int dtl1_hci_close(struct hci_dev *hdev) { if (!test_and_clear_bit(HCI_RUNNING, &(hdev->flags))) return 0; dtl1_hci_flush(hdev); return 0; } static int dtl1_hci_send_frame(struct sk_buff *skb) { dtl1_info_t *info; struct hci_dev *hdev = (struct hci_dev *)(skb->dev); struct sk_buff *s; nsh_t nsh; if (!hdev) { BT_ERR("Frame for unknown HCI device (hdev=NULL)"); return -ENODEV; } info = (dtl1_info_t *)(hdev->driver_data); switch (bt_cb(skb)->pkt_type) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; nsh.type = 0x81; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; nsh.type = 0x82; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; nsh.type = 0x83; break; }; nsh.zero = 0; nsh.len = skb->len; s = bt_skb_alloc(NSHL + skb->len + 1, GFP_ATOMIC); if (!s) return -ENOMEM; skb_reserve(s, NSHL); memcpy(skb_put(s, skb->len), skb->data, skb->len); if (skb->len & 0x0001) *skb_put(s, 1) = 0; /* PAD */ /* Prepend skb with Nokia frame header and queue */ memcpy(skb_push(s, NSHL), &nsh, NSHL); skb_queue_tail(&(info->txq), s); dtl1_write_wakeup(info); kfree_skb(skb); return 0; } static void dtl1_hci_destruct(struct hci_dev *hdev) { } static int dtl1_hci_ioctl(struct hci_dev *hdev, unsigned int cmd, unsigned long arg) { return -ENOIOCTLCMD; } /* ======================== Card services HCI interaction ======================== */ static int dtl1_open(dtl1_info_t *info) { unsigned long flags; unsigned int iobase = info->p_dev->io.BasePort1; struct hci_dev *hdev; spin_lock_init(&(info->lock)); skb_queue_head_init(&(info->txq)); info->rx_state = RECV_WAIT_NSH; info->rx_count = NSHL; info->rx_skb = NULL; set_bit(XMIT_WAITING, &(info->tx_state)); /* Initialize HCI device */ hdev = hci_alloc_dev(); if (!hdev) { BT_ERR("Can't allocate HCI device"); return -ENOMEM; } info->hdev = hdev; hdev->type = HCI_PCCARD; hdev->driver_data = info; SET_HCIDEV_DEV(hdev, &info->p_dev->dev); hdev->open = dtl1_hci_open; hdev->close = dtl1_hci_close; hdev->flush = dtl1_hci_flush; hdev->send = dtl1_hci_send_frame; hdev->destruct = dtl1_hci_destruct; hdev->ioctl = dtl1_hci_ioctl; hdev->owner = THIS_MODULE; spin_lock_irqsave(&(info->lock), flags); /* Reset UART */ outb(0, iobase + UART_MCR); /* Turn off interrupts */ outb(0, iobase + UART_IER); /* Initialize UART */ outb(UART_LCR_WLEN8, iobase + UART_LCR); /* Reset DLAB */ outb((UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2), iobase + UART_MCR); info->ri_latch = inb(info->p_dev->io.BasePort1 + UART_MSR) & UART_MSR_RI; /* Turn on interrupts */ outb(UART_IER_RLSI | UART_IER_RDI | UART_IER_THRI, iobase + UART_IER); spin_unlock_irqrestore(&(info->lock), flags); /* Timeout before it is safe to send the first HCI packet */ msleep(2000); /* Register HCI device */ if (hci_register_dev(hdev) < 0) { BT_ERR("Can't register HCI device"); info->hdev = NULL; hci_free_dev(hdev); return -ENODEV; } return 0; } static int dtl1_close(dtl1_info_t *info) { unsigned long flags; unsigned int iobase = info->p_dev->io.BasePort1; struct hci_dev *hdev = info->hdev; if (!hdev) return -ENODEV; dtl1_hci_close(hdev); spin_lock_irqsave(&(info->lock), flags); /* Reset UART */ outb(0, iobase + UART_MCR); /* Turn off interrupts */ outb(0, iobase + UART_IER); spin_unlock_irqrestore(&(info->lock), flags); if (hci_unregister_dev(hdev) < 0) BT_ERR("Can't unregister HCI device %s", hdev->name); hci_free_dev(hdev); return 0; } static int dtl1_probe(struct pcmcia_device *link) { dtl1_info_t *info; /* Create new info device */ info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->p_dev = link; link->priv = info; link->io.Attributes1 = IO_DATA_PATH_WIDTH_8; link->io.NumPorts1 = 8; link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT; link->irq.IRQInfo1 = IRQ_LEVEL_ID; link->irq.Handler = dtl1_interrupt; link->irq.Instance = info; link->conf.Attributes = CONF_ENABLE_IRQ; link->conf.IntType = INT_MEMORY_AND_IO; return dtl1_config(link); } static void dtl1_detach(struct pcmcia_device *link) { dtl1_info_t *info = link->priv; dtl1_release(link); kfree(info); } static int get_tuple(struct pcmcia_device *handle, tuple_t *tuple, cisparse_t *parse) { int i; i = pcmcia_get_tuple_data(handle, tuple); if (i != CS_SUCCESS) return i; return pcmcia_parse_tuple(handle, tuple, parse); } static int first_tuple(struct pcmcia_device *handle, tuple_t *tuple, cisparse_t *parse) { if (pcmcia_get_first_tuple(handle, tuple) != CS_SUCCESS) return CS_NO_MORE_ITEMS; return get_tuple(handle, tuple, parse); } static int next_tuple(struct pcmcia_device *handle, tuple_t *tuple, cisparse_t *parse) { if (pcmcia_get_next_tuple(handle, tuple) != CS_SUCCESS) return CS_NO_MORE_ITEMS; return get_tuple(handle, tuple, parse); } static int dtl1_config(struct pcmcia_device *link) { dtl1_info_t *info = link->priv; tuple_t tuple; u_short buf[256]; cisparse_t parse; cistpl_cftable_entry_t *cf = &parse.cftable_entry; int i; tuple.TupleData = (cisdata_t *)buf; tuple.TupleOffset = 0; tuple.TupleDataMax = 255; tuple.Attributes = 0; tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; /* Look for a generic full-sized window */ link->io.NumPorts1 = 8; i = first_tuple(link, &tuple, &parse); while (i != CS_NO_MORE_ITEMS) { if ((i == CS_SUCCESS) && (cf->io.nwin == 1) && (cf->io.win[0].len > 8)) { link->conf.ConfigIndex = cf->index; link->io.BasePort1 = cf->io.win[0].base; link->io.NumPorts1 = cf->io.win[0].len; /*yo */ link->io.IOAddrLines = cf->io.flags & CISTPL_IO_LINES_MASK; i = pcmcia_request_io(link, &link->io); if (i == CS_SUCCESS) break; } i = next_tuple(link, &tuple, &parse); } if (i != CS_SUCCESS) { cs_error(link, RequestIO, i); goto failed; } i = pcmcia_request_irq(link, &link->irq); if (i != CS_SUCCESS) { cs_error(link, RequestIRQ, i); link->irq.AssignedIRQ = 0; } i = pcmcia_request_configuration(link, &link->conf); if (i != CS_SUCCESS) { cs_error(link, RequestConfiguration, i); goto failed; } if (dtl1_open(info) != 0) goto failed; strcpy(info->node.dev_name, info->hdev->name); link->dev_node = &info->node; return 0; failed: dtl1_release(link); return -ENODEV; } static void dtl1_release(struct pcmcia_device *link) { dtl1_info_t *info = link->priv; dtl1_close(info); pcmcia_disable_device(link); } static struct pcmcia_device_id dtl1_ids[] = { PCMCIA_DEVICE_PROD_ID12("Nokia Mobile Phones", "DTL-1", 0xe1bfdd64, 0xe168480d), PCMCIA_DEVICE_PROD_ID12("Nokia Mobile Phones", "DTL-4", 0xe1bfdd64, 0x9102bc82), PCMCIA_DEVICE_PROD_ID12("Socket", "CF", 0xb38bcc2e, 0x44ebf863), PCMCIA_DEVICE_PROD_ID12("Socket", "CF+ Personal Network Card", 0xb38bcc2e, 0xe732bae3), PCMCIA_DEVICE_NULL }; MODULE_DEVICE_TABLE(pcmcia, dtl1_ids); static struct pcmcia_driver dtl1_driver = { .owner = THIS_MODULE, .drv = { .name = "dtl1_cs", }, .probe = dtl1_probe, .remove = dtl1_detach, .id_table = dtl1_ids, }; static int __init init_dtl1_cs(void) { return pcmcia_register_driver(&dtl1_driver); } static void __exit exit_dtl1_cs(void) { pcmcia_unregister_driver(&dtl1_driver); } module_init(init_dtl1_cs); module_exit(exit_dtl1_cs);