/** * \file drm_memory.h * Memory management wrappers for DRM. * * \author Rickard E. (Rik) Faith <faith@valinux.com> * \author Gareth Hughes <gareth@valinux.com> */ /* * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/config.h> #include "drmP.h" typedef struct drm_mem_stats { const char *name; int succeed_count; int free_count; int fail_count; unsigned long bytes_allocated; unsigned long bytes_freed; } drm_mem_stats_t; static DEFINE_SPINLOCK(DRM(mem_lock)); static unsigned long DRM(ram_available) = 0; /* In pages */ static unsigned long DRM(ram_used) = 0; static drm_mem_stats_t DRM(mem_stats)[] = { [DRM_MEM_DMA] = { "dmabufs"},[DRM_MEM_SAREA] = { "sareas"},[DRM_MEM_DRIVER] = { "driver"},[DRM_MEM_MAGIC] = { "magic"},[DRM_MEM_IOCTLS] = { "ioctltab"},[DRM_MEM_MAPS] = { "maplist"},[DRM_MEM_VMAS] = { "vmalist"},[DRM_MEM_BUFS] = { "buflist"},[DRM_MEM_SEGS] = { "seglist"},[DRM_MEM_PAGES] = { "pagelist"},[DRM_MEM_FILES] = { "files"},[DRM_MEM_QUEUES] = { "queues"},[DRM_MEM_CMDS] = { "commands"},[DRM_MEM_MAPPINGS] = { "mappings"},[DRM_MEM_BUFLISTS] = { "buflists"},[DRM_MEM_AGPLISTS] = { "agplist"},[DRM_MEM_SGLISTS] = { "sglist"},[DRM_MEM_TOTALAGP] = { "totalagp"},[DRM_MEM_BOUNDAGP] = { "boundagp"},[DRM_MEM_CTXBITMAP] = { "ctxbitmap"},[DRM_MEM_CTXLIST] = { "ctxlist"},[DRM_MEM_STUB] = { "stub"}, { NULL, 0,} /* Last entry must be null */ }; void DRM(mem_init) (void) { drm_mem_stats_t *mem; struct sysinfo si; for (mem = DRM(mem_stats); mem->name; ++mem) { mem->succeed_count = 0; mem->free_count = 0; mem->fail_count = 0; mem->bytes_allocated = 0; mem->bytes_freed = 0; } si_meminfo(&si); DRM(ram_available) = si.totalram; DRM(ram_used) = 0; } /* drm_mem_info is called whenever a process reads /dev/drm/mem. */ static int DRM(_mem_info) (char *buf, char **start, off_t offset, int request, int *eof, void *data) { drm_mem_stats_t *pt; int len = 0; if (offset > DRM_PROC_LIMIT) { *eof = 1; return 0; } *eof = 0; *start = &buf[offset]; DRM_PROC_PRINT(" total counts " " | outstanding \n"); DRM_PROC_PRINT("type alloc freed fail bytes freed" " | allocs bytes\n\n"); DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu kB |\n", "system", 0, 0, 0, DRM(ram_available) << (PAGE_SHIFT - 10)); DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu kB |\n", "locked", 0, 0, 0, DRM(ram_used) >> 10); DRM_PROC_PRINT("\n"); for (pt = DRM(mem_stats); pt->name; pt++) { DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu %10lu | %6d %10ld\n", pt->name, pt->succeed_count, pt->free_count, pt->fail_count, pt->bytes_allocated, pt->bytes_freed, pt->succeed_count - pt->free_count, (long)pt->bytes_allocated - (long)pt->bytes_freed); } if (len > request + offset) return request; *eof = 1; return len - offset; } int DRM(mem_info) (char *buf, char **start, off_t offset, int len, int *eof, void *data) { int ret; spin_lock(&DRM(mem_lock)); ret = DRM(_mem_info) (buf, start, offset, len, eof, data); spin_unlock(&DRM(mem_lock)); return ret; } void *DRM(alloc) (size_t size, int area) { void *pt; if (!size) { DRM_MEM_ERROR(area, "Allocating 0 bytes\n"); return NULL; } if (!(pt = kmalloc(size, GFP_KERNEL))) { spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[area].fail_count; spin_unlock(&DRM(mem_lock)); return NULL; } spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[area].succeed_count; DRM(mem_stats)[area].bytes_allocated += size; spin_unlock(&DRM(mem_lock)); return pt; } void *DRM(calloc) (size_t nmemb, size_t size, int area) { void *addr; addr = DRM(alloc) (nmemb * size, area); if (addr != NULL) memset((void *)addr, 0, size * nmemb); return addr; } void *DRM(realloc) (void *oldpt, size_t oldsize, size_t size, int area) { void *pt; if (!(pt = DRM(alloc) (size, area))) return NULL; if (oldpt && oldsize) { memcpy(pt, oldpt, oldsize); DRM(free) (oldpt, oldsize, area); } return pt; } void DRM(free) (void *pt, size_t size, int area) { int alloc_count; int free_count; if (!pt) DRM_MEM_ERROR(area, "Attempt to free NULL pointer\n"); else kfree(pt); spin_lock(&DRM(mem_lock)); DRM(mem_stats)[area].bytes_freed += size; free_count = ++DRM(mem_stats)[area].free_count; alloc_count = DRM(mem_stats)[area].succeed_count; spin_unlock(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(area, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } } unsigned long DRM(alloc_pages) (int order, int area) { unsigned long address; unsigned long bytes = PAGE_SIZE << order; unsigned long addr; unsigned int sz; spin_lock(&DRM(mem_lock)); if ((DRM(ram_used) >> PAGE_SHIFT) > (DRM_RAM_PERCENT * DRM(ram_available)) / 100) { spin_unlock(&DRM(mem_lock)); return 0; } spin_unlock(&DRM(mem_lock)); address = __get_free_pages(GFP_KERNEL, order); if (!address) { spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[area].fail_count; spin_unlock(&DRM(mem_lock)); return 0; } spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[area].succeed_count; DRM(mem_stats)[area].bytes_allocated += bytes; DRM(ram_used) += bytes; spin_unlock(&DRM(mem_lock)); /* Zero outside the lock */ memset((void *)address, 0, bytes); /* Reserve */ for (addr = address, sz = bytes; sz > 0; addr += PAGE_SIZE, sz -= PAGE_SIZE) { SetPageReserved(virt_to_page(addr)); } return address; } void DRM(free_pages) (unsigned long address, int order, int area) { unsigned long bytes = PAGE_SIZE << order; int alloc_count; int free_count; unsigned long addr; unsigned int sz; if (!address) { DRM_MEM_ERROR(area, "Attempt to free address 0\n"); } else { /* Unreserve */ for (addr = address, sz = bytes; sz > 0; addr += PAGE_SIZE, sz -= PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); } free_pages(address, order); } spin_lock(&DRM(mem_lock)); free_count = ++DRM(mem_stats)[area].free_count; alloc_count = DRM(mem_stats)[area].succeed_count; DRM(mem_stats)[area].bytes_freed += bytes; DRM(ram_used) -= bytes; spin_unlock(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(area, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } } void *DRM(ioremap) (unsigned long offset, unsigned long size, drm_device_t * dev) { void *pt; if (!size) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Mapping 0 bytes at 0x%08lx\n", offset); return NULL; } if (!(pt = drm_ioremap(offset, size, dev))) { spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_MAPPINGS].fail_count; spin_unlock(&DRM(mem_lock)); return NULL; } spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count; DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_allocated += size; spin_unlock(&DRM(mem_lock)); return pt; } void *DRM(ioremap_nocache) (unsigned long offset, unsigned long size, drm_device_t * dev) { void *pt; if (!size) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Mapping 0 bytes at 0x%08lx\n", offset); return NULL; } if (!(pt = drm_ioremap_nocache(offset, size, dev))) { spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_MAPPINGS].fail_count; spin_unlock(&DRM(mem_lock)); return NULL; } spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count; DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_allocated += size; spin_unlock(&DRM(mem_lock)); return pt; } void DRM(ioremapfree) (void *pt, unsigned long size, drm_device_t * dev) { int alloc_count; int free_count; if (!pt) DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Attempt to free NULL pointer\n"); else drm_ioremapfree(pt, size, dev); spin_lock(&DRM(mem_lock)); DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_freed += size; free_count = ++DRM(mem_stats)[DRM_MEM_MAPPINGS].free_count; alloc_count = DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count; spin_unlock(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } } #if __OS_HAS_AGP DRM_AGP_MEM *DRM(alloc_agp) (int pages, u32 type) { DRM_AGP_MEM *handle; if (!pages) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Allocating 0 pages\n"); return NULL; } if ((handle = DRM(agp_allocate_memory) (pages, type))) { spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_TOTALAGP].succeed_count; DRM(mem_stats)[DRM_MEM_TOTALAGP].bytes_allocated += pages << PAGE_SHIFT; spin_unlock(&DRM(mem_lock)); return handle; } spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_TOTALAGP].fail_count; spin_unlock(&DRM(mem_lock)); return NULL; } int DRM(free_agp) (DRM_AGP_MEM * handle, int pages) { int alloc_count; int free_count; int retval = -EINVAL; if (!handle) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Attempt to free NULL AGP handle\n"); return retval; } if (DRM(agp_free_memory) (handle)) { spin_lock(&DRM(mem_lock)); free_count = ++DRM(mem_stats)[DRM_MEM_TOTALAGP].free_count; alloc_count = DRM(mem_stats)[DRM_MEM_TOTALAGP].succeed_count; DRM(mem_stats)[DRM_MEM_TOTALAGP].bytes_freed += pages << PAGE_SHIFT; spin_unlock(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } return 0; } return retval; } int DRM(bind_agp) (DRM_AGP_MEM * handle, unsigned int start) { int retcode = -EINVAL; if (!handle) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Attempt to bind NULL AGP handle\n"); return retcode; } if (!(retcode = DRM(agp_bind_memory) (handle, start))) { spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_BOUNDAGP].succeed_count; DRM(mem_stats)[DRM_MEM_BOUNDAGP].bytes_allocated += handle->page_count << PAGE_SHIFT; spin_unlock(&DRM(mem_lock)); return retcode; } spin_lock(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_BOUNDAGP].fail_count; spin_unlock(&DRM(mem_lock)); return retcode; } int DRM(unbind_agp) (DRM_AGP_MEM * handle) { int alloc_count; int free_count; int retcode = -EINVAL; if (!handle) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Attempt to unbind NULL AGP handle\n"); return retcode; } if ((retcode = DRM(agp_unbind_memory) (handle))) return retcode; spin_lock(&DRM(mem_lock)); free_count = ++DRM(mem_stats)[DRM_MEM_BOUNDAGP].free_count; alloc_count = DRM(mem_stats)[DRM_MEM_BOUNDAGP].succeed_count; DRM(mem_stats)[DRM_MEM_BOUNDAGP].bytes_freed += handle->page_count << PAGE_SHIFT; spin_unlock(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } return retcode; } #endif