/* * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The full GNU General Public License is included in this distribution in the * file called COPYING. */ /* * This code implements the DMA subsystem. It provides a HW-neutral interface * for other kernel code to use asynchronous memory copy capabilities, * if present, and allows different HW DMA drivers to register as providing * this capability. * * Due to the fact we are accelerating what is already a relatively fast * operation, the code goes to great lengths to avoid additional overhead, * such as locking. * * LOCKING: * * The subsystem keeps two global lists, dma_device_list and dma_client_list. * Both of these are protected by a mutex, dma_list_mutex. * * Each device has a channels list, which runs unlocked but is never modified * once the device is registered, it's just setup by the driver. * * Each client is responsible for keeping track of the channels it uses. See * the definition of dma_event_callback in dmaengine.h. * * Each device has a kref, which is initialized to 1 when the device is * registered. A kref_get is done for each device registered. When the * device is released, the corresponding kref_put is done in the release * method. Every time one of the device's channels is allocated to a client, * a kref_get occurs. When the channel is freed, the corresponding kref_put * happens. The device's release function does a completion, so * unregister_device does a remove event, device_unregister, a kref_put * for the first reference, then waits on the completion for all other * references to finish. * * Each channel has an open-coded implementation of Rusty Russell's "bigref," * with a kref and a per_cpu local_t. A dma_chan_get is called when a client * signals that it wants to use a channel, and dma_chan_put is called when * a channel is removed or a client using it is unregistered. A client can * take extra references per outstanding transaction, as is the case with * the NET DMA client. The release function does a kref_put on the device. * -ChrisL, DanW */ #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/hardirq.h> #include <linux/spinlock.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/mutex.h> #include <linux/jiffies.h> static DEFINE_MUTEX(dma_list_mutex); static LIST_HEAD(dma_device_list); static LIST_HEAD(dma_client_list); /* --- sysfs implementation --- */ static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf) { struct dma_chan *chan = to_dma_chan(dev); unsigned long count = 0; int i; for_each_possible_cpu(i) count += per_cpu_ptr(chan->local, i)->memcpy_count; return sprintf(buf, "%lu\n", count); } static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr, char *buf) { struct dma_chan *chan = to_dma_chan(dev); unsigned long count = 0; int i; for_each_possible_cpu(i) count += per_cpu_ptr(chan->local, i)->bytes_transferred; return sprintf(buf, "%lu\n", count); } static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf) { struct dma_chan *chan = to_dma_chan(dev); int in_use = 0; if (unlikely(chan->slow_ref) && atomic_read(&chan->refcount.refcount) > 1) in_use = 1; else { if (local_read(&(per_cpu_ptr(chan->local, get_cpu())->refcount)) > 0) in_use = 1; put_cpu(); } return sprintf(buf, "%d\n", in_use); } static struct device_attribute dma_attrs[] = { __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL), __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL), __ATTR(in_use, S_IRUGO, show_in_use, NULL), __ATTR_NULL }; static void dma_async_device_cleanup(struct kref *kref); static void dma_dev_release(struct device *dev) { struct dma_chan *chan = to_dma_chan(dev); kref_put(&chan->device->refcount, dma_async_device_cleanup); } static struct class dma_devclass = { .name = "dma", .dev_attrs = dma_attrs, .dev_release = dma_dev_release, }; /* --- client and device registration --- */ #define dma_chan_satisfies_mask(chan, mask) \ __dma_chan_satisfies_mask((chan), &(mask)) static int __dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want) { dma_cap_mask_t has; bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits, DMA_TX_TYPE_END); return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); } /** * dma_client_chan_alloc - try to allocate channels to a client * @client: &dma_client * * Called with dma_list_mutex held. */ static void dma_client_chan_alloc(struct dma_client *client) { struct dma_device *device; struct dma_chan *chan; int desc; /* allocated descriptor count */ enum dma_state_client ack; /* Find a channel */ list_for_each_entry(device, &dma_device_list, global_node) { /* Does the client require a specific DMA controller? */ if (client->slave && client->slave->dma_dev && client->slave->dma_dev != device->dev) continue; list_for_each_entry(chan, &device->channels, device_node) { if (!dma_chan_satisfies_mask(chan, client->cap_mask)) continue; desc = chan->device->device_alloc_chan_resources( chan, client); if (desc >= 0) { ack = client->event_callback(client, chan, DMA_RESOURCE_AVAILABLE); /* we are done once this client rejects * an available resource */ if (ack == DMA_ACK) { dma_chan_get(chan); chan->client_count++; } else if (ack == DMA_NAK) return; } } } } enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) { enum dma_status status; unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); dma_async_issue_pending(chan); do { status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); if (time_after_eq(jiffies, dma_sync_wait_timeout)) { printk(KERN_ERR "dma_sync_wait_timeout!\n"); return DMA_ERROR; } } while (status == DMA_IN_PROGRESS); return status; } EXPORT_SYMBOL(dma_sync_wait); /** * dma_chan_cleanup - release a DMA channel's resources * @kref: kernel reference structure that contains the DMA channel device */ void dma_chan_cleanup(struct kref *kref) { struct dma_chan *chan = container_of(kref, struct dma_chan, refcount); chan->device->device_free_chan_resources(chan); kref_put(&chan->device->refcount, dma_async_device_cleanup); } EXPORT_SYMBOL(dma_chan_cleanup); static void dma_chan_free_rcu(struct rcu_head *rcu) { struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu); int bias = 0x7FFFFFFF; int i; for_each_possible_cpu(i) bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount); atomic_sub(bias, &chan->refcount.refcount); kref_put(&chan->refcount, dma_chan_cleanup); } static void dma_chan_release(struct dma_chan *chan) { atomic_add(0x7FFFFFFF, &chan->refcount.refcount); chan->slow_ref = 1; call_rcu(&chan->rcu, dma_chan_free_rcu); } /** * dma_chans_notify_available - broadcast available channels to the clients */ static void dma_clients_notify_available(void) { struct dma_client *client; mutex_lock(&dma_list_mutex); list_for_each_entry(client, &dma_client_list, global_node) dma_client_chan_alloc(client); mutex_unlock(&dma_list_mutex); } /** * dma_chans_notify_available - tell the clients that a channel is going away * @chan: channel on its way out */ static void dma_clients_notify_removed(struct dma_chan *chan) { struct dma_client *client; enum dma_state_client ack; mutex_lock(&dma_list_mutex); list_for_each_entry(client, &dma_client_list, global_node) { ack = client->event_callback(client, chan, DMA_RESOURCE_REMOVED); /* client was holding resources for this channel so * free it */ if (ack == DMA_ACK) { dma_chan_put(chan); chan->client_count--; } } mutex_unlock(&dma_list_mutex); } /** * dma_async_client_register - register a &dma_client * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask' */ void dma_async_client_register(struct dma_client *client) { /* validate client data */ BUG_ON(dma_has_cap(DMA_SLAVE, client->cap_mask) && !client->slave); mutex_lock(&dma_list_mutex); list_add_tail(&client->global_node, &dma_client_list); mutex_unlock(&dma_list_mutex); } EXPORT_SYMBOL(dma_async_client_register); /** * dma_async_client_unregister - unregister a client and free the &dma_client * @client: &dma_client to free * * Force frees any allocated DMA channels, frees the &dma_client memory */ void dma_async_client_unregister(struct dma_client *client) { struct dma_device *device; struct dma_chan *chan; enum dma_state_client ack; if (!client) return; mutex_lock(&dma_list_mutex); /* free all channels the client is holding */ list_for_each_entry(device, &dma_device_list, global_node) list_for_each_entry(chan, &device->channels, device_node) { ack = client->event_callback(client, chan, DMA_RESOURCE_REMOVED); if (ack == DMA_ACK) { dma_chan_put(chan); chan->client_count--; } } list_del(&client->global_node); mutex_unlock(&dma_list_mutex); } EXPORT_SYMBOL(dma_async_client_unregister); /** * dma_async_client_chan_request - send all available channels to the * client that satisfy the capability mask * @client - requester */ void dma_async_client_chan_request(struct dma_client *client) { mutex_lock(&dma_list_mutex); dma_client_chan_alloc(client); mutex_unlock(&dma_list_mutex); } EXPORT_SYMBOL(dma_async_client_chan_request); /** * dma_async_device_register - registers DMA devices found * @device: &dma_device */ int dma_async_device_register(struct dma_device *device) { static int id; int chancnt = 0, rc; struct dma_chan* chan; if (!device) return -ENODEV; /* validate device routines */ BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy); BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor); BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) && !device->device_prep_dma_zero_sum); BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset); BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt); BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && !device->device_prep_slave_sg); BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && !device->device_terminate_all); BUG_ON(!device->device_alloc_chan_resources); BUG_ON(!device->device_free_chan_resources); BUG_ON(!device->device_is_tx_complete); BUG_ON(!device->device_issue_pending); BUG_ON(!device->dev); init_completion(&device->done); kref_init(&device->refcount); device->dev_id = id++; /* represent channels in sysfs. Probably want devs too */ list_for_each_entry(chan, &device->channels, device_node) { chan->local = alloc_percpu(typeof(*chan->local)); if (chan->local == NULL) continue; chan->chan_id = chancnt++; chan->dev.class = &dma_devclass; chan->dev.parent = device->dev; snprintf(chan->dev.bus_id, BUS_ID_SIZE, "dma%dchan%d", device->dev_id, chan->chan_id); rc = device_register(&chan->dev); if (rc) { chancnt--; free_percpu(chan->local); chan->local = NULL; goto err_out; } /* One for the channel, one of the class device */ kref_get(&device->refcount); kref_get(&device->refcount); kref_init(&chan->refcount); chan->client_count = 0; chan->slow_ref = 0; INIT_RCU_HEAD(&chan->rcu); } mutex_lock(&dma_list_mutex); list_add_tail(&device->global_node, &dma_device_list); mutex_unlock(&dma_list_mutex); dma_clients_notify_available(); return 0; err_out: list_for_each_entry(chan, &device->channels, device_node) { if (chan->local == NULL) continue; kref_put(&device->refcount, dma_async_device_cleanup); device_unregister(&chan->dev); chancnt--; free_percpu(chan->local); } return rc; } EXPORT_SYMBOL(dma_async_device_register); /** * dma_async_device_cleanup - function called when all references are released * @kref: kernel reference object */ static void dma_async_device_cleanup(struct kref *kref) { struct dma_device *device; device = container_of(kref, struct dma_device, refcount); complete(&device->done); } /** * dma_async_device_unregister - unregisters DMA devices * @device: &dma_device */ void dma_async_device_unregister(struct dma_device *device) { struct dma_chan *chan; mutex_lock(&dma_list_mutex); list_del(&device->global_node); mutex_unlock(&dma_list_mutex); list_for_each_entry(chan, &device->channels, device_node) { dma_clients_notify_removed(chan); device_unregister(&chan->dev); dma_chan_release(chan); } kref_put(&device->refcount, dma_async_device_cleanup); wait_for_completion(&device->done); } EXPORT_SYMBOL(dma_async_device_unregister); /** * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses * @chan: DMA channel to offload copy to * @dest: destination address (virtual) * @src: source address (virtual) * @len: length * * Both @dest and @src must be mappable to a bus address according to the * DMA mapping API rules for streaming mappings. * Both @dest and @src must stay memory resident (kernel memory or locked * user space pages). */ dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, void *src, size_t len) { struct dma_device *dev = chan->device; struct dma_async_tx_descriptor *tx; dma_addr_t dma_dest, dma_src; dma_cookie_t cookie; int cpu; dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE); tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, DMA_CTRL_ACK); if (!tx) { dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE); return -ENOMEM; } tx->callback = NULL; cookie = tx->tx_submit(tx); cpu = get_cpu(); per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; per_cpu_ptr(chan->local, cpu)->memcpy_count++; put_cpu(); return cookie; } EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf); /** * dma_async_memcpy_buf_to_pg - offloaded copy from address to page * @chan: DMA channel to offload copy to * @page: destination page * @offset: offset in page to copy to * @kdata: source address (virtual) * @len: length * * Both @page/@offset and @kdata must be mappable to a bus address according * to the DMA mapping API rules for streaming mappings. * Both @page/@offset and @kdata must stay memory resident (kernel memory or * locked user space pages) */ dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, unsigned int offset, void *kdata, size_t len) { struct dma_device *dev = chan->device; struct dma_async_tx_descriptor *tx; dma_addr_t dma_dest, dma_src; dma_cookie_t cookie; int cpu; dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE); tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, DMA_CTRL_ACK); if (!tx) { dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); return -ENOMEM; } tx->callback = NULL; cookie = tx->tx_submit(tx); cpu = get_cpu(); per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; per_cpu_ptr(chan->local, cpu)->memcpy_count++; put_cpu(); return cookie; } EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg); /** * dma_async_memcpy_pg_to_pg - offloaded copy from page to page * @chan: DMA channel to offload copy to * @dest_pg: destination page * @dest_off: offset in page to copy to * @src_pg: source page * @src_off: offset in page to copy from * @len: length * * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus * address according to the DMA mapping API rules for streaming mappings. * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident * (kernel memory or locked user space pages). */ dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg, unsigned int dest_off, struct page *src_pg, unsigned int src_off, size_t len) { struct dma_device *dev = chan->device; struct dma_async_tx_descriptor *tx; dma_addr_t dma_dest, dma_src; dma_cookie_t cookie; int cpu; dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE); dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len, DMA_FROM_DEVICE); tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, DMA_CTRL_ACK); if (!tx) { dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE); dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); return -ENOMEM; } tx->callback = NULL; cookie = tx->tx_submit(tx); cpu = get_cpu(); per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; per_cpu_ptr(chan->local, cpu)->memcpy_count++; put_cpu(); return cookie; } EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg); void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, struct dma_chan *chan) { tx->chan = chan; spin_lock_init(&tx->lock); } EXPORT_SYMBOL(dma_async_tx_descriptor_init); static int __init dma_bus_init(void) { mutex_init(&dma_list_mutex); return class_register(&dma_devclass); } subsys_initcall(dma_bus_init);