/* * offload engine driver for the Intel Xscale series of i/o processors * Copyright © 2006, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ /* * This driver supports the asynchrounous DMA copy and RAID engines available * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) */ #include <linux/init.h> #include <linux/module.h> #include <linux/async_tx.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/memory.h> #include <linux/ioport.h> #include <mach/adma.h> #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common) #define to_iop_adma_device(dev) \ container_of(dev, struct iop_adma_device, common) #define tx_to_iop_adma_slot(tx) \ container_of(tx, struct iop_adma_desc_slot, async_tx) /** * iop_adma_free_slots - flags descriptor slots for reuse * @slot: Slot to free * Caller must hold &iop_chan->lock while calling this function */ static void iop_adma_free_slots(struct iop_adma_desc_slot *slot) { int stride = slot->slots_per_op; while (stride--) { slot->slots_per_op = 0; slot = list_entry(slot->slot_node.next, struct iop_adma_desc_slot, slot_node); } } static dma_cookie_t iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc, struct iop_adma_chan *iop_chan, dma_cookie_t cookie) { BUG_ON(desc->async_tx.cookie < 0); if (desc->async_tx.cookie > 0) { cookie = desc->async_tx.cookie; desc->async_tx.cookie = 0; /* call the callback (must not sleep or submit new * operations to this channel) */ if (desc->async_tx.callback) desc->async_tx.callback( desc->async_tx.callback_param); /* unmap dma addresses * (unmap_single vs unmap_page?) */ if (desc->group_head && desc->unmap_len) { struct iop_adma_desc_slot *unmap = desc->group_head; struct device *dev = &iop_chan->device->pdev->dev; u32 len = unmap->unmap_len; enum dma_ctrl_flags flags = desc->async_tx.flags; u32 src_cnt; dma_addr_t addr; dma_addr_t dest; src_cnt = unmap->unmap_src_cnt; dest = iop_desc_get_dest_addr(unmap, iop_chan); if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) { enum dma_data_direction dir; if (src_cnt > 1) /* is xor? */ dir = DMA_BIDIRECTIONAL; else dir = DMA_FROM_DEVICE; dma_unmap_page(dev, dest, len, dir); } if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { while (src_cnt--) { addr = iop_desc_get_src_addr(unmap, iop_chan, src_cnt); if (addr == dest) continue; dma_unmap_page(dev, addr, len, DMA_TO_DEVICE); } } desc->group_head = NULL; } } /* run dependent operations */ async_tx_run_dependencies(&desc->async_tx); return cookie; } static int iop_adma_clean_slot(struct iop_adma_desc_slot *desc, struct iop_adma_chan *iop_chan) { /* the client is allowed to attach dependent operations * until 'ack' is set */ if (!async_tx_test_ack(&desc->async_tx)) return 0; /* leave the last descriptor in the chain * so we can append to it */ if (desc->chain_node.next == &iop_chan->chain) return 1; dev_dbg(iop_chan->device->common.dev, "\tfree slot: %d slots_per_op: %d\n", desc->idx, desc->slots_per_op); list_del(&desc->chain_node); iop_adma_free_slots(desc); return 0; } static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan) { struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL; dma_cookie_t cookie = 0; u32 current_desc = iop_chan_get_current_descriptor(iop_chan); int busy = iop_chan_is_busy(iop_chan); int seen_current = 0, slot_cnt = 0, slots_per_op = 0; dev_dbg(iop_chan->device->common.dev, "%s\n", __func__); /* free completed slots from the chain starting with * the oldest descriptor */ list_for_each_entry_safe(iter, _iter, &iop_chan->chain, chain_node) { pr_debug("\tcookie: %d slot: %d busy: %d " "this_desc: %#x next_desc: %#x ack: %d\n", iter->async_tx.cookie, iter->idx, busy, iter->async_tx.phys, iop_desc_get_next_desc(iter), async_tx_test_ack(&iter->async_tx)); prefetch(_iter); prefetch(&_iter->async_tx); /* do not advance past the current descriptor loaded into the * hardware channel, subsequent descriptors are either in * process or have not been submitted */ if (seen_current) break; /* stop the search if we reach the current descriptor and the * channel is busy, or if it appears that the current descriptor * needs to be re-read (i.e. has been appended to) */ if (iter->async_tx.phys == current_desc) { BUG_ON(seen_current++); if (busy || iop_desc_get_next_desc(iter)) break; } /* detect the start of a group transaction */ if (!slot_cnt && !slots_per_op) { slot_cnt = iter->slot_cnt; slots_per_op = iter->slots_per_op; if (slot_cnt <= slots_per_op) { slot_cnt = 0; slots_per_op = 0; } } if (slot_cnt) { pr_debug("\tgroup++\n"); if (!grp_start) grp_start = iter; slot_cnt -= slots_per_op; } /* all the members of a group are complete */ if (slots_per_op != 0 && slot_cnt == 0) { struct iop_adma_desc_slot *grp_iter, *_grp_iter; int end_of_chain = 0; pr_debug("\tgroup end\n"); /* collect the total results */ if (grp_start->xor_check_result) { u32 zero_sum_result = 0; slot_cnt = grp_start->slot_cnt; grp_iter = grp_start; list_for_each_entry_from(grp_iter, &iop_chan->chain, chain_node) { zero_sum_result |= iop_desc_get_zero_result(grp_iter); pr_debug("\titer%d result: %d\n", grp_iter->idx, zero_sum_result); slot_cnt -= slots_per_op; if (slot_cnt == 0) break; } pr_debug("\tgrp_start->xor_check_result: %p\n", grp_start->xor_check_result); *grp_start->xor_check_result = zero_sum_result; } /* clean up the group */ slot_cnt = grp_start->slot_cnt; grp_iter = grp_start; list_for_each_entry_safe_from(grp_iter, _grp_iter, &iop_chan->chain, chain_node) { cookie = iop_adma_run_tx_complete_actions( grp_iter, iop_chan, cookie); slot_cnt -= slots_per_op; end_of_chain = iop_adma_clean_slot(grp_iter, iop_chan); if (slot_cnt == 0 || end_of_chain) break; } /* the group should be complete at this point */ BUG_ON(slot_cnt); slots_per_op = 0; grp_start = NULL; if (end_of_chain) break; else continue; } else if (slots_per_op) /* wait for group completion */ continue; /* write back zero sum results (single descriptor case) */ if (iter->xor_check_result && iter->async_tx.cookie) *iter->xor_check_result = iop_desc_get_zero_result(iter); cookie = iop_adma_run_tx_complete_actions( iter, iop_chan, cookie); if (iop_adma_clean_slot(iter, iop_chan)) break; } BUG_ON(!seen_current); if (cookie > 0) { iop_chan->completed_cookie = cookie; pr_debug("\tcompleted cookie %d\n", cookie); } } static void iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan) { spin_lock_bh(&iop_chan->lock); __iop_adma_slot_cleanup(iop_chan); spin_unlock_bh(&iop_chan->lock); } static void iop_adma_tasklet(unsigned long data) { struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data; spin_lock(&iop_chan->lock); __iop_adma_slot_cleanup(iop_chan); spin_unlock(&iop_chan->lock); } static struct iop_adma_desc_slot * iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots, int slots_per_op) { struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL; LIST_HEAD(chain); int slots_found, retry = 0; /* start search from the last allocated descrtiptor * if a contiguous allocation can not be found start searching * from the beginning of the list */ retry: slots_found = 0; if (retry == 0) iter = iop_chan->last_used; else iter = list_entry(&iop_chan->all_slots, struct iop_adma_desc_slot, slot_node); list_for_each_entry_safe_continue( iter, _iter, &iop_chan->all_slots, slot_node) { prefetch(_iter); prefetch(&_iter->async_tx); if (iter->slots_per_op) { /* give up after finding the first busy slot * on the second pass through the list */ if (retry) break; slots_found = 0; continue; } /* start the allocation if the slot is correctly aligned */ if (!slots_found++) { if (iop_desc_is_aligned(iter, slots_per_op)) alloc_start = iter; else { slots_found = 0; continue; } } if (slots_found == num_slots) { struct iop_adma_desc_slot *alloc_tail = NULL; struct iop_adma_desc_slot *last_used = NULL; iter = alloc_start; while (num_slots) { int i; dev_dbg(iop_chan->device->common.dev, "allocated slot: %d " "(desc %p phys: %#x) slots_per_op %d\n", iter->idx, iter->hw_desc, iter->async_tx.phys, slots_per_op); /* pre-ack all but the last descriptor */ if (num_slots != slots_per_op) async_tx_ack(&iter->async_tx); list_add_tail(&iter->chain_node, &chain); alloc_tail = iter; iter->async_tx.cookie = 0; iter->slot_cnt = num_slots; iter->xor_check_result = NULL; for (i = 0; i < slots_per_op; i++) { iter->slots_per_op = slots_per_op - i; last_used = iter; iter = list_entry(iter->slot_node.next, struct iop_adma_desc_slot, slot_node); } num_slots -= slots_per_op; } alloc_tail->group_head = alloc_start; alloc_tail->async_tx.cookie = -EBUSY; list_splice(&chain, &alloc_tail->async_tx.tx_list); iop_chan->last_used = last_used; iop_desc_clear_next_desc(alloc_start); iop_desc_clear_next_desc(alloc_tail); return alloc_tail; } } if (!retry++) goto retry; /* perform direct reclaim if the allocation fails */ __iop_adma_slot_cleanup(iop_chan); return NULL; } static dma_cookie_t iop_desc_assign_cookie(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc) { dma_cookie_t cookie = iop_chan->common.cookie; cookie++; if (cookie < 0) cookie = 1; iop_chan->common.cookie = desc->async_tx.cookie = cookie; return cookie; } static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan) { dev_dbg(iop_chan->device->common.dev, "pending: %d\n", iop_chan->pending); if (iop_chan->pending >= IOP_ADMA_THRESHOLD) { iop_chan->pending = 0; iop_chan_append(iop_chan); } } static dma_cookie_t iop_adma_tx_submit(struct dma_async_tx_descriptor *tx) { struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx); struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan); struct iop_adma_desc_slot *grp_start, *old_chain_tail; int slot_cnt; int slots_per_op; dma_cookie_t cookie; dma_addr_t next_dma; grp_start = sw_desc->group_head; slot_cnt = grp_start->slot_cnt; slots_per_op = grp_start->slots_per_op; spin_lock_bh(&iop_chan->lock); cookie = iop_desc_assign_cookie(iop_chan, sw_desc); old_chain_tail = list_entry(iop_chan->chain.prev, struct iop_adma_desc_slot, chain_node); list_splice_init(&sw_desc->async_tx.tx_list, &old_chain_tail->chain_node); /* fix up the hardware chain */ next_dma = grp_start->async_tx.phys; iop_desc_set_next_desc(old_chain_tail, next_dma); BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */ /* check for pre-chained descriptors */ iop_paranoia(iop_desc_get_next_desc(sw_desc)); /* increment the pending count by the number of slots * memcpy operations have a 1:1 (slot:operation) relation * other operations are heavier and will pop the threshold * more often. */ iop_chan->pending += slot_cnt; iop_adma_check_threshold(iop_chan); spin_unlock_bh(&iop_chan->lock); dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n", __func__, sw_desc->async_tx.cookie, sw_desc->idx); return cookie; } static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan); static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan); /** * iop_adma_alloc_chan_resources - returns the number of allocated descriptors * @chan - allocate descriptor resources for this channel * @client - current client requesting the channel be ready for requests * * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be * greater than 2x the number slots needed to satisfy a device->max_xor * request. * */ static int iop_adma_alloc_chan_resources(struct dma_chan *chan, struct dma_client *client) { char *hw_desc; int idx; struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); struct iop_adma_desc_slot *slot = NULL; int init = iop_chan->slots_allocated ? 0 : 1; struct iop_adma_platform_data *plat_data = iop_chan->device->pdev->dev.platform_data; int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE; /* Allocate descriptor slots */ do { idx = iop_chan->slots_allocated; if (idx == num_descs_in_pool) break; slot = kzalloc(sizeof(*slot), GFP_KERNEL); if (!slot) { printk(KERN_INFO "IOP ADMA Channel only initialized" " %d descriptor slots", idx); break; } hw_desc = (char *) iop_chan->device->dma_desc_pool_virt; slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE]; dma_async_tx_descriptor_init(&slot->async_tx, chan); slot->async_tx.tx_submit = iop_adma_tx_submit; INIT_LIST_HEAD(&slot->chain_node); INIT_LIST_HEAD(&slot->slot_node); INIT_LIST_HEAD(&slot->async_tx.tx_list); hw_desc = (char *) iop_chan->device->dma_desc_pool; slot->async_tx.phys = (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE]; slot->idx = idx; spin_lock_bh(&iop_chan->lock); iop_chan->slots_allocated++; list_add_tail(&slot->slot_node, &iop_chan->all_slots); spin_unlock_bh(&iop_chan->lock); } while (iop_chan->slots_allocated < num_descs_in_pool); if (idx && !iop_chan->last_used) iop_chan->last_used = list_entry(iop_chan->all_slots.next, struct iop_adma_desc_slot, slot_node); dev_dbg(iop_chan->device->common.dev, "allocated %d descriptor slots last_used: %p\n", iop_chan->slots_allocated, iop_chan->last_used); /* initialize the channel and the chain with a null operation */ if (init) { if (dma_has_cap(DMA_MEMCPY, iop_chan->device->common.cap_mask)) iop_chan_start_null_memcpy(iop_chan); else if (dma_has_cap(DMA_XOR, iop_chan->device->common.cap_mask)) iop_chan_start_null_xor(iop_chan); else BUG(); } return (idx > 0) ? idx : -ENOMEM; } static struct dma_async_tx_descriptor * iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags) { struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); struct iop_adma_desc_slot *sw_desc, *grp_start; int slot_cnt, slots_per_op; dev_dbg(iop_chan->device->common.dev, "%s\n", __func__); spin_lock_bh(&iop_chan->lock); slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan); sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); if (sw_desc) { grp_start = sw_desc->group_head; iop_desc_init_interrupt(grp_start, iop_chan); grp_start->unmap_len = 0; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&iop_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } static struct dma_async_tx_descriptor * iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); struct iop_adma_desc_slot *sw_desc, *grp_start; int slot_cnt, slots_per_op; if (unlikely(!len)) return NULL; BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT)); dev_dbg(iop_chan->device->common.dev, "%s len: %u\n", __func__, len); spin_lock_bh(&iop_chan->lock); slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op); sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); if (sw_desc) { grp_start = sw_desc->group_head; iop_desc_init_memcpy(grp_start, flags); iop_desc_set_byte_count(grp_start, iop_chan, len); iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest); iop_desc_set_memcpy_src_addr(grp_start, dma_src); sw_desc->unmap_src_cnt = 1; sw_desc->unmap_len = len; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&iop_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } static struct dma_async_tx_descriptor * iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest, int value, size_t len, unsigned long flags) { struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); struct iop_adma_desc_slot *sw_desc, *grp_start; int slot_cnt, slots_per_op; if (unlikely(!len)) return NULL; BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT)); dev_dbg(iop_chan->device->common.dev, "%s len: %u\n", __func__, len); spin_lock_bh(&iop_chan->lock); slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op); sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); if (sw_desc) { grp_start = sw_desc->group_head; iop_desc_init_memset(grp_start, flags); iop_desc_set_byte_count(grp_start, iop_chan, len); iop_desc_set_block_fill_val(grp_start, value); iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest); sw_desc->unmap_src_cnt = 1; sw_desc->unmap_len = len; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&iop_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } static struct dma_async_tx_descriptor * iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t *dma_src, unsigned int src_cnt, size_t len, unsigned long flags) { struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); struct iop_adma_desc_slot *sw_desc, *grp_start; int slot_cnt, slots_per_op; if (unlikely(!len)) return NULL; BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT)); dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u flags: %lx\n", __func__, src_cnt, len, flags); spin_lock_bh(&iop_chan->lock); slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op); sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); if (sw_desc) { grp_start = sw_desc->group_head; iop_desc_init_xor(grp_start, src_cnt, flags); iop_desc_set_byte_count(grp_start, iop_chan, len); iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest); sw_desc->unmap_src_cnt = src_cnt; sw_desc->unmap_len = len; sw_desc->async_tx.flags = flags; while (src_cnt--) iop_desc_set_xor_src_addr(grp_start, src_cnt, dma_src[src_cnt]); } spin_unlock_bh(&iop_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } static struct dma_async_tx_descriptor * iop_adma_prep_dma_zero_sum(struct dma_chan *chan, dma_addr_t *dma_src, unsigned int src_cnt, size_t len, u32 *result, unsigned long flags) { struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); struct iop_adma_desc_slot *sw_desc, *grp_start; int slot_cnt, slots_per_op; if (unlikely(!len)) return NULL; dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n", __func__, src_cnt, len); spin_lock_bh(&iop_chan->lock); slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op); sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); if (sw_desc) { grp_start = sw_desc->group_head; iop_desc_init_zero_sum(grp_start, src_cnt, flags); iop_desc_set_zero_sum_byte_count(grp_start, len); grp_start->xor_check_result = result; pr_debug("\t%s: grp_start->xor_check_result: %p\n", __func__, grp_start->xor_check_result); sw_desc->unmap_src_cnt = src_cnt; sw_desc->unmap_len = len; sw_desc->async_tx.flags = flags; while (src_cnt--) iop_desc_set_zero_sum_src_addr(grp_start, src_cnt, dma_src[src_cnt]); } spin_unlock_bh(&iop_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } static void iop_adma_free_chan_resources(struct dma_chan *chan) { struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); struct iop_adma_desc_slot *iter, *_iter; int in_use_descs = 0; iop_adma_slot_cleanup(iop_chan); spin_lock_bh(&iop_chan->lock); list_for_each_entry_safe(iter, _iter, &iop_chan->chain, chain_node) { in_use_descs++; list_del(&iter->chain_node); } list_for_each_entry_safe_reverse( iter, _iter, &iop_chan->all_slots, slot_node) { list_del(&iter->slot_node); kfree(iter); iop_chan->slots_allocated--; } iop_chan->last_used = NULL; dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n", __func__, iop_chan->slots_allocated); spin_unlock_bh(&iop_chan->lock); /* one is ok since we left it on there on purpose */ if (in_use_descs > 1) printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n", in_use_descs - 1); } /** * iop_adma_is_complete - poll the status of an ADMA transaction * @chan: ADMA channel handle * @cookie: ADMA transaction identifier */ static enum dma_status iop_adma_is_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) { struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); dma_cookie_t last_used; dma_cookie_t last_complete; enum dma_status ret; last_used = chan->cookie; last_complete = iop_chan->completed_cookie; if (done) *done = last_complete; if (used) *used = last_used; ret = dma_async_is_complete(cookie, last_complete, last_used); if (ret == DMA_SUCCESS) return ret; iop_adma_slot_cleanup(iop_chan); last_used = chan->cookie; last_complete = iop_chan->completed_cookie; if (done) *done = last_complete; if (used) *used = last_used; return dma_async_is_complete(cookie, last_complete, last_used); } static irqreturn_t iop_adma_eot_handler(int irq, void *data) { struct iop_adma_chan *chan = data; dev_dbg(chan->device->common.dev, "%s\n", __func__); tasklet_schedule(&chan->irq_tasklet); iop_adma_device_clear_eot_status(chan); return IRQ_HANDLED; } static irqreturn_t iop_adma_eoc_handler(int irq, void *data) { struct iop_adma_chan *chan = data; dev_dbg(chan->device->common.dev, "%s\n", __func__); tasklet_schedule(&chan->irq_tasklet); iop_adma_device_clear_eoc_status(chan); return IRQ_HANDLED; } static irqreturn_t iop_adma_err_handler(int irq, void *data) { struct iop_adma_chan *chan = data; unsigned long status = iop_chan_get_status(chan); dev_printk(KERN_ERR, chan->device->common.dev, "error ( %s%s%s%s%s%s%s)\n", iop_is_err_int_parity(status, chan) ? "int_parity " : "", iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "", iop_is_err_int_tabort(status, chan) ? "int_tabort " : "", iop_is_err_int_mabort(status, chan) ? "int_mabort " : "", iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "", iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "", iop_is_err_split_tx(status, chan) ? "split_tx " : ""); iop_adma_device_clear_err_status(chan); BUG(); return IRQ_HANDLED; } static void iop_adma_issue_pending(struct dma_chan *chan) { struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); if (iop_chan->pending) { iop_chan->pending = 0; iop_chan_append(iop_chan); } } /* * Perform a transaction to verify the HW works. */ #define IOP_ADMA_TEST_SIZE 2000 static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device) { int i; void *src, *dest; dma_addr_t src_dma, dest_dma; struct dma_chan *dma_chan; dma_cookie_t cookie; struct dma_async_tx_descriptor *tx; int err = 0; struct iop_adma_chan *iop_chan; dev_dbg(device->common.dev, "%s\n", __func__); src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL); if (!src) return -ENOMEM; dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL); if (!dest) { kfree(src); return -ENOMEM; } /* Fill in src buffer */ for (i = 0; i < IOP_ADMA_TEST_SIZE; i++) ((u8 *) src)[i] = (u8)i; /* Start copy, using first DMA channel */ dma_chan = container_of(device->common.channels.next, struct dma_chan, device_node); if (iop_adma_alloc_chan_resources(dma_chan, NULL) < 1) { err = -ENODEV; goto out; } dest_dma = dma_map_single(dma_chan->device->dev, dest, IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE); src_dma = dma_map_single(dma_chan->device->dev, src, IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE); tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma, IOP_ADMA_TEST_SIZE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); cookie = iop_adma_tx_submit(tx); iop_adma_issue_pending(dma_chan); msleep(1); if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test copy timed out, disabling\n"); err = -ENODEV; goto free_resources; } iop_chan = to_iop_adma_chan(dma_chan); dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma, IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE); if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test copy failed compare, disabling\n"); err = -ENODEV; goto free_resources; } free_resources: iop_adma_free_chan_resources(dma_chan); out: kfree(src); kfree(dest); return err; } #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */ static int __devinit iop_adma_xor_zero_sum_self_test(struct iop_adma_device *device) { int i, src_idx; struct page *dest; struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST]; struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1]; dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1]; dma_addr_t dma_addr, dest_dma; struct dma_async_tx_descriptor *tx; struct dma_chan *dma_chan; dma_cookie_t cookie; u8 cmp_byte = 0; u32 cmp_word; u32 zero_sum_result; int err = 0; struct iop_adma_chan *iop_chan; dev_dbg(device->common.dev, "%s\n", __func__); for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) { xor_srcs[src_idx] = alloc_page(GFP_KERNEL); if (!xor_srcs[src_idx]) while (src_idx--) { __free_page(xor_srcs[src_idx]); return -ENOMEM; } } dest = alloc_page(GFP_KERNEL); if (!dest) while (src_idx--) { __free_page(xor_srcs[src_idx]); return -ENOMEM; } /* Fill in src buffers */ for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) { u8 *ptr = page_address(xor_srcs[src_idx]); for (i = 0; i < PAGE_SIZE; i++) ptr[i] = (1 << src_idx); } for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) cmp_byte ^= (u8) (1 << src_idx); cmp_word = (cmp_byte << 24) | (cmp_byte << 16) | (cmp_byte << 8) | cmp_byte; memset(page_address(dest), 0, PAGE_SIZE); dma_chan = container_of(device->common.channels.next, struct dma_chan, device_node); if (iop_adma_alloc_chan_resources(dma_chan, NULL) < 1) { err = -ENODEV; goto out; } /* test xor */ dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE); for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs, IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); cookie = iop_adma_tx_submit(tx); iop_adma_issue_pending(dma_chan); msleep(8); if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test xor timed out, disabling\n"); err = -ENODEV; goto free_resources; } iop_chan = to_iop_adma_chan(dma_chan); dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) { u32 *ptr = page_address(dest); if (ptr[i] != cmp_word) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test xor failed compare, disabling\n"); err = -ENODEV; goto free_resources; } } dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE); /* skip zero sum if the capability is not present */ if (!dma_has_cap(DMA_ZERO_SUM, dma_chan->device->cap_mask)) goto free_resources; /* zero sum the sources with the destintation page */ for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) zero_sum_srcs[i] = xor_srcs[i]; zero_sum_srcs[i] = dest; zero_sum_result = 1; for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++) dma_srcs[i] = dma_map_page(dma_chan->device->dev, zero_sum_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); tx = iop_adma_prep_dma_zero_sum(dma_chan, dma_srcs, IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE, &zero_sum_result, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); cookie = iop_adma_tx_submit(tx); iop_adma_issue_pending(dma_chan); msleep(8); if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test zero sum timed out, disabling\n"); err = -ENODEV; goto free_resources; } if (zero_sum_result != 0) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test zero sum failed compare, disabling\n"); err = -ENODEV; goto free_resources; } /* test memset */ dma_addr = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE); tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); cookie = iop_adma_tx_submit(tx); iop_adma_issue_pending(dma_chan); msleep(8); if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test memset timed out, disabling\n"); err = -ENODEV; goto free_resources; } for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) { u32 *ptr = page_address(dest); if (ptr[i]) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test memset failed compare, disabling\n"); err = -ENODEV; goto free_resources; } } /* test for non-zero parity sum */ zero_sum_result = 0; for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++) dma_srcs[i] = dma_map_page(dma_chan->device->dev, zero_sum_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); tx = iop_adma_prep_dma_zero_sum(dma_chan, dma_srcs, IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE, &zero_sum_result, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); cookie = iop_adma_tx_submit(tx); iop_adma_issue_pending(dma_chan); msleep(8); if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test non-zero sum timed out, disabling\n"); err = -ENODEV; goto free_resources; } if (zero_sum_result != 1) { dev_printk(KERN_ERR, dma_chan->device->dev, "Self-test non-zero sum failed compare, disabling\n"); err = -ENODEV; goto free_resources; } free_resources: iop_adma_free_chan_resources(dma_chan); out: src_idx = IOP_ADMA_NUM_SRC_TEST; while (src_idx--) __free_page(xor_srcs[src_idx]); __free_page(dest); return err; } static int __devexit iop_adma_remove(struct platform_device *dev) { struct iop_adma_device *device = platform_get_drvdata(dev); struct dma_chan *chan, *_chan; struct iop_adma_chan *iop_chan; int i; struct iop_adma_platform_data *plat_data = dev->dev.platform_data; dma_async_device_unregister(&device->common); for (i = 0; i < 3; i++) { unsigned int irq; irq = platform_get_irq(dev, i); free_irq(irq, device); } dma_free_coherent(&dev->dev, plat_data->pool_size, device->dma_desc_pool_virt, device->dma_desc_pool); do { struct resource *res; res = platform_get_resource(dev, IORESOURCE_MEM, 0); release_mem_region(res->start, res->end - res->start); } while (0); list_for_each_entry_safe(chan, _chan, &device->common.channels, device_node) { iop_chan = to_iop_adma_chan(chan); list_del(&chan->device_node); kfree(iop_chan); } kfree(device); return 0; } static int __devinit iop_adma_probe(struct platform_device *pdev) { struct resource *res; int ret = 0, i; struct iop_adma_device *adev; struct iop_adma_chan *iop_chan; struct dma_device *dma_dev; struct iop_adma_platform_data *plat_data = pdev->dev.platform_data; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; if (!devm_request_mem_region(&pdev->dev, res->start, res->end - res->start, pdev->name)) return -EBUSY; adev = kzalloc(sizeof(*adev), GFP_KERNEL); if (!adev) return -ENOMEM; dma_dev = &adev->common; /* allocate coherent memory for hardware descriptors * note: writecombine gives slightly better performance, but * requires that we explicitly flush the writes */ if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev, plat_data->pool_size, &adev->dma_desc_pool, GFP_KERNEL)) == NULL) { ret = -ENOMEM; goto err_free_adev; } dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n", __func__, adev->dma_desc_pool_virt, (void *) adev->dma_desc_pool); adev->id = plat_data->hw_id; /* discover transaction capabilites from the platform data */ dma_dev->cap_mask = plat_data->cap_mask; adev->pdev = pdev; platform_set_drvdata(pdev, adev); INIT_LIST_HEAD(&dma_dev->channels); /* set base routines */ dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources; dma_dev->device_free_chan_resources = iop_adma_free_chan_resources; dma_dev->device_is_tx_complete = iop_adma_is_complete; dma_dev->device_issue_pending = iop_adma_issue_pending; dma_dev->dev = &pdev->dev; /* set prep routines based on capability */ if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy; if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset; if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { dma_dev->max_xor = iop_adma_get_max_xor(); dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor; } if (dma_has_cap(DMA_ZERO_SUM, dma_dev->cap_mask)) dma_dev->device_prep_dma_zero_sum = iop_adma_prep_dma_zero_sum; if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask)) dma_dev->device_prep_dma_interrupt = iop_adma_prep_dma_interrupt; iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL); if (!iop_chan) { ret = -ENOMEM; goto err_free_dma; } iop_chan->device = adev; iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start, res->end - res->start); if (!iop_chan->mmr_base) { ret = -ENOMEM; goto err_free_iop_chan; } tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long) iop_chan); /* clear errors before enabling interrupts */ iop_adma_device_clear_err_status(iop_chan); for (i = 0; i < 3; i++) { irq_handler_t handler[] = { iop_adma_eot_handler, iop_adma_eoc_handler, iop_adma_err_handler }; int irq = platform_get_irq(pdev, i); if (irq < 0) { ret = -ENXIO; goto err_free_iop_chan; } else { ret = devm_request_irq(&pdev->dev, irq, handler[i], 0, pdev->name, iop_chan); if (ret) goto err_free_iop_chan; } } spin_lock_init(&iop_chan->lock); INIT_LIST_HEAD(&iop_chan->chain); INIT_LIST_HEAD(&iop_chan->all_slots); INIT_RCU_HEAD(&iop_chan->common.rcu); iop_chan->common.device = dma_dev; list_add_tail(&iop_chan->common.device_node, &dma_dev->channels); if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) { ret = iop_adma_memcpy_self_test(adev); dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret); if (ret) goto err_free_iop_chan; } if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) || dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) { ret = iop_adma_xor_zero_sum_self_test(adev); dev_dbg(&pdev->dev, "xor self test returned %d\n", ret); if (ret) goto err_free_iop_chan; } dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: " "( %s%s%s%s%s%s%s%s%s%s)\n", dma_has_cap(DMA_PQ_XOR, dma_dev->cap_mask) ? "pq_xor " : "", dma_has_cap(DMA_PQ_UPDATE, dma_dev->cap_mask) ? "pq_update " : "", dma_has_cap(DMA_PQ_ZERO_SUM, dma_dev->cap_mask) ? "pq_zero_sum " : "", dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "", dma_has_cap(DMA_DUAL_XOR, dma_dev->cap_mask) ? "dual_xor " : "", dma_has_cap(DMA_ZERO_SUM, dma_dev->cap_mask) ? "xor_zero_sum " : "", dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "", dma_has_cap(DMA_MEMCPY_CRC32C, dma_dev->cap_mask) ? "cpy+crc " : "", dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "", dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : ""); dma_async_device_register(dma_dev); goto out; err_free_iop_chan: kfree(iop_chan); err_free_dma: dma_free_coherent(&adev->pdev->dev, plat_data->pool_size, adev->dma_desc_pool_virt, adev->dma_desc_pool); err_free_adev: kfree(adev); out: return ret; } static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan) { struct iop_adma_desc_slot *sw_desc, *grp_start; dma_cookie_t cookie; int slot_cnt, slots_per_op; dev_dbg(iop_chan->device->common.dev, "%s\n", __func__); spin_lock_bh(&iop_chan->lock); slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op); sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); if (sw_desc) { grp_start = sw_desc->group_head; list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain); async_tx_ack(&sw_desc->async_tx); iop_desc_init_memcpy(grp_start, 0); iop_desc_set_byte_count(grp_start, iop_chan, 0); iop_desc_set_dest_addr(grp_start, iop_chan, 0); iop_desc_set_memcpy_src_addr(grp_start, 0); cookie = iop_chan->common.cookie; cookie++; if (cookie <= 1) cookie = 2; /* initialize the completed cookie to be less than * the most recently used cookie */ iop_chan->completed_cookie = cookie - 1; iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie; /* channel should not be busy */ BUG_ON(iop_chan_is_busy(iop_chan)); /* clear any prior error-status bits */ iop_adma_device_clear_err_status(iop_chan); /* disable operation */ iop_chan_disable(iop_chan); /* set the descriptor address */ iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys); /* 1/ don't add pre-chained descriptors * 2/ dummy read to flush next_desc write */ BUG_ON(iop_desc_get_next_desc(sw_desc)); /* run the descriptor */ iop_chan_enable(iop_chan); } else dev_printk(KERN_ERR, iop_chan->device->common.dev, "failed to allocate null descriptor\n"); spin_unlock_bh(&iop_chan->lock); } static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan) { struct iop_adma_desc_slot *sw_desc, *grp_start; dma_cookie_t cookie; int slot_cnt, slots_per_op; dev_dbg(iop_chan->device->common.dev, "%s\n", __func__); spin_lock_bh(&iop_chan->lock); slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op); sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); if (sw_desc) { grp_start = sw_desc->group_head; list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain); async_tx_ack(&sw_desc->async_tx); iop_desc_init_null_xor(grp_start, 2, 0); iop_desc_set_byte_count(grp_start, iop_chan, 0); iop_desc_set_dest_addr(grp_start, iop_chan, 0); iop_desc_set_xor_src_addr(grp_start, 0, 0); iop_desc_set_xor_src_addr(grp_start, 1, 0); cookie = iop_chan->common.cookie; cookie++; if (cookie <= 1) cookie = 2; /* initialize the completed cookie to be less than * the most recently used cookie */ iop_chan->completed_cookie = cookie - 1; iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie; /* channel should not be busy */ BUG_ON(iop_chan_is_busy(iop_chan)); /* clear any prior error-status bits */ iop_adma_device_clear_err_status(iop_chan); /* disable operation */ iop_chan_disable(iop_chan); /* set the descriptor address */ iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys); /* 1/ don't add pre-chained descriptors * 2/ dummy read to flush next_desc write */ BUG_ON(iop_desc_get_next_desc(sw_desc)); /* run the descriptor */ iop_chan_enable(iop_chan); } else dev_printk(KERN_ERR, iop_chan->device->common.dev, "failed to allocate null descriptor\n"); spin_unlock_bh(&iop_chan->lock); } MODULE_ALIAS("platform:iop-adma"); static struct platform_driver iop_adma_driver = { .probe = iop_adma_probe, .remove = iop_adma_remove, .driver = { .owner = THIS_MODULE, .name = "iop-adma", }, }; static int __init iop_adma_init (void) { return platform_driver_register(&iop_adma_driver); } /* it's currently unsafe to unload this module */ #if 0 static void __exit iop_adma_exit (void) { platform_driver_unregister(&iop_adma_driver); return; } module_exit(iop_adma_exit); #endif module_init(iop_adma_init); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("IOP ADMA Engine Driver"); MODULE_LICENSE("GPL");