/* * SBP2 driver (SCSI over IEEE1394) * * Copyright (C) 2005-2007 Kristian Hoegsberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * The basic structure of this driver is based on the old storage driver, * drivers/ieee1394/sbp2.c, originally written by * James Goodwin * with later contributions and ongoing maintenance from * Ben Collins , * Stefan Richter * and many others. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fw-device.h" #include "fw-topology.h" #include "fw-transaction.h" /* * So far only bridges from Oxford Semiconductor are known to support * concurrent logins. Depending on firmware, four or two concurrent logins * are possible on OXFW911 and newer Oxsemi bridges. * * Concurrent logins are useful together with cluster filesystems. */ static int sbp2_param_exclusive_login = 1; module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " "(default = Y, use N for concurrent initiators)"); /* * Flags for firmware oddities * * - 128kB max transfer * Limit transfer size. Necessary for some old bridges. * * - 36 byte inquiry * When scsi_mod probes the device, let the inquiry command look like that * from MS Windows. * * - skip mode page 8 * Suppress sending of mode_sense for mode page 8 if the device pretends to * support the SCSI Primary Block commands instead of Reduced Block Commands. * * - fix capacity * Tell sd_mod to correct the last sector number reported by read_capacity. * Avoids access beyond actual disk limits on devices with an off-by-one bug. * Don't use this with devices which don't have this bug. * * - delay inquiry * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. * * - override internal blacklist * Instead of adding to the built-in blacklist, use only the workarounds * specified in the module load parameter. * Useful if a blacklist entry interfered with a non-broken device. */ #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 #define SBP2_WORKAROUND_INQUIRY_36 0x2 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 #define SBP2_INQUIRY_DELAY 12 #define SBP2_WORKAROUND_OVERRIDE 0x100 static int sbp2_param_workarounds; module_param_named(workarounds, sbp2_param_workarounds, int, 0644); MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) ", or a combination)"); /* I don't know why the SCSI stack doesn't define something like this... */ typedef void (*scsi_done_fn_t)(struct scsi_cmnd *); static const char sbp2_driver_name[] = "sbp2"; /* * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry * and one struct scsi_device per sbp2_logical_unit. */ struct sbp2_logical_unit { struct sbp2_target *tgt; struct list_head link; struct fw_address_handler address_handler; struct list_head orb_list; u64 command_block_agent_address; u16 lun; int login_id; /* * The generation is updated once we've logged in or reconnected * to the logical unit. Thus, I/O to the device will automatically * fail and get retried if it happens in a window where the device * is not ready, e.g. after a bus reset but before we reconnect. */ int generation; int retries; struct delayed_work work; bool has_sdev; bool blocked; }; /* * We create one struct sbp2_target per IEEE 1212 Unit Directory * and one struct Scsi_Host per sbp2_target. */ struct sbp2_target { struct kref kref; struct fw_unit *unit; const char *bus_id; struct list_head lu_list; u64 management_agent_address; u64 guid; int directory_id; int node_id; int address_high; unsigned int workarounds; unsigned int mgt_orb_timeout; int dont_block; /* counter for each logical unit */ int blocked; /* ditto */ }; /* * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be * provided in the config rom. Most devices do provide a value, which * we'll use for login management orbs, but with some sane limits. */ #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */ #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */ #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ #define SBP2_ORB_NULL 0x80000000 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ /* Unit directory keys */ #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a #define SBP2_CSR_FIRMWARE_REVISION 0x3c #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 /* Management orb opcodes */ #define SBP2_LOGIN_REQUEST 0x0 #define SBP2_QUERY_LOGINS_REQUEST 0x1 #define SBP2_RECONNECT_REQUEST 0x3 #define SBP2_SET_PASSWORD_REQUEST 0x4 #define SBP2_LOGOUT_REQUEST 0x7 #define SBP2_ABORT_TASK_REQUEST 0xb #define SBP2_ABORT_TASK_SET 0xc #define SBP2_LOGICAL_UNIT_RESET 0xe #define SBP2_TARGET_RESET_REQUEST 0xf /* Offsets for command block agent registers */ #define SBP2_AGENT_STATE 0x00 #define SBP2_AGENT_RESET 0x04 #define SBP2_ORB_POINTER 0x08 #define SBP2_DOORBELL 0x10 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 /* Status write response codes */ #define SBP2_STATUS_REQUEST_COMPLETE 0x0 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) #define STATUS_GET_ORB_LOW(v) ((v).orb_low) #define STATUS_GET_DATA(v) ((v).data) struct sbp2_status { u32 status; u32 orb_low; u8 data[24]; }; struct sbp2_pointer { __be32 high; __be32 low; }; struct sbp2_orb { struct fw_transaction t; struct kref kref; dma_addr_t request_bus; int rcode; struct sbp2_pointer pointer; void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); struct list_head link; }; #define MANAGEMENT_ORB_LUN(v) ((v)) #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) #define MANAGEMENT_ORB_NOTIFY ((1) << 31) #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) struct sbp2_management_orb { struct sbp2_orb base; struct { struct sbp2_pointer password; struct sbp2_pointer response; __be32 misc; __be32 length; struct sbp2_pointer status_fifo; } request; __be32 response[4]; dma_addr_t response_bus; struct completion done; struct sbp2_status status; }; struct sbp2_login_response { __be32 misc; struct sbp2_pointer command_block_agent; __be32 reconnect_hold; }; #define COMMAND_ORB_DATA_SIZE(v) ((v)) #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) #define COMMAND_ORB_SPEED(v) ((v) << 24) #define COMMAND_ORB_DIRECTION ((1) << 27) #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) #define COMMAND_ORB_NOTIFY ((1) << 31) struct sbp2_command_orb { struct sbp2_orb base; struct { struct sbp2_pointer next; struct sbp2_pointer data_descriptor; __be32 misc; u8 command_block[12]; } request; struct scsi_cmnd *cmd; scsi_done_fn_t done; struct sbp2_logical_unit *lu; struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); dma_addr_t page_table_bus; }; /* * List of devices with known bugs. * * The firmware_revision field, masked with 0xffff00, is the best * indicator for the type of bridge chip of a device. It yields a few * false positives but this did not break correctly behaving devices * so far. We use ~0 as a wildcard, since the 24 bit values we get * from the config rom can never match that. */ static const struct { u32 firmware_revision; u32 model; unsigned int workarounds; } sbp2_workarounds_table[] = { /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { .firmware_revision = 0x002800, .model = 0x001010, .workarounds = SBP2_WORKAROUND_INQUIRY_36 | SBP2_WORKAROUND_MODE_SENSE_8, }, /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { .firmware_revision = 0x002800, .model = 0x000000, .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY, }, /* Initio bridges, actually only needed for some older ones */ { .firmware_revision = 0x000200, .model = ~0, .workarounds = SBP2_WORKAROUND_INQUIRY_36, }, /* Symbios bridge */ { .firmware_revision = 0xa0b800, .model = ~0, .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, }, /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { .firmware_revision = 0x002600, .model = ~0, .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, }, /* * There are iPods (2nd gen, 3rd gen) with model_id == 0, but * these iPods do not feature the read_capacity bug according * to one report. Read_capacity behaviour as well as model_id * could change due to Apple-supplied firmware updates though. */ /* iPod 4th generation. */ { .firmware_revision = 0x0a2700, .model = 0x000021, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, }, /* iPod mini */ { .firmware_revision = 0x0a2700, .model = 0x000023, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, }, /* iPod Photo */ { .firmware_revision = 0x0a2700, .model = 0x00007e, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, } }; static void free_orb(struct kref *kref) { struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); kfree(orb); } static void sbp2_status_write(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, int speed, unsigned long long offset, void *payload, size_t length, void *callback_data) { struct sbp2_logical_unit *lu = callback_data; struct sbp2_orb *orb; struct sbp2_status status; size_t header_size; unsigned long flags; if (tcode != TCODE_WRITE_BLOCK_REQUEST || length == 0 || length > sizeof(status)) { fw_send_response(card, request, RCODE_TYPE_ERROR); return; } header_size = min(length, 2 * sizeof(u32)); fw_memcpy_from_be32(&status, payload, header_size); if (length > header_size) memcpy(status.data, payload + 8, length - header_size); if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { fw_notify("non-orb related status write, not handled\n"); fw_send_response(card, request, RCODE_COMPLETE); return; } /* Lookup the orb corresponding to this status write. */ spin_lock_irqsave(&card->lock, flags); list_for_each_entry(orb, &lu->orb_list, link) { if (STATUS_GET_ORB_HIGH(status) == 0 && STATUS_GET_ORB_LOW(status) == orb->request_bus) { orb->rcode = RCODE_COMPLETE; list_del(&orb->link); break; } } spin_unlock_irqrestore(&card->lock, flags); if (&orb->link != &lu->orb_list) orb->callback(orb, &status); else fw_error("status write for unknown orb\n"); kref_put(&orb->kref, free_orb); fw_send_response(card, request, RCODE_COMPLETE); } static void complete_transaction(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct sbp2_orb *orb = data; unsigned long flags; /* * This is a little tricky. We can get the status write for * the orb before we get this callback. The status write * handler above will assume the orb pointer transaction was * successful and set the rcode to RCODE_COMPLETE for the orb. * So this callback only sets the rcode if it hasn't already * been set and only does the cleanup if the transaction * failed and we didn't already get a status write. */ spin_lock_irqsave(&card->lock, flags); if (orb->rcode == -1) orb->rcode = rcode; if (orb->rcode != RCODE_COMPLETE) { list_del(&orb->link); spin_unlock_irqrestore(&card->lock, flags); orb->callback(orb, NULL); } else { spin_unlock_irqrestore(&card->lock, flags); } kref_put(&orb->kref, free_orb); } static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, int node_id, int generation, u64 offset) { struct fw_device *device = fw_device(lu->tgt->unit->device.parent); unsigned long flags; orb->pointer.high = 0; orb->pointer.low = cpu_to_be32(orb->request_bus); spin_lock_irqsave(&device->card->lock, flags); list_add_tail(&orb->link, &lu->orb_list); spin_unlock_irqrestore(&device->card->lock, flags); /* Take a ref for the orb list and for the transaction callback. */ kref_get(&orb->kref); kref_get(&orb->kref); fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, node_id, generation, device->max_speed, offset, &orb->pointer, sizeof(orb->pointer), complete_transaction, orb); } static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) { struct fw_device *device = fw_device(lu->tgt->unit->device.parent); struct sbp2_orb *orb, *next; struct list_head list; unsigned long flags; int retval = -ENOENT; INIT_LIST_HEAD(&list); spin_lock_irqsave(&device->card->lock, flags); list_splice_init(&lu->orb_list, &list); spin_unlock_irqrestore(&device->card->lock, flags); list_for_each_entry_safe(orb, next, &list, link) { retval = 0; if (fw_cancel_transaction(device->card, &orb->t) == 0) continue; orb->rcode = RCODE_CANCELLED; orb->callback(orb, NULL); } return retval; } static void complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status) { struct sbp2_management_orb *orb = container_of(base_orb, struct sbp2_management_orb, base); if (status) memcpy(&orb->status, status, sizeof(*status)); complete(&orb->done); } static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, int generation, int function, int lun_or_login_id, void *response) { struct fw_device *device = fw_device(lu->tgt->unit->device.parent); struct sbp2_management_orb *orb; unsigned int timeout; int retval = -ENOMEM; if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) return 0; orb = kzalloc(sizeof(*orb), GFP_ATOMIC); if (orb == NULL) return -ENOMEM; kref_init(&orb->base.kref); orb->response_bus = dma_map_single(device->card->device, &orb->response, sizeof(orb->response), DMA_FROM_DEVICE); if (dma_mapping_error(orb->response_bus)) goto fail_mapping_response; orb->request.response.high = 0; orb->request.response.low = cpu_to_be32(orb->response_bus); orb->request.misc = cpu_to_be32( MANAGEMENT_ORB_NOTIFY | MANAGEMENT_ORB_FUNCTION(function) | MANAGEMENT_ORB_LUN(lun_or_login_id)); orb->request.length = cpu_to_be32( MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); orb->request.status_fifo.high = cpu_to_be32(lu->address_handler.offset >> 32); orb->request.status_fifo.low = cpu_to_be32(lu->address_handler.offset); if (function == SBP2_LOGIN_REQUEST) { /* Ask for 2^2 == 4 seconds reconnect grace period */ orb->request.misc |= cpu_to_be32( MANAGEMENT_ORB_RECONNECT(2) | MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); timeout = lu->tgt->mgt_orb_timeout; } else { timeout = SBP2_ORB_TIMEOUT; } init_completion(&orb->done); orb->base.callback = complete_management_orb; orb->base.request_bus = dma_map_single(device->card->device, &orb->request, sizeof(orb->request), DMA_TO_DEVICE); if (dma_mapping_error(orb->base.request_bus)) goto fail_mapping_request; sbp2_send_orb(&orb->base, lu, node_id, generation, lu->tgt->management_agent_address); wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); retval = -EIO; if (sbp2_cancel_orbs(lu) == 0) { fw_error("%s: orb reply timed out, rcode=0x%02x\n", lu->tgt->bus_id, orb->base.rcode); goto out; } if (orb->base.rcode != RCODE_COMPLETE) { fw_error("%s: management write failed, rcode 0x%02x\n", lu->tgt->bus_id, orb->base.rcode); goto out; } if (STATUS_GET_RESPONSE(orb->status) != 0 || STATUS_GET_SBP_STATUS(orb->status) != 0) { fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id, STATUS_GET_RESPONSE(orb->status), STATUS_GET_SBP_STATUS(orb->status)); goto out; } retval = 0; out: dma_unmap_single(device->card->device, orb->base.request_bus, sizeof(orb->request), DMA_TO_DEVICE); fail_mapping_request: dma_unmap_single(device->card->device, orb->response_bus, sizeof(orb->response), DMA_FROM_DEVICE); fail_mapping_response: if (response) memcpy(response, orb->response, sizeof(orb->response)); kref_put(&orb->base.kref, free_orb); return retval; } static void complete_agent_reset_write(struct fw_card *card, int rcode, void *payload, size_t length, void *done) { complete(done); } static void sbp2_agent_reset(struct sbp2_logical_unit *lu) { struct fw_device *device = fw_device(lu->tgt->unit->device.parent); DECLARE_COMPLETION_ONSTACK(done); struct fw_transaction t; static u32 z; fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST, lu->tgt->node_id, lu->generation, device->max_speed, lu->command_block_agent_address + SBP2_AGENT_RESET, &z, sizeof(z), complete_agent_reset_write, &done); wait_for_completion(&done); } static void complete_agent_reset_write_no_wait(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { kfree(data); } static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) { struct fw_device *device = fw_device(lu->tgt->unit->device.parent); struct fw_transaction *t; static u32 z; t = kmalloc(sizeof(*t), GFP_ATOMIC); if (t == NULL) return; fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, lu->tgt->node_id, lu->generation, device->max_speed, lu->command_block_agent_address + SBP2_AGENT_RESET, &z, sizeof(z), complete_agent_reset_write_no_wait, t); } static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation) { struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card; unsigned long flags; /* serialize with comparisons of lu->generation and card->generation */ spin_lock_irqsave(&card->lock, flags); lu->generation = generation; spin_unlock_irqrestore(&card->lock, flags); } static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) { /* * We may access dont_block without taking card->lock here: * All callers of sbp2_allow_block() and all callers of sbp2_unblock() * are currently serialized against each other. * And a wrong result in sbp2_conditionally_block()'s access of * dont_block is rather harmless, it simply misses its first chance. */ --lu->tgt->dont_block; } /* * Blocks lu->tgt if all of the following conditions are met: * - Login, INQUIRY, and high-level SCSI setup of all of the target's * logical units have been finished (indicated by dont_block == 0). * - lu->generation is stale. * * Note, scsi_block_requests() must be called while holding card->lock, * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to * unblock the target. */ static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) { struct sbp2_target *tgt = lu->tgt; struct fw_card *card = fw_device(tgt->unit->device.parent)->card; struct Scsi_Host *shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); unsigned long flags; spin_lock_irqsave(&card->lock, flags); if (!tgt->dont_block && !lu->blocked && lu->generation != card->generation) { lu->blocked = true; if (++tgt->blocked == 1) scsi_block_requests(shost); } spin_unlock_irqrestore(&card->lock, flags); } /* * Unblocks lu->tgt as soon as all its logical units can be unblocked. * Note, it is harmless to run scsi_unblock_requests() outside the * card->lock protected section. On the other hand, running it inside * the section might clash with shost->host_lock. */ static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) { struct sbp2_target *tgt = lu->tgt; struct fw_card *card = fw_device(tgt->unit->device.parent)->card; struct Scsi_Host *shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); unsigned long flags; bool unblock = false; spin_lock_irqsave(&card->lock, flags); if (lu->blocked && lu->generation == card->generation) { lu->blocked = false; unblock = --tgt->blocked == 0; } spin_unlock_irqrestore(&card->lock, flags); if (unblock) scsi_unblock_requests(shost); } /* * Prevents future blocking of tgt and unblocks it. * Note, it is harmless to run scsi_unblock_requests() outside the * card->lock protected section. On the other hand, running it inside * the section might clash with shost->host_lock. */ static void sbp2_unblock(struct sbp2_target *tgt) { struct fw_card *card = fw_device(tgt->unit->device.parent)->card; struct Scsi_Host *shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); unsigned long flags; spin_lock_irqsave(&card->lock, flags); ++tgt->dont_block; spin_unlock_irqrestore(&card->lock, flags); scsi_unblock_requests(shost); } static int sbp2_lun2int(u16 lun) { struct scsi_lun eight_bytes_lun; memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; eight_bytes_lun.scsi_lun[1] = lun & 0xff; return scsilun_to_int(&eight_bytes_lun); } static void sbp2_release_target(struct kref *kref) { struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref); struct sbp2_logical_unit *lu, *next; struct Scsi_Host *shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); struct scsi_device *sdev; struct fw_device *device = fw_device(tgt->unit->device.parent); /* prevent deadlocks */ sbp2_unblock(tgt); list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); if (sdev) { scsi_remove_device(sdev); scsi_device_put(sdev); } sbp2_send_management_orb(lu, tgt->node_id, lu->generation, SBP2_LOGOUT_REQUEST, lu->login_id, NULL); fw_core_remove_address_handler(&lu->address_handler); list_del(&lu->link); kfree(lu); } scsi_remove_host(shost); fw_notify("released %s\n", tgt->bus_id); fw_unit_put(tgt->unit); scsi_host_put(shost); fw_device_put(device); } static struct workqueue_struct *sbp2_wq; /* * Always get the target's kref when scheduling work on one its units. * Each workqueue job is responsible to call sbp2_target_put() upon return. */ static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) { if (queue_delayed_work(sbp2_wq, &lu->work, delay)) kref_get(&lu->tgt->kref); } static void sbp2_target_put(struct sbp2_target *tgt) { kref_put(&tgt->kref, sbp2_release_target); } static void complete_set_busy_timeout(struct fw_card *card, int rcode, void *payload, size_t length, void *done) { complete(done); } /* * Write retransmit retry values into the BUSY_TIMEOUT register. * - The single-phase retry protocol is supported by all SBP-2 devices, but the * default retry_limit value is 0 (i.e. never retry transmission). We write a * saner value after logging into the device. * - The dual-phase retry protocol is optional to implement, and if not * supported, writes to the dual-phase portion of the register will be * ignored. We try to write the original 1394-1995 default here. * - In the case of devices that are also SBP-3-compliant, all writes are * ignored, as the register is read-only, but contains single-phase retry of * 15, which is what we're trying to set for all SBP-2 device anyway, so this * write attempt is safe and yields more consistent behavior for all devices. * * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, * and section 6.4 of the SBP-3 spec for further details. */ static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) { struct fw_device *device = fw_device(lu->tgt->unit->device.parent); DECLARE_COMPLETION_ONSTACK(done); struct fw_transaction t; static __be32 busy_timeout; busy_timeout = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST, lu->tgt->node_id, lu->generation, device->max_speed, CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout, sizeof(busy_timeout), complete_set_busy_timeout, &done); wait_for_completion(&done); } static void sbp2_reconnect(struct work_struct *work); static void sbp2_login(struct work_struct *work) { struct sbp2_logical_unit *lu = container_of(work, struct sbp2_logical_unit, work.work); struct sbp2_target *tgt = lu->tgt; struct fw_device *device = fw_device(tgt->unit->device.parent); struct Scsi_Host *shost; struct scsi_device *sdev; struct sbp2_login_response response; int generation, node_id, local_node_id; if (fw_device_is_shutdown(device)) goto out; generation = device->generation; smp_rmb(); /* node_id must not be older than generation */ node_id = device->node_id; local_node_id = device->card->node_id; /* If this is a re-login attempt, log out, or we might be rejected. */ if (lu->has_sdev) sbp2_send_management_orb(lu, device->node_id, generation, SBP2_LOGOUT_REQUEST, lu->login_id, NULL); if (sbp2_send_management_orb(lu, node_id, generation, SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { if (lu->retries++ < 5) { sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); } else { fw_error("%s: failed to login to LUN %04x\n", tgt->bus_id, lu->lun); /* Let any waiting I/O fail from now on. */ sbp2_unblock(lu->tgt); } goto out; } tgt->node_id = node_id; tgt->address_high = local_node_id << 16; sbp2_set_generation(lu, generation); lu->command_block_agent_address = ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) << 32) | be32_to_cpu(response.command_block_agent.low); lu->login_id = be32_to_cpu(response.misc) & 0xffff; fw_notify("%s: logged in to LUN %04x (%d retries)\n", tgt->bus_id, lu->lun, lu->retries); /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ sbp2_set_busy_timeout(lu); PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); sbp2_agent_reset(lu); /* This was a re-login. */ if (lu->has_sdev) { sbp2_cancel_orbs(lu); sbp2_conditionally_unblock(lu); goto out; } if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) ssleep(SBP2_INQUIRY_DELAY); shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); /* * FIXME: We are unable to perform reconnects while in sbp2_login(). * Therefore __scsi_add_device() will get into trouble if a bus reset * happens in parallel. It will either fail or leave us with an * unusable sdev. As a workaround we check for this and retry the * whole login and SCSI probing. */ /* Reported error during __scsi_add_device() */ if (IS_ERR(sdev)) goto out_logout_login; /* Unreported error during __scsi_add_device() */ smp_rmb(); /* get current card generation */ if (generation != device->card->generation) { scsi_remove_device(sdev); scsi_device_put(sdev); goto out_logout_login; } /* No error during __scsi_add_device() */ lu->has_sdev = true; scsi_device_put(sdev); sbp2_allow_block(lu); goto out; out_logout_login: smp_rmb(); /* generation may have changed */ generation = device->generation; smp_rmb(); /* node_id must not be older than generation */ sbp2_send_management_orb(lu, device->node_id, generation, SBP2_LOGOUT_REQUEST, lu->login_id, NULL); /* * If a bus reset happened, sbp2_update will have requeued * lu->work already. Reset the work from reconnect to login. */ PREPARE_DELAYED_WORK(&lu->work, sbp2_login); out: sbp2_target_put(tgt); } static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) { struct sbp2_logical_unit *lu; lu = kmalloc(sizeof(*lu), GFP_KERNEL); if (!lu) return -ENOMEM; lu->address_handler.length = 0x100; lu->address_handler.address_callback = sbp2_status_write; lu->address_handler.callback_data = lu; if (fw_core_add_address_handler(&lu->address_handler, &fw_high_memory_region) < 0) { kfree(lu); return -ENOMEM; } lu->tgt = tgt; lu->lun = lun_entry & 0xffff; lu->retries = 0; lu->has_sdev = false; lu->blocked = false; ++tgt->dont_block; INIT_LIST_HEAD(&lu->orb_list); INIT_DELAYED_WORK(&lu->work, sbp2_login); list_add_tail(&lu->link, &tgt->lu_list); return 0; } static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory) { struct fw_csr_iterator ci; int key, value; fw_csr_iterator_init(&ci, directory); while (fw_csr_iterator_next(&ci, &key, &value)) if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && sbp2_add_logical_unit(tgt, value) < 0) return -ENOMEM; return 0; } static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory, u32 *model, u32 *firmware_revision) { struct fw_csr_iterator ci; int key, value; unsigned int timeout; fw_csr_iterator_init(&ci, directory); while (fw_csr_iterator_next(&ci, &key, &value)) { switch (key) { case CSR_DEPENDENT_INFO | CSR_OFFSET: tgt->management_agent_address = CSR_REGISTER_BASE + 4 * value; break; case CSR_DIRECTORY_ID: tgt->directory_id = value; break; case CSR_MODEL: *model = value; break; case SBP2_CSR_FIRMWARE_REVISION: *firmware_revision = value; break; case SBP2_CSR_UNIT_CHARACTERISTICS: /* the timeout value is stored in 500ms units */ timeout = ((unsigned int) value >> 8 & 0xff) * 500; timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT); tgt->mgt_orb_timeout = min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT); if (timeout > tgt->mgt_orb_timeout) fw_notify("%s: config rom contains %ds " "management ORB timeout, limiting " "to %ds\n", tgt->bus_id, timeout / 1000, tgt->mgt_orb_timeout / 1000); break; case SBP2_CSR_LOGICAL_UNIT_NUMBER: if (sbp2_add_logical_unit(tgt, value) < 0) return -ENOMEM; break; case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0) return -ENOMEM; break; } } return 0; } static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, u32 firmware_revision) { int i; unsigned int w = sbp2_param_workarounds; if (w) fw_notify("Please notify linux1394-devel@lists.sourceforge.net " "if you need the workarounds parameter for %s\n", tgt->bus_id); if (w & SBP2_WORKAROUND_OVERRIDE) goto out; for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { if (sbp2_workarounds_table[i].firmware_revision != (firmware_revision & 0xffffff00)) continue; if (sbp2_workarounds_table[i].model != model && sbp2_workarounds_table[i].model != ~0) continue; w |= sbp2_workarounds_table[i].workarounds; break; } out: if (w) fw_notify("Workarounds for %s: 0x%x " "(firmware_revision 0x%06x, model_id 0x%06x)\n", tgt->bus_id, w, firmware_revision, model); tgt->workarounds = w; } static struct scsi_host_template scsi_driver_template; static int sbp2_probe(struct device *dev) { struct fw_unit *unit = fw_unit(dev); struct fw_device *device = fw_device(unit->device.parent); struct sbp2_target *tgt; struct sbp2_logical_unit *lu; struct Scsi_Host *shost; u32 model, firmware_revision; shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); if (shost == NULL) return -ENOMEM; tgt = (struct sbp2_target *)shost->hostdata; unit->device.driver_data = tgt; tgt->unit = unit; kref_init(&tgt->kref); INIT_LIST_HEAD(&tgt->lu_list); tgt->bus_id = unit->device.bus_id; tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; if (fw_device_enable_phys_dma(device) < 0) goto fail_shost_put; if (scsi_add_host(shost, &unit->device) < 0) goto fail_shost_put; fw_device_get(device); fw_unit_get(unit); /* Initialize to values that won't match anything in our table. */ firmware_revision = 0xff000000; model = 0xff000000; /* implicit directory ID */ tgt->directory_id = ((unit->directory - device->config_rom) * 4 + CSR_CONFIG_ROM) & 0xffffff; if (sbp2_scan_unit_dir(tgt, unit->directory, &model, &firmware_revision) < 0) goto fail_tgt_put; sbp2_init_workarounds(tgt, model, firmware_revision); /* Do the login in a workqueue so we can easily reschedule retries. */ list_for_each_entry(lu, &tgt->lu_list, link) sbp2_queue_work(lu, 0); return 0; fail_tgt_put: sbp2_target_put(tgt); return -ENOMEM; fail_shost_put: scsi_host_put(shost); return -ENOMEM; } static int sbp2_remove(struct device *dev) { struct fw_unit *unit = fw_unit(dev); struct sbp2_target *tgt = unit->device.driver_data; sbp2_target_put(tgt); return 0; } static void sbp2_reconnect(struct work_struct *work) { struct sbp2_logical_unit *lu = container_of(work, struct sbp2_logical_unit, work.work); struct sbp2_target *tgt = lu->tgt; struct fw_device *device = fw_device(tgt->unit->device.parent); int generation, node_id, local_node_id; if (fw_device_is_shutdown(device)) goto out; generation = device->generation; smp_rmb(); /* node_id must not be older than generation */ node_id = device->node_id; local_node_id = device->card->node_id; if (sbp2_send_management_orb(lu, node_id, generation, SBP2_RECONNECT_REQUEST, lu->login_id, NULL) < 0) { /* * If reconnect was impossible even though we are in the * current generation, fall back and try to log in again. * * We could check for "Function rejected" status, but * looking at the bus generation as simpler and more general. */ smp_rmb(); /* get current card generation */ if (generation == device->card->generation || lu->retries++ >= 5) { fw_error("%s: failed to reconnect\n", tgt->bus_id); lu->retries = 0; PREPARE_DELAYED_WORK(&lu->work, sbp2_login); } sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); goto out; } tgt->node_id = node_id; tgt->address_high = local_node_id << 16; sbp2_set_generation(lu, generation); fw_notify("%s: reconnected to LUN %04x (%d retries)\n", tgt->bus_id, lu->lun, lu->retries); sbp2_agent_reset(lu); sbp2_cancel_orbs(lu); sbp2_conditionally_unblock(lu); out: sbp2_target_put(tgt); } static void sbp2_update(struct fw_unit *unit) { struct sbp2_target *tgt = unit->device.driver_data; struct sbp2_logical_unit *lu; fw_device_enable_phys_dma(fw_device(unit->device.parent)); /* * Fw-core serializes sbp2_update() against sbp2_remove(). * Iteration over tgt->lu_list is therefore safe here. */ list_for_each_entry(lu, &tgt->lu_list, link) { sbp2_conditionally_block(lu); lu->retries = 0; sbp2_queue_work(lu, 0); } } #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e #define SBP2_SW_VERSION_ENTRY 0x00010483 static const struct fw_device_id sbp2_id_table[] = { { .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION, .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, .version = SBP2_SW_VERSION_ENTRY, }, { } }; static struct fw_driver sbp2_driver = { .driver = { .owner = THIS_MODULE, .name = sbp2_driver_name, .bus = &fw_bus_type, .probe = sbp2_probe, .remove = sbp2_remove, }, .update = sbp2_update, .id_table = sbp2_id_table, }; static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) { int sam_status; sense_data[0] = 0x70; sense_data[1] = 0x0; sense_data[2] = sbp2_status[1]; sense_data[3] = sbp2_status[4]; sense_data[4] = sbp2_status[5]; sense_data[5] = sbp2_status[6]; sense_data[6] = sbp2_status[7]; sense_data[7] = 10; sense_data[8] = sbp2_status[8]; sense_data[9] = sbp2_status[9]; sense_data[10] = sbp2_status[10]; sense_data[11] = sbp2_status[11]; sense_data[12] = sbp2_status[2]; sense_data[13] = sbp2_status[3]; sense_data[14] = sbp2_status[12]; sense_data[15] = sbp2_status[13]; sam_status = sbp2_status[0] & 0x3f; switch (sam_status) { case SAM_STAT_GOOD: case SAM_STAT_CHECK_CONDITION: case SAM_STAT_CONDITION_MET: case SAM_STAT_BUSY: case SAM_STAT_RESERVATION_CONFLICT: case SAM_STAT_COMMAND_TERMINATED: return DID_OK << 16 | sam_status; default: return DID_ERROR << 16; } } static void complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status) { struct sbp2_command_orb *orb = container_of(base_orb, struct sbp2_command_orb, base); struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent); int result; if (status != NULL) { if (STATUS_GET_DEAD(*status)) sbp2_agent_reset_no_wait(orb->lu); switch (STATUS_GET_RESPONSE(*status)) { case SBP2_STATUS_REQUEST_COMPLETE: result = DID_OK << 16; break; case SBP2_STATUS_TRANSPORT_FAILURE: result = DID_BUS_BUSY << 16; break; case SBP2_STATUS_ILLEGAL_REQUEST: case SBP2_STATUS_VENDOR_DEPENDENT: default: result = DID_ERROR << 16; break; } if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), orb->cmd->sense_buffer); } else { /* * If the orb completes with status == NULL, something * went wrong, typically a bus reset happened mid-orb * or when sending the write (less likely). */ result = DID_BUS_BUSY << 16; sbp2_conditionally_block(orb->lu); } dma_unmap_single(device->card->device, orb->base.request_bus, sizeof(orb->request), DMA_TO_DEVICE); if (scsi_sg_count(orb->cmd) > 0) dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); if (orb->page_table_bus != 0) dma_unmap_single(device->card->device, orb->page_table_bus, sizeof(orb->page_table), DMA_TO_DEVICE); orb->cmd->result = result; orb->done(orb->cmd); } static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device, struct sbp2_logical_unit *lu) { struct scatterlist *sg; int sg_len, l, i, j, count; dma_addr_t sg_addr; sg = scsi_sglist(orb->cmd); count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); if (count == 0) goto fail; /* * Handle the special case where there is only one element in * the scatter list by converting it to an immediate block * request. This is also a workaround for broken devices such * as the second generation iPod which doesn't support page * tables. */ if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) { orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); orb->request.data_descriptor.low = cpu_to_be32(sg_dma_address(sg)); orb->request.misc |= cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); return 0; } /* * Convert the scatterlist to an sbp2 page table. If any * scatterlist entries are too big for sbp2, we split them as we * go. Even if we ask the block I/O layer to not give us sg * elements larger than 65535 bytes, some IOMMUs may merge sg elements * during DMA mapping, and Linux currently doesn't prevent this. */ for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) { sg_len = sg_dma_len(sg); sg_addr = sg_dma_address(sg); while (sg_len) { /* FIXME: This won't get us out of the pinch. */ if (unlikely(j >= ARRAY_SIZE(orb->page_table))) { fw_error("page table overflow\n"); goto fail_page_table; } l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH); orb->page_table[j].low = cpu_to_be32(sg_addr); orb->page_table[j].high = cpu_to_be32(l << 16); sg_addr += l; sg_len -= l; j++; } } orb->page_table_bus = dma_map_single(device->card->device, orb->page_table, sizeof(orb->page_table), DMA_TO_DEVICE); if (dma_mapping_error(orb->page_table_bus)) goto fail_page_table; /* * The data_descriptor pointer is the one case where we need * to fill in the node ID part of the address. All other * pointers assume that the data referenced reside on the * initiator (i.e. us), but data_descriptor can refer to data * on other nodes so we need to put our ID in descriptor.high. */ orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | COMMAND_ORB_DATA_SIZE(j)); return 0; fail_page_table: dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); fail: return -ENOMEM; } /* SCSI stack integration */ static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done) { struct sbp2_logical_unit *lu = cmd->device->hostdata; struct fw_device *device = fw_device(lu->tgt->unit->device.parent); struct sbp2_command_orb *orb; unsigned int max_payload; int retval = SCSI_MLQUEUE_HOST_BUSY; /* * Bidirectional commands are not yet implemented, and unknown * transfer direction not handled. */ if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); cmd->result = DID_ERROR << 16; done(cmd); return 0; } orb = kzalloc(sizeof(*orb), GFP_ATOMIC); if (orb == NULL) { fw_notify("failed to alloc orb\n"); return SCSI_MLQUEUE_HOST_BUSY; } /* Initialize rcode to something not RCODE_COMPLETE. */ orb->base.rcode = -1; kref_init(&orb->base.kref); orb->lu = lu; orb->done = done; orb->cmd = cmd; orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); /* * At speed 100 we can do 512 bytes per packet, at speed 200, * 1024 bytes per packet etc. The SBP-2 max_payload field * specifies the max payload size as 2 ^ (max_payload + 2), so * if we set this to max_speed + 7, we get the right value. */ max_payload = min(device->max_speed + 7, device->card->max_receive - 1); orb->request.misc = cpu_to_be32( COMMAND_ORB_MAX_PAYLOAD(max_payload) | COMMAND_ORB_SPEED(device->max_speed) | COMMAND_ORB_NOTIFY); if (cmd->sc_data_direction == DMA_FROM_DEVICE) orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) goto out; memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); orb->base.callback = complete_command_orb; orb->base.request_bus = dma_map_single(device->card->device, &orb->request, sizeof(orb->request), DMA_TO_DEVICE); if (dma_mapping_error(orb->base.request_bus)) goto out; sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation, lu->command_block_agent_address + SBP2_ORB_POINTER); retval = 0; out: kref_put(&orb->base.kref, free_orb); return retval; } static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) { struct sbp2_logical_unit *lu = sdev->hostdata; /* (Re-)Adding logical units via the SCSI stack is not supported. */ if (!lu) return -ENOSYS; sdev->allow_restart = 1; /* SBP-2 requires quadlet alignment of the data buffers. */ blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) sdev->inquiry_len = 36; return 0; } static int sbp2_scsi_slave_configure(struct scsi_device *sdev) { struct sbp2_logical_unit *lu = sdev->hostdata; sdev->use_10_for_rw = 1; if (sdev->type == TYPE_ROM) sdev->use_10_for_ms = 1; if (sdev->type == TYPE_DISK && lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) sdev->skip_ms_page_8 = 1; if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) sdev->fix_capacity = 1; if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512); return 0; } /* * Called by scsi stack when something has really gone wrong. Usually * called when a command has timed-out for some reason. */ static int sbp2_scsi_abort(struct scsi_cmnd *cmd) { struct sbp2_logical_unit *lu = cmd->device->hostdata; fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id); sbp2_agent_reset(lu); sbp2_cancel_orbs(lu); return SUCCESS; } /* * Format of /sys/bus/scsi/devices/.../ieee1394_id: * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) * * This is the concatenation of target port identifier and logical unit * identifier as per SAM-2...SAM-4 annex A. */ static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct sbp2_logical_unit *lu; if (!sdev) return 0; lu = sdev->hostdata; return sprintf(buf, "%016llx:%06x:%04x\n", (unsigned long long)lu->tgt->guid, lu->tgt->directory_id, lu->lun); } static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { &dev_attr_ieee1394_id, NULL }; static struct scsi_host_template scsi_driver_template = { .module = THIS_MODULE, .name = "SBP-2 IEEE-1394", .proc_name = sbp2_driver_name, .queuecommand = sbp2_scsi_queuecommand, .slave_alloc = sbp2_scsi_slave_alloc, .slave_configure = sbp2_scsi_slave_configure, .eh_abort_handler = sbp2_scsi_abort, .this_id = -1, .sg_tablesize = SG_ALL, .use_clustering = ENABLE_CLUSTERING, .cmd_per_lun = 1, .can_queue = 1, .sdev_attrs = sbp2_scsi_sysfs_attrs, }; MODULE_AUTHOR("Kristian Hoegsberg "); MODULE_DESCRIPTION("SCSI over IEEE1394"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); /* Provide a module alias so root-on-sbp2 initrds don't break. */ #ifndef CONFIG_IEEE1394_SBP2_MODULE MODULE_ALIAS("sbp2"); #endif static int __init sbp2_init(void) { sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME); if (!sbp2_wq) return -ENOMEM; return driver_register(&sbp2_driver.driver); } static void __exit sbp2_cleanup(void) { driver_unregister(&sbp2_driver.driver); destroy_workqueue(sbp2_wq); } module_init(sbp2_init); module_exit(sbp2_cleanup);