#include <linux/types.h> #include <linux/string.h> #include <linux/init.h> #include <linux/module.h> #include <linux/dmi.h> #include <linux/efi.h> #include <linux/bootmem.h> #include <linux/slab.h> #include <asm/dmi.h> static char * __init dmi_string(struct dmi_header *dm, u8 s) { u8 *bp = ((u8 *) dm) + dm->length; char *str = ""; if (s) { s--; while (s > 0 && *bp) { bp += strlen(bp) + 1; s--; } if (*bp != 0) { str = dmi_alloc(strlen(bp) + 1); if (str != NULL) strcpy(str, bp); else printk(KERN_ERR "dmi_string: out of memory.\n"); } } return str; } /* * We have to be cautious here. We have seen BIOSes with DMI pointers * pointing to completely the wrong place for example */ static int __init dmi_table(u32 base, int len, int num, void (*decode)(struct dmi_header *)) { u8 *buf, *data; int i = 0; buf = dmi_ioremap(base, len); if (buf == NULL) return -1; data = buf; /* * Stop when we see all the items the table claimed to have * OR we run off the end of the table (also happens) */ while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { struct dmi_header *dm = (struct dmi_header *)data; /* * We want to know the total length (formated area and strings) * before decoding to make sure we won't run off the table in * dmi_decode or dmi_string */ data += dm->length; while ((data - buf < len - 1) && (data[0] || data[1])) data++; if (data - buf < len - 1) decode(dm); data += 2; i++; } dmi_iounmap(buf, len); return 0; } static int __init dmi_checksum(u8 *buf) { u8 sum = 0; int a; for (a = 0; a < 15; a++) sum += buf[a]; return sum == 0; } static char *dmi_ident[DMI_STRING_MAX]; static LIST_HEAD(dmi_devices); int dmi_available; /* * Save a DMI string */ static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string) { char *p, *d = (char*) dm; if (dmi_ident[slot]) return; p = dmi_string(dm, d[string]); if (p == NULL) return; dmi_ident[slot] = p; } static void __init dmi_save_uuid(struct dmi_header *dm, int slot, int index) { u8 *d = (u8*) dm + index; char *s; int is_ff = 1, is_00 = 1, i; if (dmi_ident[slot]) return; for (i = 0; i < 16 && (is_ff || is_00); i++) { if(d[i] != 0x00) is_ff = 0; if(d[i] != 0xFF) is_00 = 0; } if (is_ff || is_00) return; s = dmi_alloc(16*2+4+1); if (!s) return; sprintf(s, "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]); dmi_ident[slot] = s; } static void __init dmi_save_type(struct dmi_header *dm, int slot, int index) { u8 *d = (u8*) dm + index; char *s; if (dmi_ident[slot]) return; s = dmi_alloc(4); if (!s) return; sprintf(s, "%u", *d & 0x7F); dmi_ident[slot] = s; } static void __init dmi_save_devices(struct dmi_header *dm) { int i, count = (dm->length - sizeof(struct dmi_header)) / 2; struct dmi_device *dev; for (i = 0; i < count; i++) { char *d = (char *)(dm + 1) + (i * 2); /* Skip disabled device */ if ((*d & 0x80) == 0) continue; dev = dmi_alloc(sizeof(*dev)); if (!dev) { printk(KERN_ERR "dmi_save_devices: out of memory.\n"); break; } dev->type = *d++ & 0x7f; dev->name = dmi_string(dm, *d); dev->device_data = NULL; list_add(&dev->list, &dmi_devices); } } static void __init dmi_save_oem_strings_devices(struct dmi_header *dm) { int i, count = *(u8 *)(dm + 1); struct dmi_device *dev; for (i = 1; i <= count; i++) { dev = dmi_alloc(sizeof(*dev)); if (!dev) { printk(KERN_ERR "dmi_save_oem_strings_devices: out of memory.\n"); break; } dev->type = DMI_DEV_TYPE_OEM_STRING; dev->name = dmi_string(dm, i); dev->device_data = NULL; list_add(&dev->list, &dmi_devices); } } static void __init dmi_save_ipmi_device(struct dmi_header *dm) { struct dmi_device *dev; void * data; data = dmi_alloc(dm->length); if (data == NULL) { printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); return; } memcpy(data, dm, dm->length); dev = dmi_alloc(sizeof(*dev)); if (!dev) { printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); return; } dev->type = DMI_DEV_TYPE_IPMI; dev->name = "IPMI controller"; dev->device_data = data; list_add(&dev->list, &dmi_devices); } /* * Process a DMI table entry. Right now all we care about are the BIOS * and machine entries. For 2.5 we should pull the smbus controller info * out of here. */ static void __init dmi_decode(struct dmi_header *dm) { switch(dm->type) { case 0: /* BIOS Information */ dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); dmi_save_ident(dm, DMI_BIOS_VERSION, 5); dmi_save_ident(dm, DMI_BIOS_DATE, 8); break; case 1: /* System Information */ dmi_save_ident(dm, DMI_SYS_VENDOR, 4); dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); break; case 2: /* Base Board Information */ dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); dmi_save_ident(dm, DMI_BOARD_NAME, 5); dmi_save_ident(dm, DMI_BOARD_VERSION, 6); dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); break; case 3: /* Chassis Information */ dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); break; case 10: /* Onboard Devices Information */ dmi_save_devices(dm); break; case 11: /* OEM Strings */ dmi_save_oem_strings_devices(dm); break; case 38: /* IPMI Device Information */ dmi_save_ipmi_device(dm); } } static int __init dmi_present(char __iomem *p) { u8 buf[15]; memcpy_fromio(buf, p, 15); if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { u16 num = (buf[13] << 8) | buf[12]; u16 len = (buf[7] << 8) | buf[6]; u32 base = (buf[11] << 24) | (buf[10] << 16) | (buf[9] << 8) | buf[8]; /* * DMI version 0.0 means that the real version is taken from * the SMBIOS version, which we don't know at this point. */ if (buf[14] != 0) printk(KERN_INFO "DMI %d.%d present.\n", buf[14] >> 4, buf[14] & 0xF); else printk(KERN_INFO "DMI present.\n"); if (dmi_table(base,len, num, dmi_decode) == 0) return 0; } return 1; } void __init dmi_scan_machine(void) { char __iomem *p, *q; int rc; if (efi_enabled) { if (efi.smbios == EFI_INVALID_TABLE_ADDR) goto out; /* This is called as a core_initcall() because it isn't * needed during early boot. This also means we can * iounmap the space when we're done with it. */ p = dmi_ioremap(efi.smbios, 32); if (p == NULL) goto out; rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ dmi_iounmap(p, 32); if (!rc) { dmi_available = 1; return; } } else { /* * no iounmap() for that ioremap(); it would be a no-op, but * it's so early in setup that sucker gets confused into doing * what it shouldn't if we actually call it. */ p = dmi_ioremap(0xF0000, 0x10000); if (p == NULL) goto out; for (q = p; q < p + 0x10000; q += 16) { rc = dmi_present(q); if (!rc) { dmi_available = 1; return; } } } out: printk(KERN_INFO "DMI not present or invalid.\n"); } /** * dmi_check_system - check system DMI data * @list: array of dmi_system_id structures to match against * All non-null elements of the list must match * their slot's (field index's) data (i.e., each * list string must be a substring of the specified * DMI slot's string data) to be considered a * successful match. * * Walk the blacklist table running matching functions until someone * returns non zero or we hit the end. Callback function is called for * each successful match. Returns the number of matches. */ int dmi_check_system(struct dmi_system_id *list) { int i, count = 0; struct dmi_system_id *d = list; while (d->ident) { for (i = 0; i < ARRAY_SIZE(d->matches); i++) { int s = d->matches[i].slot; if (s == DMI_NONE) continue; if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) continue; /* No match */ goto fail; } count++; if (d->callback && d->callback(d)) break; fail: d++; } return count; } EXPORT_SYMBOL(dmi_check_system); /** * dmi_get_system_info - return DMI data value * @field: data index (see enum dmi_field) * * Returns one DMI data value, can be used to perform * complex DMI data checks. */ char *dmi_get_system_info(int field) { return dmi_ident[field]; } EXPORT_SYMBOL(dmi_get_system_info); /** * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. * @str: Case sensitive Name */ int dmi_name_in_vendors(char *str) { static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; int i; for (i = 0; fields[i] != DMI_NONE; i++) { int f = fields[i]; if (dmi_ident[f] && strstr(dmi_ident[f], str)) return 1; } return 0; } EXPORT_SYMBOL(dmi_name_in_vendors); /** * dmi_find_device - find onboard device by type/name * @type: device type or %DMI_DEV_TYPE_ANY to match all device types * @name: device name string or %NULL to match all * @from: previous device found in search, or %NULL for new search. * * Iterates through the list of known onboard devices. If a device is * found with a matching @vendor and @device, a pointer to its device * structure is returned. Otherwise, %NULL is returned. * A new search is initiated by passing %NULL as the @from argument. * If @from is not %NULL, searches continue from next device. */ struct dmi_device * dmi_find_device(int type, const char *name, struct dmi_device *from) { struct list_head *d, *head = from ? &from->list : &dmi_devices; for(d = head->next; d != &dmi_devices; d = d->next) { struct dmi_device *dev = list_entry(d, struct dmi_device, list); if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && ((name == NULL) || (strcmp(dev->name, name) == 0))) return dev; } return NULL; } EXPORT_SYMBOL(dmi_find_device); /** * dmi_get_year - Return year of a DMI date * @field: data index (like dmi_get_system_info) * * Returns -1 when the field doesn't exist. 0 when it is broken. */ int dmi_get_year(int field) { int year; char *s = dmi_get_system_info(field); if (!s) return -1; if (*s == '\0') return 0; s = strrchr(s, '/'); if (!s) return 0; s += 1; year = simple_strtoul(s, NULL, 0); if (year && year < 100) { /* 2-digit year */ year += 1900; if (year < 1996) /* no dates < spec 1.0 */ year += 100; } return year; }