/** * \file drm_bufs.c * Generic buffer template * * \author Rickard E. (Rik) Faith <faith@valinux.com> * \author Gareth Hughes <gareth@valinux.com> */ /* * Created: Thu Nov 23 03:10:50 2000 by gareth@valinux.com * * Copyright 1999, 2000 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/vmalloc.h> #include <linux/log2.h> #include <asm/shmparam.h> #include "drmP.h" resource_size_t drm_get_resource_start(struct drm_device *dev, unsigned int resource) { return pci_resource_start(dev->pdev, resource); } EXPORT_SYMBOL(drm_get_resource_start); resource_size_t drm_get_resource_len(struct drm_device *dev, unsigned int resource) { return pci_resource_len(dev->pdev, resource); } EXPORT_SYMBOL(drm_get_resource_len); static struct drm_map_list *drm_find_matching_map(struct drm_device *dev, struct drm_local_map *map) { struct drm_map_list *entry; list_for_each_entry(entry, &dev->maplist, head) { /* * Because the kernel-userspace ABI is fixed at a 32-bit offset * while PCI resources may live above that, we ignore the map * offset for maps of type _DRM_FRAMEBUFFER or _DRM_REGISTERS. * It is assumed that each driver will have only one resource of * each type. */ if (!entry->map || map->type != entry->map->type || entry->master != dev->primary->master) continue; switch (map->type) { case _DRM_SHM: if (map->flags != _DRM_CONTAINS_LOCK) break; case _DRM_REGISTERS: case _DRM_FRAME_BUFFER: return entry; default: /* Make gcc happy */ ; } if (entry->map->offset == map->offset) return entry; } return NULL; } static int drm_map_handle(struct drm_device *dev, struct drm_hash_item *hash, unsigned long user_token, int hashed_handle, int shm) { int use_hashed_handle, shift; unsigned long add; #if (BITS_PER_LONG == 64) use_hashed_handle = ((user_token & 0xFFFFFFFF00000000UL) || hashed_handle); #elif (BITS_PER_LONG == 32) use_hashed_handle = hashed_handle; #else #error Unsupported long size. Neither 64 nor 32 bits. #endif if (!use_hashed_handle) { int ret; hash->key = user_token >> PAGE_SHIFT; ret = drm_ht_insert_item(&dev->map_hash, hash); if (ret != -EINVAL) return ret; } shift = 0; add = DRM_MAP_HASH_OFFSET >> PAGE_SHIFT; if (shm && (SHMLBA > PAGE_SIZE)) { int bits = ilog2(SHMLBA >> PAGE_SHIFT) + 1; /* For shared memory, we have to preserve the SHMLBA * bits of the eventual vma->vm_pgoff value during * mmap(). Otherwise we run into cache aliasing problems * on some platforms. On these platforms, the pgoff of * a mmap() request is used to pick a suitable virtual * address for the mmap() region such that it will not * cause cache aliasing problems. * * Therefore, make sure the SHMLBA relevant bits of the * hash value we use are equal to those in the original * kernel virtual address. */ shift = bits; add |= ((user_token >> PAGE_SHIFT) & ((1UL << bits) - 1UL)); } return drm_ht_just_insert_please(&dev->map_hash, hash, user_token, 32 - PAGE_SHIFT - 3, shift, add); } /** * Core function to create a range of memory available for mapping by a * non-root process. * * Adjusts the memory offset to its absolute value according to the mapping * type. Adds the map to the map list drm_device::maplist. Adds MTRR's where * applicable and if supported by the kernel. */ static int drm_addmap_core(struct drm_device * dev, resource_size_t offset, unsigned int size, enum drm_map_type type, enum drm_map_flags flags, struct drm_map_list ** maplist) { struct drm_local_map *map; struct drm_map_list *list; drm_dma_handle_t *dmah; unsigned long user_token; int ret; map = kmalloc(sizeof(*map), GFP_KERNEL); if (!map) return -ENOMEM; map->offset = offset; map->size = size; map->flags = flags; map->type = type; /* Only allow shared memory to be removable since we only keep enough * book keeping information about shared memory to allow for removal * when processes fork. */ if ((map->flags & _DRM_REMOVABLE) && map->type != _DRM_SHM) { kfree(map); return -EINVAL; } DRM_DEBUG("offset = 0x%08llx, size = 0x%08lx, type = %d\n", (unsigned long long)map->offset, map->size, map->type); /* page-align _DRM_SHM maps. They are allocated here so there is no security * hole created by that and it works around various broken drivers that use * a non-aligned quantity to map the SAREA. --BenH */ if (map->type == _DRM_SHM) map->size = PAGE_ALIGN(map->size); if ((map->offset & (~(resource_size_t)PAGE_MASK)) || (map->size & (~PAGE_MASK))) { kfree(map); return -EINVAL; } map->mtrr = -1; map->handle = NULL; switch (map->type) { case _DRM_REGISTERS: case _DRM_FRAME_BUFFER: #if !defined(__sparc__) && !defined(__alpha__) && !defined(__ia64__) && !defined(__powerpc64__) && !defined(__x86_64__) if (map->offset + (map->size-1) < map->offset || map->offset < virt_to_phys(high_memory)) { kfree(map); return -EINVAL; } #endif #ifdef __alpha__ map->offset += dev->hose->mem_space->start; #endif /* Some drivers preinitialize some maps, without the X Server * needing to be aware of it. Therefore, we just return success * when the server tries to create a duplicate map. */ list = drm_find_matching_map(dev, map); if (list != NULL) { if (list->map->size != map->size) { DRM_DEBUG("Matching maps of type %d with " "mismatched sizes, (%ld vs %ld)\n", map->type, map->size, list->map->size); list->map->size = map->size; } kfree(map); *maplist = list; return 0; } if (drm_core_has_MTRR(dev)) { if (map->type == _DRM_FRAME_BUFFER || (map->flags & _DRM_WRITE_COMBINING)) { map->mtrr = mtrr_add(map->offset, map->size, MTRR_TYPE_WRCOMB, 1); } } if (map->type == _DRM_REGISTERS) { map->handle = ioremap(map->offset, map->size); if (!map->handle) { kfree(map); return -ENOMEM; } } break; case _DRM_SHM: list = drm_find_matching_map(dev, map); if (list != NULL) { if(list->map->size != map->size) { DRM_DEBUG("Matching maps of type %d with " "mismatched sizes, (%ld vs %ld)\n", map->type, map->size, list->map->size); list->map->size = map->size; } kfree(map); *maplist = list; return 0; } map->handle = vmalloc_user(map->size); DRM_DEBUG("%lu %d %p\n", map->size, drm_order(map->size), map->handle); if (!map->handle) { kfree(map); return -ENOMEM; } map->offset = (unsigned long)map->handle; if (map->flags & _DRM_CONTAINS_LOCK) { /* Prevent a 2nd X Server from creating a 2nd lock */ if (dev->primary->master->lock.hw_lock != NULL) { vfree(map->handle); kfree(map); return -EBUSY; } dev->sigdata.lock = dev->primary->master->lock.hw_lock = map->handle; /* Pointer to lock */ } break; case _DRM_AGP: { struct drm_agp_mem *entry; int valid = 0; if (!drm_core_has_AGP(dev)) { kfree(map); return -EINVAL; } #ifdef __alpha__ map->offset += dev->hose->mem_space->start; #endif /* In some cases (i810 driver), user space may have already * added the AGP base itself, because dev->agp->base previously * only got set during AGP enable. So, only add the base * address if the map's offset isn't already within the * aperture. */ if (map->offset < dev->agp->base || map->offset > dev->agp->base + dev->agp->agp_info.aper_size * 1024 * 1024 - 1) { map->offset += dev->agp->base; } map->mtrr = dev->agp->agp_mtrr; /* for getmap */ /* This assumes the DRM is in total control of AGP space. * It's not always the case as AGP can be in the control * of user space (i.e. i810 driver). So this loop will get * skipped and we double check that dev->agp->memory is * actually set as well as being invalid before EPERM'ing */ list_for_each_entry(entry, &dev->agp->memory, head) { if ((map->offset >= entry->bound) && (map->offset + map->size <= entry->bound + entry->pages * PAGE_SIZE)) { valid = 1; break; } } if (!list_empty(&dev->agp->memory) && !valid) { kfree(map); return -EPERM; } DRM_DEBUG("AGP offset = 0x%08llx, size = 0x%08lx\n", (unsigned long long)map->offset, map->size); break; case _DRM_GEM: DRM_ERROR("tried to rmmap GEM object\n"); break; } case _DRM_SCATTER_GATHER: if (!dev->sg) { kfree(map); return -EINVAL; } map->offset += (unsigned long)dev->sg->virtual; break; case _DRM_CONSISTENT: /* dma_addr_t is 64bit on i386 with CONFIG_HIGHMEM64G, * As we're limiting the address to 2^32-1 (or less), * casting it down to 32 bits is no problem, but we * need to point to a 64bit variable first. */ dmah = drm_pci_alloc(dev, map->size, map->size, 0xffffffffUL); if (!dmah) { kfree(map); return -ENOMEM; } map->handle = dmah->vaddr; map->offset = (unsigned long)dmah->busaddr; kfree(dmah); break; default: kfree(map); return -EINVAL; } list = kmalloc(sizeof(*list), GFP_KERNEL); if (!list) { if (map->type == _DRM_REGISTERS) iounmap(map->handle); kfree(map); return -EINVAL; } memset(list, 0, sizeof(*list)); list->map = map; mutex_lock(&dev->struct_mutex); list_add(&list->head, &dev->maplist); /* Assign a 32-bit handle */ /* We do it here so that dev->struct_mutex protects the increment */ user_token = (map->type == _DRM_SHM) ? (unsigned long)map->handle : map->offset; ret = drm_map_handle(dev, &list->hash, user_token, 0, (map->type == _DRM_SHM)); if (ret) { if (map->type == _DRM_REGISTERS) iounmap(map->handle); kfree(map); kfree(list); mutex_unlock(&dev->struct_mutex); return ret; } list->user_token = list->hash.key << PAGE_SHIFT; mutex_unlock(&dev->struct_mutex); if (!(map->flags & _DRM_DRIVER)) list->master = dev->primary->master; *maplist = list; return 0; } int drm_addmap(struct drm_device * dev, resource_size_t offset, unsigned int size, enum drm_map_type type, enum drm_map_flags flags, struct drm_local_map ** map_ptr) { struct drm_map_list *list; int rc; rc = drm_addmap_core(dev, offset, size, type, flags, &list); if (!rc) *map_ptr = list->map; return rc; } EXPORT_SYMBOL(drm_addmap); /** * Ioctl to specify a range of memory that is available for mapping by a * non-root process. * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg pointer to a drm_map structure. * \return zero on success or a negative value on error. * */ int drm_addmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_map *map = data; struct drm_map_list *maplist; int err; if (!(capable(CAP_SYS_ADMIN) || map->type == _DRM_AGP || map->type == _DRM_SHM)) return -EPERM; err = drm_addmap_core(dev, map->offset, map->size, map->type, map->flags, &maplist); if (err) return err; /* avoid a warning on 64-bit, this casting isn't very nice, but the API is set so too late */ map->handle = (void *)(unsigned long)maplist->user_token; return 0; } /** * Remove a map private from list and deallocate resources if the mapping * isn't in use. * * Searches the map on drm_device::maplist, removes it from the list, see if * its being used, and free any associate resource (such as MTRR's) if it's not * being on use. * * \sa drm_addmap */ int drm_rmmap_locked(struct drm_device *dev, struct drm_local_map *map) { struct drm_map_list *r_list = NULL, *list_t; drm_dma_handle_t dmah; int found = 0; struct drm_master *master; /* Find the list entry for the map and remove it */ list_for_each_entry_safe(r_list, list_t, &dev->maplist, head) { if (r_list->map == map) { master = r_list->master; list_del(&r_list->head); drm_ht_remove_key(&dev->map_hash, r_list->user_token >> PAGE_SHIFT); kfree(r_list); found = 1; break; } } if (!found) return -EINVAL; switch (map->type) { case _DRM_REGISTERS: iounmap(map->handle); /* FALLTHROUGH */ case _DRM_FRAME_BUFFER: if (drm_core_has_MTRR(dev) && map->mtrr >= 0) { int retcode; retcode = mtrr_del(map->mtrr, map->offset, map->size); DRM_DEBUG("mtrr_del=%d\n", retcode); } break; case _DRM_SHM: vfree(map->handle); if (master) { if (dev->sigdata.lock == master->lock.hw_lock) dev->sigdata.lock = NULL; master->lock.hw_lock = NULL; /* SHM removed */ master->lock.file_priv = NULL; wake_up_interruptible_all(&master->lock.lock_queue); } break; case _DRM_AGP: case _DRM_SCATTER_GATHER: break; case _DRM_CONSISTENT: dmah.vaddr = map->handle; dmah.busaddr = map->offset; dmah.size = map->size; __drm_pci_free(dev, &dmah); break; case _DRM_GEM: DRM_ERROR("tried to rmmap GEM object\n"); break; } kfree(map); return 0; } EXPORT_SYMBOL(drm_rmmap_locked); int drm_rmmap(struct drm_device *dev, struct drm_local_map *map) { int ret; mutex_lock(&dev->struct_mutex); ret = drm_rmmap_locked(dev, map); mutex_unlock(&dev->struct_mutex); return ret; } EXPORT_SYMBOL(drm_rmmap); /* The rmmap ioctl appears to be unnecessary. All mappings are torn down on * the last close of the device, and this is necessary for cleanup when things * exit uncleanly. Therefore, having userland manually remove mappings seems * like a pointless exercise since they're going away anyway. * * One use case might be after addmap is allowed for normal users for SHM and * gets used by drivers that the server doesn't need to care about. This seems * unlikely. * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg pointer to a struct drm_map structure. * \return zero on success or a negative value on error. */ int drm_rmmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_map *request = data; struct drm_local_map *map = NULL; struct drm_map_list *r_list; int ret; mutex_lock(&dev->struct_mutex); list_for_each_entry(r_list, &dev->maplist, head) { if (r_list->map && r_list->user_token == (unsigned long)request->handle && r_list->map->flags & _DRM_REMOVABLE) { map = r_list->map; break; } } /* List has wrapped around to the head pointer, or its empty we didn't * find anything. */ if (list_empty(&dev->maplist) || !map) { mutex_unlock(&dev->struct_mutex); return -EINVAL; } /* Register and framebuffer maps are permanent */ if ((map->type == _DRM_REGISTERS) || (map->type == _DRM_FRAME_BUFFER)) { mutex_unlock(&dev->struct_mutex); return 0; } ret = drm_rmmap_locked(dev, map); mutex_unlock(&dev->struct_mutex); return ret; } /** * Cleanup after an error on one of the addbufs() functions. * * \param dev DRM device. * \param entry buffer entry where the error occurred. * * Frees any pages and buffers associated with the given entry. */ static void drm_cleanup_buf_error(struct drm_device * dev, struct drm_buf_entry * entry) { int i; if (entry->seg_count) { for (i = 0; i < entry->seg_count; i++) { if (entry->seglist[i]) { drm_pci_free(dev, entry->seglist[i]); } } kfree(entry->seglist); entry->seg_count = 0; } if (entry->buf_count) { for (i = 0; i < entry->buf_count; i++) { kfree(entry->buflist[i].dev_private); } kfree(entry->buflist); entry->buf_count = 0; } } #if __OS_HAS_AGP /** * Add AGP buffers for DMA transfers. * * \param dev struct drm_device to which the buffers are to be added. * \param request pointer to a struct drm_buf_desc describing the request. * \return zero on success or a negative number on failure. * * After some sanity checks creates a drm_buf structure for each buffer and * reallocates the buffer list of the same size order to accommodate the new * buffers. */ int drm_addbufs_agp(struct drm_device * dev, struct drm_buf_desc * request) { struct drm_device_dma *dma = dev->dma; struct drm_buf_entry *entry; struct drm_agp_mem *agp_entry; struct drm_buf *buf; unsigned long offset; unsigned long agp_offset; int count; int order; int size; int alignment; int page_order; int total; int byte_count; int i, valid; struct drm_buf **temp_buflist; if (!dma) return -EINVAL; count = request->count; order = drm_order(request->size); size = 1 << order; alignment = (request->flags & _DRM_PAGE_ALIGN) ? PAGE_ALIGN(size) : size; page_order = order - PAGE_SHIFT > 0 ? order - PAGE_SHIFT : 0; total = PAGE_SIZE << page_order; byte_count = 0; agp_offset = dev->agp->base + request->agp_start; DRM_DEBUG("count: %d\n", count); DRM_DEBUG("order: %d\n", order); DRM_DEBUG("size: %d\n", size); DRM_DEBUG("agp_offset: %lx\n", agp_offset); DRM_DEBUG("alignment: %d\n", alignment); DRM_DEBUG("page_order: %d\n", page_order); DRM_DEBUG("total: %d\n", total); if (order < DRM_MIN_ORDER || order > DRM_MAX_ORDER) return -EINVAL; if (dev->queue_count) return -EBUSY; /* Not while in use */ /* Make sure buffers are located in AGP memory that we own */ valid = 0; list_for_each_entry(agp_entry, &dev->agp->memory, head) { if ((agp_offset >= agp_entry->bound) && (agp_offset + total * count <= agp_entry->bound + agp_entry->pages * PAGE_SIZE)) { valid = 1; break; } } if (!list_empty(&dev->agp->memory) && !valid) { DRM_DEBUG("zone invalid\n"); return -EINVAL; } spin_lock(&dev->count_lock); if (dev->buf_use) { spin_unlock(&dev->count_lock); return -EBUSY; } atomic_inc(&dev->buf_alloc); spin_unlock(&dev->count_lock); mutex_lock(&dev->struct_mutex); entry = &dma->bufs[order]; if (entry->buf_count) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; /* May only call once for each order */ } if (count < 0 || count > 4096) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -EINVAL; } entry->buflist = kmalloc(count * sizeof(*entry->buflist), GFP_KERNEL); if (!entry->buflist) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(entry->buflist, 0, count * sizeof(*entry->buflist)); entry->buf_size = size; entry->page_order = page_order; offset = 0; while (entry->buf_count < count) { buf = &entry->buflist[entry->buf_count]; buf->idx = dma->buf_count + entry->buf_count; buf->total = alignment; buf->order = order; buf->used = 0; buf->offset = (dma->byte_count + offset); buf->bus_address = agp_offset + offset; buf->address = (void *)(agp_offset + offset); buf->next = NULL; buf->waiting = 0; buf->pending = 0; init_waitqueue_head(&buf->dma_wait); buf->file_priv = NULL; buf->dev_priv_size = dev->driver->dev_priv_size; buf->dev_private = kmalloc(buf->dev_priv_size, GFP_KERNEL); if (!buf->dev_private) { /* Set count correctly so we free the proper amount. */ entry->buf_count = count; drm_cleanup_buf_error(dev, entry); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(buf->dev_private, 0, buf->dev_priv_size); DRM_DEBUG("buffer %d @ %p\n", entry->buf_count, buf->address); offset += alignment; entry->buf_count++; byte_count += PAGE_SIZE << page_order; } DRM_DEBUG("byte_count: %d\n", byte_count); temp_buflist = krealloc(dma->buflist, (dma->buf_count + entry->buf_count) * sizeof(*dma->buflist), GFP_KERNEL); if (!temp_buflist) { /* Free the entry because it isn't valid */ drm_cleanup_buf_error(dev, entry); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } dma->buflist = temp_buflist; for (i = 0; i < entry->buf_count; i++) { dma->buflist[i + dma->buf_count] = &entry->buflist[i]; } dma->buf_count += entry->buf_count; dma->seg_count += entry->seg_count; dma->page_count += byte_count >> PAGE_SHIFT; dma->byte_count += byte_count; DRM_DEBUG("dma->buf_count : %d\n", dma->buf_count); DRM_DEBUG("entry->buf_count : %d\n", entry->buf_count); mutex_unlock(&dev->struct_mutex); request->count = entry->buf_count; request->size = size; dma->flags = _DRM_DMA_USE_AGP; atomic_dec(&dev->buf_alloc); return 0; } EXPORT_SYMBOL(drm_addbufs_agp); #endif /* __OS_HAS_AGP */ int drm_addbufs_pci(struct drm_device * dev, struct drm_buf_desc * request) { struct drm_device_dma *dma = dev->dma; int count; int order; int size; int total; int page_order; struct drm_buf_entry *entry; drm_dma_handle_t *dmah; struct drm_buf *buf; int alignment; unsigned long offset; int i; int byte_count; int page_count; unsigned long *temp_pagelist; struct drm_buf **temp_buflist; if (!drm_core_check_feature(dev, DRIVER_PCI_DMA)) return -EINVAL; if (!dma) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; count = request->count; order = drm_order(request->size); size = 1 << order; DRM_DEBUG("count=%d, size=%d (%d), order=%d, queue_count=%d\n", request->count, request->size, size, order, dev->queue_count); if (order < DRM_MIN_ORDER || order > DRM_MAX_ORDER) return -EINVAL; if (dev->queue_count) return -EBUSY; /* Not while in use */ alignment = (request->flags & _DRM_PAGE_ALIGN) ? PAGE_ALIGN(size) : size; page_order = order - PAGE_SHIFT > 0 ? order - PAGE_SHIFT : 0; total = PAGE_SIZE << page_order; spin_lock(&dev->count_lock); if (dev->buf_use) { spin_unlock(&dev->count_lock); return -EBUSY; } atomic_inc(&dev->buf_alloc); spin_unlock(&dev->count_lock); mutex_lock(&dev->struct_mutex); entry = &dma->bufs[order]; if (entry->buf_count) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; /* May only call once for each order */ } if (count < 0 || count > 4096) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -EINVAL; } entry->buflist = kmalloc(count * sizeof(*entry->buflist), GFP_KERNEL); if (!entry->buflist) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(entry->buflist, 0, count * sizeof(*entry->buflist)); entry->seglist = kmalloc(count * sizeof(*entry->seglist), GFP_KERNEL); if (!entry->seglist) { kfree(entry->buflist); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(entry->seglist, 0, count * sizeof(*entry->seglist)); /* Keep the original pagelist until we know all the allocations * have succeeded */ temp_pagelist = kmalloc((dma->page_count + (count << page_order)) * sizeof(*dma->pagelist), GFP_KERNEL); if (!temp_pagelist) { kfree(entry->buflist); kfree(entry->seglist); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memcpy(temp_pagelist, dma->pagelist, dma->page_count * sizeof(*dma->pagelist)); DRM_DEBUG("pagelist: %d entries\n", dma->page_count + (count << page_order)); entry->buf_size = size; entry->page_order = page_order; byte_count = 0; page_count = 0; while (entry->buf_count < count) { dmah = drm_pci_alloc(dev, PAGE_SIZE << page_order, 0x1000, 0xfffffffful); if (!dmah) { /* Set count correctly so we free the proper amount. */ entry->buf_count = count; entry->seg_count = count; drm_cleanup_buf_error(dev, entry); kfree(temp_pagelist); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } entry->seglist[entry->seg_count++] = dmah; for (i = 0; i < (1 << page_order); i++) { DRM_DEBUG("page %d @ 0x%08lx\n", dma->page_count + page_count, (unsigned long)dmah->vaddr + PAGE_SIZE * i); temp_pagelist[dma->page_count + page_count++] = (unsigned long)dmah->vaddr + PAGE_SIZE * i; } for (offset = 0; offset + size <= total && entry->buf_count < count; offset += alignment, ++entry->buf_count) { buf = &entry->buflist[entry->buf_count]; buf->idx = dma->buf_count + entry->buf_count; buf->total = alignment; buf->order = order; buf->used = 0; buf->offset = (dma->byte_count + byte_count + offset); buf->address = (void *)(dmah->vaddr + offset); buf->bus_address = dmah->busaddr + offset; buf->next = NULL; buf->waiting = 0; buf->pending = 0; init_waitqueue_head(&buf->dma_wait); buf->file_priv = NULL; buf->dev_priv_size = dev->driver->dev_priv_size; buf->dev_private = kmalloc(buf->dev_priv_size, GFP_KERNEL); if (!buf->dev_private) { /* Set count correctly so we free the proper amount. */ entry->buf_count = count; entry->seg_count = count; drm_cleanup_buf_error(dev, entry); kfree(temp_pagelist); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(buf->dev_private, 0, buf->dev_priv_size); DRM_DEBUG("buffer %d @ %p\n", entry->buf_count, buf->address); } byte_count += PAGE_SIZE << page_order; } temp_buflist = krealloc(dma->buflist, (dma->buf_count + entry->buf_count) * sizeof(*dma->buflist), GFP_KERNEL); if (!temp_buflist) { /* Free the entry because it isn't valid */ drm_cleanup_buf_error(dev, entry); kfree(temp_pagelist); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } dma->buflist = temp_buflist; for (i = 0; i < entry->buf_count; i++) { dma->buflist[i + dma->buf_count] = &entry->buflist[i]; } /* No allocations failed, so now we can replace the orginal pagelist * with the new one. */ if (dma->page_count) { kfree(dma->pagelist); } dma->pagelist = temp_pagelist; dma->buf_count += entry->buf_count; dma->seg_count += entry->seg_count; dma->page_count += entry->seg_count << page_order; dma->byte_count += PAGE_SIZE * (entry->seg_count << page_order); mutex_unlock(&dev->struct_mutex); request->count = entry->buf_count; request->size = size; if (request->flags & _DRM_PCI_BUFFER_RO) dma->flags = _DRM_DMA_USE_PCI_RO; atomic_dec(&dev->buf_alloc); return 0; } EXPORT_SYMBOL(drm_addbufs_pci); static int drm_addbufs_sg(struct drm_device * dev, struct drm_buf_desc * request) { struct drm_device_dma *dma = dev->dma; struct drm_buf_entry *entry; struct drm_buf *buf; unsigned long offset; unsigned long agp_offset; int count; int order; int size; int alignment; int page_order; int total; int byte_count; int i; struct drm_buf **temp_buflist; if (!drm_core_check_feature(dev, DRIVER_SG)) return -EINVAL; if (!dma) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; count = request->count; order = drm_order(request->size); size = 1 << order; alignment = (request->flags & _DRM_PAGE_ALIGN) ? PAGE_ALIGN(size) : size; page_order = order - PAGE_SHIFT > 0 ? order - PAGE_SHIFT : 0; total = PAGE_SIZE << page_order; byte_count = 0; agp_offset = request->agp_start; DRM_DEBUG("count: %d\n", count); DRM_DEBUG("order: %d\n", order); DRM_DEBUG("size: %d\n", size); DRM_DEBUG("agp_offset: %lu\n", agp_offset); DRM_DEBUG("alignment: %d\n", alignment); DRM_DEBUG("page_order: %d\n", page_order); DRM_DEBUG("total: %d\n", total); if (order < DRM_MIN_ORDER || order > DRM_MAX_ORDER) return -EINVAL; if (dev->queue_count) return -EBUSY; /* Not while in use */ spin_lock(&dev->count_lock); if (dev->buf_use) { spin_unlock(&dev->count_lock); return -EBUSY; } atomic_inc(&dev->buf_alloc); spin_unlock(&dev->count_lock); mutex_lock(&dev->struct_mutex); entry = &dma->bufs[order]; if (entry->buf_count) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; /* May only call once for each order */ } if (count < 0 || count > 4096) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -EINVAL; } entry->buflist = kmalloc(count * sizeof(*entry->buflist), GFP_KERNEL); if (!entry->buflist) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(entry->buflist, 0, count * sizeof(*entry->buflist)); entry->buf_size = size; entry->page_order = page_order; offset = 0; while (entry->buf_count < count) { buf = &entry->buflist[entry->buf_count]; buf->idx = dma->buf_count + entry->buf_count; buf->total = alignment; buf->order = order; buf->used = 0; buf->offset = (dma->byte_count + offset); buf->bus_address = agp_offset + offset; buf->address = (void *)(agp_offset + offset + (unsigned long)dev->sg->virtual); buf->next = NULL; buf->waiting = 0; buf->pending = 0; init_waitqueue_head(&buf->dma_wait); buf->file_priv = NULL; buf->dev_priv_size = dev->driver->dev_priv_size; buf->dev_private = kmalloc(buf->dev_priv_size, GFP_KERNEL); if (!buf->dev_private) { /* Set count correctly so we free the proper amount. */ entry->buf_count = count; drm_cleanup_buf_error(dev, entry); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(buf->dev_private, 0, buf->dev_priv_size); DRM_DEBUG("buffer %d @ %p\n", entry->buf_count, buf->address); offset += alignment; entry->buf_count++; byte_count += PAGE_SIZE << page_order; } DRM_DEBUG("byte_count: %d\n", byte_count); temp_buflist = krealloc(dma->buflist, (dma->buf_count + entry->buf_count) * sizeof(*dma->buflist), GFP_KERNEL); if (!temp_buflist) { /* Free the entry because it isn't valid */ drm_cleanup_buf_error(dev, entry); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } dma->buflist = temp_buflist; for (i = 0; i < entry->buf_count; i++) { dma->buflist[i + dma->buf_count] = &entry->buflist[i]; } dma->buf_count += entry->buf_count; dma->seg_count += entry->seg_count; dma->page_count += byte_count >> PAGE_SHIFT; dma->byte_count += byte_count; DRM_DEBUG("dma->buf_count : %d\n", dma->buf_count); DRM_DEBUG("entry->buf_count : %d\n", entry->buf_count); mutex_unlock(&dev->struct_mutex); request->count = entry->buf_count; request->size = size; dma->flags = _DRM_DMA_USE_SG; atomic_dec(&dev->buf_alloc); return 0; } static int drm_addbufs_fb(struct drm_device * dev, struct drm_buf_desc * request) { struct drm_device_dma *dma = dev->dma; struct drm_buf_entry *entry; struct drm_buf *buf; unsigned long offset; unsigned long agp_offset; int count; int order; int size; int alignment; int page_order; int total; int byte_count; int i; struct drm_buf **temp_buflist; if (!drm_core_check_feature(dev, DRIVER_FB_DMA)) return -EINVAL; if (!dma) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; count = request->count; order = drm_order(request->size); size = 1 << order; alignment = (request->flags & _DRM_PAGE_ALIGN) ? PAGE_ALIGN(size) : size; page_order = order - PAGE_SHIFT > 0 ? order - PAGE_SHIFT : 0; total = PAGE_SIZE << page_order; byte_count = 0; agp_offset = request->agp_start; DRM_DEBUG("count: %d\n", count); DRM_DEBUG("order: %d\n", order); DRM_DEBUG("size: %d\n", size); DRM_DEBUG("agp_offset: %lu\n", agp_offset); DRM_DEBUG("alignment: %d\n", alignment); DRM_DEBUG("page_order: %d\n", page_order); DRM_DEBUG("total: %d\n", total); if (order < DRM_MIN_ORDER || order > DRM_MAX_ORDER) return -EINVAL; if (dev->queue_count) return -EBUSY; /* Not while in use */ spin_lock(&dev->count_lock); if (dev->buf_use) { spin_unlock(&dev->count_lock); return -EBUSY; } atomic_inc(&dev->buf_alloc); spin_unlock(&dev->count_lock); mutex_lock(&dev->struct_mutex); entry = &dma->bufs[order]; if (entry->buf_count) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; /* May only call once for each order */ } if (count < 0 || count > 4096) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -EINVAL; } entry->buflist = kmalloc(count * sizeof(*entry->buflist), GFP_KERNEL); if (!entry->buflist) { mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(entry->buflist, 0, count * sizeof(*entry->buflist)); entry->buf_size = size; entry->page_order = page_order; offset = 0; while (entry->buf_count < count) { buf = &entry->buflist[entry->buf_count]; buf->idx = dma->buf_count + entry->buf_count; buf->total = alignment; buf->order = order; buf->used = 0; buf->offset = (dma->byte_count + offset); buf->bus_address = agp_offset + offset; buf->address = (void *)(agp_offset + offset); buf->next = NULL; buf->waiting = 0; buf->pending = 0; init_waitqueue_head(&buf->dma_wait); buf->file_priv = NULL; buf->dev_priv_size = dev->driver->dev_priv_size; buf->dev_private = kmalloc(buf->dev_priv_size, GFP_KERNEL); if (!buf->dev_private) { /* Set count correctly so we free the proper amount. */ entry->buf_count = count; drm_cleanup_buf_error(dev, entry); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } memset(buf->dev_private, 0, buf->dev_priv_size); DRM_DEBUG("buffer %d @ %p\n", entry->buf_count, buf->address); offset += alignment; entry->buf_count++; byte_count += PAGE_SIZE << page_order; } DRM_DEBUG("byte_count: %d\n", byte_count); temp_buflist = krealloc(dma->buflist, (dma->buf_count + entry->buf_count) * sizeof(*dma->buflist), GFP_KERNEL); if (!temp_buflist) { /* Free the entry because it isn't valid */ drm_cleanup_buf_error(dev, entry); mutex_unlock(&dev->struct_mutex); atomic_dec(&dev->buf_alloc); return -ENOMEM; } dma->buflist = temp_buflist; for (i = 0; i < entry->buf_count; i++) { dma->buflist[i + dma->buf_count] = &entry->buflist[i]; } dma->buf_count += entry->buf_count; dma->seg_count += entry->seg_count; dma->page_count += byte_count >> PAGE_SHIFT; dma->byte_count += byte_count; DRM_DEBUG("dma->buf_count : %d\n", dma->buf_count); DRM_DEBUG("entry->buf_count : %d\n", entry->buf_count); mutex_unlock(&dev->struct_mutex); request->count = entry->buf_count; request->size = size; dma->flags = _DRM_DMA_USE_FB; atomic_dec(&dev->buf_alloc); return 0; } /** * Add buffers for DMA transfers (ioctl). * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg pointer to a struct drm_buf_desc request. * \return zero on success or a negative number on failure. * * According with the memory type specified in drm_buf_desc::flags and the * build options, it dispatches the call either to addbufs_agp(), * addbufs_sg() or addbufs_pci() for AGP, scatter-gather or consistent * PCI memory respectively. */ int drm_addbufs(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_buf_desc *request = data; int ret; if (!drm_core_check_feature(dev, DRIVER_HAVE_DMA)) return -EINVAL; #if __OS_HAS_AGP if (request->flags & _DRM_AGP_BUFFER) ret = drm_addbufs_agp(dev, request); else #endif if (request->flags & _DRM_SG_BUFFER) ret = drm_addbufs_sg(dev, request); else if (request->flags & _DRM_FB_BUFFER) ret = drm_addbufs_fb(dev, request); else ret = drm_addbufs_pci(dev, request); return ret; } /** * Get information about the buffer mappings. * * This was originally mean for debugging purposes, or by a sophisticated * client library to determine how best to use the available buffers (e.g., * large buffers can be used for image transfer). * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg pointer to a drm_buf_info structure. * \return zero on success or a negative number on failure. * * Increments drm_device::buf_use while holding the drm_device::count_lock * lock, preventing of allocating more buffers after this call. Information * about each requested buffer is then copied into user space. */ int drm_infobufs(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_device_dma *dma = dev->dma; struct drm_buf_info *request = data; int i; int count; if (!drm_core_check_feature(dev, DRIVER_HAVE_DMA)) return -EINVAL; if (!dma) return -EINVAL; spin_lock(&dev->count_lock); if (atomic_read(&dev->buf_alloc)) { spin_unlock(&dev->count_lock); return -EBUSY; } ++dev->buf_use; /* Can't allocate more after this call */ spin_unlock(&dev->count_lock); for (i = 0, count = 0; i < DRM_MAX_ORDER + 1; i++) { if (dma->bufs[i].buf_count) ++count; } DRM_DEBUG("count = %d\n", count); if (request->count >= count) { for (i = 0, count = 0; i < DRM_MAX_ORDER + 1; i++) { if (dma->bufs[i].buf_count) { struct drm_buf_desc __user *to = &request->list[count]; struct drm_buf_entry *from = &dma->bufs[i]; struct drm_freelist *list = &dma->bufs[i].freelist; if (copy_to_user(&to->count, &from->buf_count, sizeof(from->buf_count)) || copy_to_user(&to->size, &from->buf_size, sizeof(from->buf_size)) || copy_to_user(&to->low_mark, &list->low_mark, sizeof(list->low_mark)) || copy_to_user(&to->high_mark, &list->high_mark, sizeof(list->high_mark))) return -EFAULT; DRM_DEBUG("%d %d %d %d %d\n", i, dma->bufs[i].buf_count, dma->bufs[i].buf_size, dma->bufs[i].freelist.low_mark, dma->bufs[i].freelist.high_mark); ++count; } } } request->count = count; return 0; } /** * Specifies a low and high water mark for buffer allocation * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg a pointer to a drm_buf_desc structure. * \return zero on success or a negative number on failure. * * Verifies that the size order is bounded between the admissible orders and * updates the respective drm_device_dma::bufs entry low and high water mark. * * \note This ioctl is deprecated and mostly never used. */ int drm_markbufs(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_device_dma *dma = dev->dma; struct drm_buf_desc *request = data; int order; struct drm_buf_entry *entry; if (!drm_core_check_feature(dev, DRIVER_HAVE_DMA)) return -EINVAL; if (!dma) return -EINVAL; DRM_DEBUG("%d, %d, %d\n", request->size, request->low_mark, request->high_mark); order = drm_order(request->size); if (order < DRM_MIN_ORDER || order > DRM_MAX_ORDER) return -EINVAL; entry = &dma->bufs[order]; if (request->low_mark < 0 || request->low_mark > entry->buf_count) return -EINVAL; if (request->high_mark < 0 || request->high_mark > entry->buf_count) return -EINVAL; entry->freelist.low_mark = request->low_mark; entry->freelist.high_mark = request->high_mark; return 0; } /** * Unreserve the buffers in list, previously reserved using drmDMA. * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg pointer to a drm_buf_free structure. * \return zero on success or a negative number on failure. * * Calls free_buffer() for each used buffer. * This function is primarily used for debugging. */ int drm_freebufs(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_device_dma *dma = dev->dma; struct drm_buf_free *request = data; int i; int idx; struct drm_buf *buf; if (!drm_core_check_feature(dev, DRIVER_HAVE_DMA)) return -EINVAL; if (!dma) return -EINVAL; DRM_DEBUG("%d\n", request->count); for (i = 0; i < request->count; i++) { if (copy_from_user(&idx, &request->list[i], sizeof(idx))) return -EFAULT; if (idx < 0 || idx >= dma->buf_count) { DRM_ERROR("Index %d (of %d max)\n", idx, dma->buf_count - 1); return -EINVAL; } buf = dma->buflist[idx]; if (buf->file_priv != file_priv) { DRM_ERROR("Process %d freeing buffer not owned\n", task_pid_nr(current)); return -EINVAL; } drm_free_buffer(dev, buf); } return 0; } /** * Maps all of the DMA buffers into client-virtual space (ioctl). * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg pointer to a drm_buf_map structure. * \return zero on success or a negative number on failure. * * Maps the AGP, SG or PCI buffer region with do_mmap(), and copies information * about each buffer into user space. For PCI buffers, it calls do_mmap() with * offset equal to 0, which drm_mmap() interpretes as PCI buffers and calls * drm_mmap_dma(). */ int drm_mapbufs(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_device_dma *dma = dev->dma; int retcode = 0; const int zero = 0; unsigned long virtual; unsigned long address; struct drm_buf_map *request = data; int i; if (!drm_core_check_feature(dev, DRIVER_HAVE_DMA)) return -EINVAL; if (!dma) return -EINVAL; spin_lock(&dev->count_lock); if (atomic_read(&dev->buf_alloc)) { spin_unlock(&dev->count_lock); return -EBUSY; } dev->buf_use++; /* Can't allocate more after this call */ spin_unlock(&dev->count_lock); if (request->count >= dma->buf_count) { if ((drm_core_has_AGP(dev) && (dma->flags & _DRM_DMA_USE_AGP)) || (drm_core_check_feature(dev, DRIVER_SG) && (dma->flags & _DRM_DMA_USE_SG)) || (drm_core_check_feature(dev, DRIVER_FB_DMA) && (dma->flags & _DRM_DMA_USE_FB))) { struct drm_local_map *map = dev->agp_buffer_map; unsigned long token = dev->agp_buffer_token; if (!map) { retcode = -EINVAL; goto done; } down_write(¤t->mm->mmap_sem); virtual = do_mmap(file_priv->filp, 0, map->size, PROT_READ | PROT_WRITE, MAP_SHARED, token); up_write(¤t->mm->mmap_sem); } else { down_write(¤t->mm->mmap_sem); virtual = do_mmap(file_priv->filp, 0, dma->byte_count, PROT_READ | PROT_WRITE, MAP_SHARED, 0); up_write(¤t->mm->mmap_sem); } if (virtual > -1024UL) { /* Real error */ retcode = (signed long)virtual; goto done; } request->virtual = (void __user *)virtual; for (i = 0; i < dma->buf_count; i++) { if (copy_to_user(&request->list[i].idx, &dma->buflist[i]->idx, sizeof(request->list[0].idx))) { retcode = -EFAULT; goto done; } if (copy_to_user(&request->list[i].total, &dma->buflist[i]->total, sizeof(request->list[0].total))) { retcode = -EFAULT; goto done; } if (copy_to_user(&request->list[i].used, &zero, sizeof(zero))) { retcode = -EFAULT; goto done; } address = virtual + dma->buflist[i]->offset; /* *** */ if (copy_to_user(&request->list[i].address, &address, sizeof(address))) { retcode = -EFAULT; goto done; } } } done: request->count = dma->buf_count; DRM_DEBUG("%d buffers, retcode = %d\n", request->count, retcode); return retcode; } /** * Compute size order. Returns the exponent of the smaller power of two which * is greater or equal to given number. * * \param size size. * \return order. * * \todo Can be made faster. */ int drm_order(unsigned long size) { int order; unsigned long tmp; for (order = 0, tmp = size >> 1; tmp; tmp >>= 1, order++) ; if (size & (size - 1)) ++order; return order; } EXPORT_SYMBOL(drm_order);