/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include "drmP.h" #include "drm.h" #include "radeon_drm.h" #include "radeon_microcode.h" #include "radeon_reg.h" #include "radeon.h" /* This files gather functions specifics to: * r100,rv100,rs100,rv200,rs200,r200,rv250,rs300,rv280 * * Some of these functions might be used by newer ASICs. */ void r100_hdp_reset(struct radeon_device *rdev); void r100_gpu_init(struct radeon_device *rdev); int r100_gui_wait_for_idle(struct radeon_device *rdev); int r100_mc_wait_for_idle(struct radeon_device *rdev); void r100_gpu_wait_for_vsync(struct radeon_device *rdev); void r100_gpu_wait_for_vsync2(struct radeon_device *rdev); int r100_debugfs_mc_info_init(struct radeon_device *rdev); /* * PCI GART */ void r100_pci_gart_tlb_flush(struct radeon_device *rdev) { /* TODO: can we do somethings here ? */ /* It seems hw only cache one entry so we should discard this * entry otherwise if first GPU GART read hit this entry it * could end up in wrong address. */ } int r100_pci_gart_enable(struct radeon_device *rdev) { uint32_t tmp; int r; /* Initialize common gart structure */ r = radeon_gart_init(rdev); if (r) { return r; } if (rdev->gart.table.ram.ptr == NULL) { rdev->gart.table_size = rdev->gart.num_gpu_pages * 4; r = radeon_gart_table_ram_alloc(rdev); if (r) { return r; } } /* discard memory request outside of configured range */ tmp = RREG32(RADEON_AIC_CNTL) | RADEON_DIS_OUT_OF_PCI_GART_ACCESS; WREG32(RADEON_AIC_CNTL, tmp); /* set address range for PCI address translate */ WREG32(RADEON_AIC_LO_ADDR, rdev->mc.gtt_location); tmp = rdev->mc.gtt_location + rdev->mc.gtt_size - 1; WREG32(RADEON_AIC_HI_ADDR, tmp); /* Enable bus mastering */ tmp = RREG32(RADEON_BUS_CNTL) & ~RADEON_BUS_MASTER_DIS; WREG32(RADEON_BUS_CNTL, tmp); /* set PCI GART page-table base address */ WREG32(RADEON_AIC_PT_BASE, rdev->gart.table_addr); tmp = RREG32(RADEON_AIC_CNTL) | RADEON_PCIGART_TRANSLATE_EN; WREG32(RADEON_AIC_CNTL, tmp); r100_pci_gart_tlb_flush(rdev); rdev->gart.ready = true; return 0; } void r100_pci_gart_disable(struct radeon_device *rdev) { uint32_t tmp; /* discard memory request outside of configured range */ tmp = RREG32(RADEON_AIC_CNTL) | RADEON_DIS_OUT_OF_PCI_GART_ACCESS; WREG32(RADEON_AIC_CNTL, tmp & ~RADEON_PCIGART_TRANSLATE_EN); WREG32(RADEON_AIC_LO_ADDR, 0); WREG32(RADEON_AIC_HI_ADDR, 0); } int r100_pci_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr) { if (i < 0 || i > rdev->gart.num_gpu_pages) { return -EINVAL; } rdev->gart.table.ram.ptr[i] = cpu_to_le32(lower_32_bits(addr)); return 0; } int r100_gart_enable(struct radeon_device *rdev) { if (rdev->flags & RADEON_IS_AGP) { r100_pci_gart_disable(rdev); return 0; } return r100_pci_gart_enable(rdev); } /* * MC */ void r100_mc_disable_clients(struct radeon_device *rdev) { uint32_t ov0_scale_cntl, crtc_ext_cntl, crtc_gen_cntl, crtc2_gen_cntl; /* FIXME: is this function correct for rs100,rs200,rs300 ? */ if (r100_gui_wait_for_idle(rdev)) { printk(KERN_WARNING "Failed to wait GUI idle while " "programming pipes. Bad things might happen.\n"); } /* stop display and memory access */ ov0_scale_cntl = RREG32(RADEON_OV0_SCALE_CNTL); WREG32(RADEON_OV0_SCALE_CNTL, ov0_scale_cntl & ~RADEON_SCALER_ENABLE); crtc_ext_cntl = RREG32(RADEON_CRTC_EXT_CNTL); WREG32(RADEON_CRTC_EXT_CNTL, crtc_ext_cntl | RADEON_CRTC_DISPLAY_DIS); crtc_gen_cntl = RREG32(RADEON_CRTC_GEN_CNTL); r100_gpu_wait_for_vsync(rdev); WREG32(RADEON_CRTC_GEN_CNTL, (crtc_gen_cntl & ~(RADEON_CRTC_CUR_EN | RADEON_CRTC_ICON_EN)) | RADEON_CRTC_DISP_REQ_EN_B | RADEON_CRTC_EXT_DISP_EN); if (!(rdev->flags & RADEON_SINGLE_CRTC)) { crtc2_gen_cntl = RREG32(RADEON_CRTC2_GEN_CNTL); r100_gpu_wait_for_vsync2(rdev); WREG32(RADEON_CRTC2_GEN_CNTL, (crtc2_gen_cntl & ~(RADEON_CRTC2_CUR_EN | RADEON_CRTC2_ICON_EN)) | RADEON_CRTC2_DISP_REQ_EN_B); } udelay(500); } void r100_mc_setup(struct radeon_device *rdev) { uint32_t tmp; int r; r = r100_debugfs_mc_info_init(rdev); if (r) { DRM_ERROR("Failed to register debugfs file for R100 MC !\n"); } /* Write VRAM size in case we are limiting it */ WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size); tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = REG_SET(RADEON_MC_FB_TOP, tmp >> 16); tmp |= REG_SET(RADEON_MC_FB_START, rdev->mc.vram_location >> 16); WREG32(RADEON_MC_FB_LOCATION, tmp); /* Enable bus mastering */ tmp = RREG32(RADEON_BUS_CNTL) & ~RADEON_BUS_MASTER_DIS; WREG32(RADEON_BUS_CNTL, tmp); if (rdev->flags & RADEON_IS_AGP) { tmp = rdev->mc.gtt_location + rdev->mc.gtt_size - 1; tmp = REG_SET(RADEON_MC_AGP_TOP, tmp >> 16); tmp |= REG_SET(RADEON_MC_AGP_START, rdev->mc.gtt_location >> 16); WREG32(RADEON_MC_AGP_LOCATION, tmp); WREG32(RADEON_AGP_BASE, rdev->mc.agp_base); } else { WREG32(RADEON_MC_AGP_LOCATION, 0x0FFFFFFF); WREG32(RADEON_AGP_BASE, 0); } tmp = RREG32(RADEON_HOST_PATH_CNTL) & RADEON_HDP_APER_CNTL; tmp |= (7 << 28); WREG32(RADEON_HOST_PATH_CNTL, tmp | RADEON_HDP_SOFT_RESET | RADEON_HDP_READ_BUFFER_INVALIDATE); (void)RREG32(RADEON_HOST_PATH_CNTL); WREG32(RADEON_HOST_PATH_CNTL, tmp); (void)RREG32(RADEON_HOST_PATH_CNTL); } int r100_mc_init(struct radeon_device *rdev) { int r; if (r100_debugfs_rbbm_init(rdev)) { DRM_ERROR("Failed to register debugfs file for RBBM !\n"); } r100_gpu_init(rdev); /* Disable gart which also disable out of gart access */ r100_pci_gart_disable(rdev); /* Setup GPU memory space */ rdev->mc.gtt_location = 0xFFFFFFFFUL; if (rdev->flags & RADEON_IS_AGP) { r = radeon_agp_init(rdev); if (r) { printk(KERN_WARNING "[drm] Disabling AGP\n"); rdev->flags &= ~RADEON_IS_AGP; rdev->mc.gtt_size = radeon_gart_size * 1024 * 1024; } else { rdev->mc.gtt_location = rdev->mc.agp_base; } } r = radeon_mc_setup(rdev); if (r) { return r; } r100_mc_disable_clients(rdev); if (r100_mc_wait_for_idle(rdev)) { printk(KERN_WARNING "Failed to wait MC idle while " "programming pipes. Bad things might happen.\n"); } r100_mc_setup(rdev); return 0; } void r100_mc_fini(struct radeon_device *rdev) { r100_pci_gart_disable(rdev); radeon_gart_table_ram_free(rdev); radeon_gart_fini(rdev); } /* * Fence emission */ void r100_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { /* Who ever call radeon_fence_emit should call ring_lock and ask * for enough space (today caller are ib schedule and buffer move) */ /* Wait until IDLE & CLEAN */ radeon_ring_write(rdev, PACKET0(0x1720, 0)); radeon_ring_write(rdev, (1 << 16) | (1 << 17)); /* Emit fence sequence & fire IRQ */ radeon_ring_write(rdev, PACKET0(rdev->fence_drv.scratch_reg, 0)); radeon_ring_write(rdev, fence->seq); radeon_ring_write(rdev, PACKET0(RADEON_GEN_INT_STATUS, 0)); radeon_ring_write(rdev, RADEON_SW_INT_FIRE); } /* * Writeback */ int r100_wb_init(struct radeon_device *rdev) { int r; if (rdev->wb.wb_obj == NULL) { r = radeon_object_create(rdev, NULL, 4096, true, RADEON_GEM_DOMAIN_GTT, false, &rdev->wb.wb_obj); if (r) { DRM_ERROR("radeon: failed to create WB buffer (%d).\n", r); return r; } r = radeon_object_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT, &rdev->wb.gpu_addr); if (r) { DRM_ERROR("radeon: failed to pin WB buffer (%d).\n", r); return r; } r = radeon_object_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb); if (r) { DRM_ERROR("radeon: failed to map WB buffer (%d).\n", r); return r; } } WREG32(0x774, rdev->wb.gpu_addr); WREG32(0x70C, rdev->wb.gpu_addr + 1024); WREG32(0x770, 0xff); return 0; } void r100_wb_fini(struct radeon_device *rdev) { if (rdev->wb.wb_obj) { radeon_object_kunmap(rdev->wb.wb_obj); radeon_object_unpin(rdev->wb.wb_obj); radeon_object_unref(&rdev->wb.wb_obj); rdev->wb.wb = NULL; rdev->wb.wb_obj = NULL; } } int r100_copy_blit(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_pages, struct radeon_fence *fence) { uint32_t cur_pages; uint32_t stride_bytes = PAGE_SIZE; uint32_t pitch; uint32_t stride_pixels; unsigned ndw; int num_loops; int r = 0; /* radeon limited to 16k stride */ stride_bytes &= 0x3fff; /* radeon pitch is /64 */ pitch = stride_bytes / 64; stride_pixels = stride_bytes / 4; num_loops = DIV_ROUND_UP(num_pages, 8191); /* Ask for enough room for blit + flush + fence */ ndw = 64 + (10 * num_loops); r = radeon_ring_lock(rdev, ndw); if (r) { DRM_ERROR("radeon: moving bo (%d) asking for %u dw.\n", r, ndw); return -EINVAL; } while (num_pages > 0) { cur_pages = num_pages; if (cur_pages > 8191) { cur_pages = 8191; } num_pages -= cur_pages; /* pages are in Y direction - height page width in X direction - width */ radeon_ring_write(rdev, PACKET3(PACKET3_BITBLT_MULTI, 8)); radeon_ring_write(rdev, RADEON_GMC_SRC_PITCH_OFFSET_CNTL | RADEON_GMC_DST_PITCH_OFFSET_CNTL | RADEON_GMC_SRC_CLIPPING | RADEON_GMC_DST_CLIPPING | RADEON_GMC_BRUSH_NONE | (RADEON_COLOR_FORMAT_ARGB8888 << 8) | RADEON_GMC_SRC_DATATYPE_COLOR | RADEON_ROP3_S | RADEON_DP_SRC_SOURCE_MEMORY | RADEON_GMC_CLR_CMP_CNTL_DIS | RADEON_GMC_WR_MSK_DIS); radeon_ring_write(rdev, (pitch << 22) | (src_offset >> 10)); radeon_ring_write(rdev, (pitch << 22) | (dst_offset >> 10)); radeon_ring_write(rdev, (0x1fff) | (0x1fff << 16)); radeon_ring_write(rdev, 0); radeon_ring_write(rdev, (0x1fff) | (0x1fff << 16)); radeon_ring_write(rdev, num_pages); radeon_ring_write(rdev, num_pages); radeon_ring_write(rdev, cur_pages | (stride_pixels << 16)); } radeon_ring_write(rdev, PACKET0(RADEON_DSTCACHE_CTLSTAT, 0)); radeon_ring_write(rdev, RADEON_RB2D_DC_FLUSH_ALL); radeon_ring_write(rdev, PACKET0(RADEON_WAIT_UNTIL, 0)); radeon_ring_write(rdev, RADEON_WAIT_2D_IDLECLEAN | RADEON_WAIT_HOST_IDLECLEAN | RADEON_WAIT_DMA_GUI_IDLE); if (fence) { r = radeon_fence_emit(rdev, fence); } radeon_ring_unlock_commit(rdev); return r; } /* * CP */ void r100_ring_start(struct radeon_device *rdev) { int r; r = radeon_ring_lock(rdev, 2); if (r) { return; } radeon_ring_write(rdev, PACKET0(RADEON_ISYNC_CNTL, 0)); radeon_ring_write(rdev, RADEON_ISYNC_ANY2D_IDLE3D | RADEON_ISYNC_ANY3D_IDLE2D | RADEON_ISYNC_WAIT_IDLEGUI | RADEON_ISYNC_CPSCRATCH_IDLEGUI); radeon_ring_unlock_commit(rdev); } static void r100_cp_load_microcode(struct radeon_device *rdev) { int i; if (r100_gui_wait_for_idle(rdev)) { printk(KERN_WARNING "Failed to wait GUI idle while " "programming pipes. Bad things might happen.\n"); } WREG32(RADEON_CP_ME_RAM_ADDR, 0); if ((rdev->family == CHIP_R100) || (rdev->family == CHIP_RV100) || (rdev->family == CHIP_RV200) || (rdev->family == CHIP_RS100) || (rdev->family == CHIP_RS200)) { DRM_INFO("Loading R100 Microcode\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_ME_RAM_DATAH, R100_cp_microcode[i][1]); WREG32(RADEON_CP_ME_RAM_DATAL, R100_cp_microcode[i][0]); } } else if ((rdev->family == CHIP_R200) || (rdev->family == CHIP_RV250) || (rdev->family == CHIP_RV280) || (rdev->family == CHIP_RS300)) { DRM_INFO("Loading R200 Microcode\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_ME_RAM_DATAH, R200_cp_microcode[i][1]); WREG32(RADEON_CP_ME_RAM_DATAL, R200_cp_microcode[i][0]); } } else if ((rdev->family == CHIP_R300) || (rdev->family == CHIP_R350) || (rdev->family == CHIP_RV350) || (rdev->family == CHIP_RV380) || (rdev->family == CHIP_RS400) || (rdev->family == CHIP_RS480)) { DRM_INFO("Loading R300 Microcode\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_ME_RAM_DATAH, R300_cp_microcode[i][1]); WREG32(RADEON_CP_ME_RAM_DATAL, R300_cp_microcode[i][0]); } } else if ((rdev->family == CHIP_R420) || (rdev->family == CHIP_R423) || (rdev->family == CHIP_RV410)) { DRM_INFO("Loading R400 Microcode\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_ME_RAM_DATAH, R420_cp_microcode[i][1]); WREG32(RADEON_CP_ME_RAM_DATAL, R420_cp_microcode[i][0]); } } else if ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740)) { DRM_INFO("Loading RS690/RS740 Microcode\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_ME_RAM_DATAH, RS690_cp_microcode[i][1]); WREG32(RADEON_CP_ME_RAM_DATAL, RS690_cp_microcode[i][0]); } } else if (rdev->family == CHIP_RS600) { DRM_INFO("Loading RS600 Microcode\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_ME_RAM_DATAH, RS600_cp_microcode[i][1]); WREG32(RADEON_CP_ME_RAM_DATAL, RS600_cp_microcode[i][0]); } } else if ((rdev->family == CHIP_RV515) || (rdev->family == CHIP_R520) || (rdev->family == CHIP_RV530) || (rdev->family == CHIP_R580) || (rdev->family == CHIP_RV560) || (rdev->family == CHIP_RV570)) { DRM_INFO("Loading R500 Microcode\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_ME_RAM_DATAH, R520_cp_microcode[i][1]); WREG32(RADEON_CP_ME_RAM_DATAL, R520_cp_microcode[i][0]); } } } int r100_cp_init(struct radeon_device *rdev, unsigned ring_size) { unsigned rb_bufsz; unsigned rb_blksz; unsigned max_fetch; unsigned pre_write_timer; unsigned pre_write_limit; unsigned indirect2_start; unsigned indirect1_start; uint32_t tmp; int r; if (r100_debugfs_cp_init(rdev)) { DRM_ERROR("Failed to register debugfs file for CP !\n"); } /* Reset CP */ tmp = RREG32(RADEON_CP_CSQ_STAT); if ((tmp & (1 << 31))) { DRM_INFO("radeon: cp busy (0x%08X) resetting\n", tmp); WREG32(RADEON_CP_CSQ_MODE, 0); WREG32(RADEON_CP_CSQ_CNTL, 0); WREG32(RADEON_RBBM_SOFT_RESET, RADEON_SOFT_RESET_CP); tmp = RREG32(RADEON_RBBM_SOFT_RESET); mdelay(2); WREG32(RADEON_RBBM_SOFT_RESET, 0); tmp = RREG32(RADEON_RBBM_SOFT_RESET); mdelay(2); tmp = RREG32(RADEON_CP_CSQ_STAT); if ((tmp & (1 << 31))) { DRM_INFO("radeon: cp reset failed (0x%08X)\n", tmp); } } else { DRM_INFO("radeon: cp idle (0x%08X)\n", tmp); } /* Align ring size */ rb_bufsz = drm_order(ring_size / 8); ring_size = (1 << (rb_bufsz + 1)) * 4; r100_cp_load_microcode(rdev); r = radeon_ring_init(rdev, ring_size); if (r) { return r; } /* Each time the cp read 1024 bytes (16 dword/quadword) update * the rptr copy in system ram */ rb_blksz = 9; /* cp will read 128bytes at a time (4 dwords) */ max_fetch = 1; rdev->cp.align_mask = 16 - 1; /* Write to CP_RB_WPTR will be delayed for pre_write_timer clocks */ pre_write_timer = 64; /* Force CP_RB_WPTR write if written more than one time before the * delay expire */ pre_write_limit = 0; /* Setup the cp cache like this (cache size is 96 dwords) : * RING 0 to 15 * INDIRECT1 16 to 79 * INDIRECT2 80 to 95 * So ring cache size is 16dwords (> (2 * max_fetch = 2 * 4dwords)) * indirect1 cache size is 64dwords (> (2 * max_fetch = 2 * 4dwords)) * indirect2 cache size is 16dwords (> (2 * max_fetch = 2 * 4dwords)) * Idea being that most of the gpu cmd will be through indirect1 buffer * so it gets the bigger cache. */ indirect2_start = 80; indirect1_start = 16; /* cp setup */ WREG32(0x718, pre_write_timer | (pre_write_limit << 28)); WREG32(RADEON_CP_RB_CNTL, #ifdef __BIG_ENDIAN RADEON_BUF_SWAP_32BIT | #endif REG_SET(RADEON_RB_BUFSZ, rb_bufsz) | REG_SET(RADEON_RB_BLKSZ, rb_blksz) | REG_SET(RADEON_MAX_FETCH, max_fetch) | RADEON_RB_NO_UPDATE); /* Set ring address */ DRM_INFO("radeon: ring at 0x%016lX\n", (unsigned long)rdev->cp.gpu_addr); WREG32(RADEON_CP_RB_BASE, rdev->cp.gpu_addr); /* Force read & write ptr to 0 */ tmp = RREG32(RADEON_CP_RB_CNTL); WREG32(RADEON_CP_RB_CNTL, tmp | RADEON_RB_RPTR_WR_ENA); WREG32(RADEON_CP_RB_RPTR_WR, 0); WREG32(RADEON_CP_RB_WPTR, 0); WREG32(RADEON_CP_RB_CNTL, tmp); udelay(10); rdev->cp.rptr = RREG32(RADEON_CP_RB_RPTR); rdev->cp.wptr = RREG32(RADEON_CP_RB_WPTR); /* Set cp mode to bus mastering & enable cp*/ WREG32(RADEON_CP_CSQ_MODE, REG_SET(RADEON_INDIRECT2_START, indirect2_start) | REG_SET(RADEON_INDIRECT1_START, indirect1_start)); WREG32(0x718, 0); WREG32(0x744, 0x00004D4D); WREG32(RADEON_CP_CSQ_CNTL, RADEON_CSQ_PRIBM_INDBM); radeon_ring_start(rdev); r = radeon_ring_test(rdev); if (r) { DRM_ERROR("radeon: cp isn't working (%d).\n", r); return r; } rdev->cp.ready = true; return 0; } void r100_cp_fini(struct radeon_device *rdev) { /* Disable ring */ rdev->cp.ready = false; WREG32(RADEON_CP_CSQ_CNTL, 0); radeon_ring_fini(rdev); DRM_INFO("radeon: cp finalized\n"); } void r100_cp_disable(struct radeon_device *rdev) { /* Disable ring */ rdev->cp.ready = false; WREG32(RADEON_CP_CSQ_MODE, 0); WREG32(RADEON_CP_CSQ_CNTL, 0); if (r100_gui_wait_for_idle(rdev)) { printk(KERN_WARNING "Failed to wait GUI idle while " "programming pipes. Bad things might happen.\n"); } } int r100_cp_reset(struct radeon_device *rdev) { uint32_t tmp; bool reinit_cp; int i; reinit_cp = rdev->cp.ready; rdev->cp.ready = false; WREG32(RADEON_CP_CSQ_MODE, 0); WREG32(RADEON_CP_CSQ_CNTL, 0); WREG32(RADEON_RBBM_SOFT_RESET, RADEON_SOFT_RESET_CP); (void)RREG32(RADEON_RBBM_SOFT_RESET); udelay(200); WREG32(RADEON_RBBM_SOFT_RESET, 0); /* Wait to prevent race in RBBM_STATUS */ mdelay(1); for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(RADEON_RBBM_STATUS); if (!(tmp & (1 << 16))) { DRM_INFO("CP reset succeed (RBBM_STATUS=0x%08X)\n", tmp); if (reinit_cp) { return r100_cp_init(rdev, rdev->cp.ring_size); } return 0; } DRM_UDELAY(1); } tmp = RREG32(RADEON_RBBM_STATUS); DRM_ERROR("Failed to reset CP (RBBM_STATUS=0x%08X)!\n", tmp); return -1; } /* * CS functions */ int r100_cs_parse_packet0(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt, const unsigned *auth, unsigned n, radeon_packet0_check_t check) { unsigned reg; unsigned i, j, m; unsigned idx; int r; idx = pkt->idx + 1; reg = pkt->reg; /* Check that register fall into register range * determined by the number of entry (n) in the * safe register bitmap. */ if (pkt->one_reg_wr) { if ((reg >> 7) > n) { return -EINVAL; } } else { if (((reg + (pkt->count << 2)) >> 7) > n) { return -EINVAL; } } for (i = 0; i <= pkt->count; i++, idx++) { j = (reg >> 7); m = 1 << ((reg >> 2) & 31); if (auth[j] & m) { r = check(p, pkt, idx, reg); if (r) { return r; } } if (pkt->one_reg_wr) { if (!(auth[j] & m)) { break; } } else { reg += 4; } } return 0; } void r100_cs_dump_packet(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt) { struct radeon_cs_chunk *ib_chunk; volatile uint32_t *ib; unsigned i; unsigned idx; ib = p->ib->ptr; ib_chunk = &p->chunks[p->chunk_ib_idx]; idx = pkt->idx; for (i = 0; i <= (pkt->count + 1); i++, idx++) { DRM_INFO("ib[%d]=0x%08X\n", idx, ib[idx]); } } /** * r100_cs_packet_parse() - parse cp packet and point ib index to next packet * @parser: parser structure holding parsing context. * @pkt: where to store packet informations * * Assume that chunk_ib_index is properly set. Will return -EINVAL * if packet is bigger than remaining ib size. or if packets is unknown. **/ int r100_cs_packet_parse(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt, unsigned idx) { struct radeon_cs_chunk *ib_chunk = &p->chunks[p->chunk_ib_idx]; uint32_t header = ib_chunk->kdata[idx]; if (idx >= ib_chunk->length_dw) { DRM_ERROR("Can not parse packet at %d after CS end %d !\n", idx, ib_chunk->length_dw); return -EINVAL; } pkt->idx = idx; pkt->type = CP_PACKET_GET_TYPE(header); pkt->count = CP_PACKET_GET_COUNT(header); switch (pkt->type) { case PACKET_TYPE0: pkt->reg = CP_PACKET0_GET_REG(header); pkt->one_reg_wr = CP_PACKET0_GET_ONE_REG_WR(header); break; case PACKET_TYPE3: pkt->opcode = CP_PACKET3_GET_OPCODE(header); break; case PACKET_TYPE2: pkt->count = -1; break; default: DRM_ERROR("Unknown packet type %d at %d !\n", pkt->type, idx); return -EINVAL; } if ((pkt->count + 1 + pkt->idx) >= ib_chunk->length_dw) { DRM_ERROR("Packet (%d:%d:%d) end after CS buffer (%d) !\n", pkt->idx, pkt->type, pkt->count, ib_chunk->length_dw); return -EINVAL; } return 0; } /** * r100_cs_packet_next_reloc() - parse next packet which should be reloc packet3 * @parser: parser structure holding parsing context. * @data: pointer to relocation data * @offset_start: starting offset * @offset_mask: offset mask (to align start offset on) * @reloc: reloc informations * * Check next packet is relocation packet3, do bo validation and compute * GPU offset using the provided start. **/ int r100_cs_packet_next_reloc(struct radeon_cs_parser *p, struct radeon_cs_reloc **cs_reloc) { struct radeon_cs_chunk *ib_chunk; struct radeon_cs_chunk *relocs_chunk; struct radeon_cs_packet p3reloc; unsigned idx; int r; if (p->chunk_relocs_idx == -1) { DRM_ERROR("No relocation chunk !\n"); return -EINVAL; } *cs_reloc = NULL; ib_chunk = &p->chunks[p->chunk_ib_idx]; relocs_chunk = &p->chunks[p->chunk_relocs_idx]; r = r100_cs_packet_parse(p, &p3reloc, p->idx); if (r) { return r; } p->idx += p3reloc.count + 2; if (p3reloc.type != PACKET_TYPE3 || p3reloc.opcode != PACKET3_NOP) { DRM_ERROR("No packet3 for relocation for packet at %d.\n", p3reloc.idx); r100_cs_dump_packet(p, &p3reloc); return -EINVAL; } idx = ib_chunk->kdata[p3reloc.idx + 1]; if (idx >= relocs_chunk->length_dw) { DRM_ERROR("Relocs at %d after relocations chunk end %d !\n", idx, relocs_chunk->length_dw); r100_cs_dump_packet(p, &p3reloc); return -EINVAL; } /* FIXME: we assume reloc size is 4 dwords */ *cs_reloc = p->relocs_ptr[(idx / 4)]; return 0; } static int r100_packet0_check(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt) { struct radeon_cs_chunk *ib_chunk; struct radeon_cs_reloc *reloc; volatile uint32_t *ib; uint32_t tmp; unsigned reg; unsigned i; unsigned idx; bool onereg; int r; ib = p->ib->ptr; ib_chunk = &p->chunks[p->chunk_ib_idx]; idx = pkt->idx + 1; reg = pkt->reg; onereg = false; if (CP_PACKET0_GET_ONE_REG_WR(ib_chunk->kdata[pkt->idx])) { onereg = true; } for (i = 0; i <= pkt->count; i++, idx++, reg += 4) { switch (reg) { /* FIXME: only allow PACKET3 blit? easier to check for out of * range access */ case RADEON_DST_PITCH_OFFSET: case RADEON_SRC_PITCH_OFFSET: r = r100_cs_packet_next_reloc(p, &reloc); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); r100_cs_dump_packet(p, pkt); return r; } tmp = ib_chunk->kdata[idx] & 0x003fffff; tmp += (((u32)reloc->lobj.gpu_offset) >> 10); ib[idx] = (ib_chunk->kdata[idx] & 0xffc00000) | tmp; break; case RADEON_RB3D_DEPTHOFFSET: case RADEON_RB3D_COLOROFFSET: case R300_RB3D_COLOROFFSET0: case R300_ZB_DEPTHOFFSET: case R200_PP_TXOFFSET_0: case R200_PP_TXOFFSET_1: case R200_PP_TXOFFSET_2: case R200_PP_TXOFFSET_3: case R200_PP_TXOFFSET_4: case R200_PP_TXOFFSET_5: case RADEON_PP_TXOFFSET_0: case RADEON_PP_TXOFFSET_1: case RADEON_PP_TXOFFSET_2: case R300_TX_OFFSET_0: case R300_TX_OFFSET_0+4: case R300_TX_OFFSET_0+8: case R300_TX_OFFSET_0+12: case R300_TX_OFFSET_0+16: case R300_TX_OFFSET_0+20: case R300_TX_OFFSET_0+24: case R300_TX_OFFSET_0+28: case R300_TX_OFFSET_0+32: case R300_TX_OFFSET_0+36: case R300_TX_OFFSET_0+40: case R300_TX_OFFSET_0+44: case R300_TX_OFFSET_0+48: case R300_TX_OFFSET_0+52: case R300_TX_OFFSET_0+56: case R300_TX_OFFSET_0+60: r = r100_cs_packet_next_reloc(p, &reloc); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); r100_cs_dump_packet(p, pkt); return r; } ib[idx] = ib_chunk->kdata[idx] + ((u32)reloc->lobj.gpu_offset); break; default: /* FIXME: we don't want to allow anyothers packet */ break; } if (onereg) { /* FIXME: forbid onereg write to register on relocate */ break; } } return 0; } int r100_cs_track_check_pkt3_indx_buffer(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt, struct radeon_object *robj) { struct radeon_cs_chunk *ib_chunk; unsigned idx; ib_chunk = &p->chunks[p->chunk_ib_idx]; idx = pkt->idx + 1; if ((ib_chunk->kdata[idx+2] + 1) > radeon_object_size(robj)) { DRM_ERROR("[drm] Buffer too small for PACKET3 INDX_BUFFER " "(need %u have %lu) !\n", ib_chunk->kdata[idx+2] + 1, radeon_object_size(robj)); return -EINVAL; } return 0; } static int r100_packet3_check(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt) { struct radeon_cs_chunk *ib_chunk; struct radeon_cs_reloc *reloc; unsigned idx; unsigned i, c; volatile uint32_t *ib; int r; ib = p->ib->ptr; ib_chunk = &p->chunks[p->chunk_ib_idx]; idx = pkt->idx + 1; switch (pkt->opcode) { case PACKET3_3D_LOAD_VBPNTR: c = ib_chunk->kdata[idx++]; for (i = 0; i < (c - 1); i += 2, idx += 3) { r = r100_cs_packet_next_reloc(p, &reloc); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); r100_cs_dump_packet(p, pkt); return r; } ib[idx+1] = ib_chunk->kdata[idx+1] + ((u32)reloc->lobj.gpu_offset); r = r100_cs_packet_next_reloc(p, &reloc); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); r100_cs_dump_packet(p, pkt); return r; } ib[idx+2] = ib_chunk->kdata[idx+2] + ((u32)reloc->lobj.gpu_offset); } if (c & 1) { r = r100_cs_packet_next_reloc(p, &reloc); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); r100_cs_dump_packet(p, pkt); return r; } ib[idx+1] = ib_chunk->kdata[idx+1] + ((u32)reloc->lobj.gpu_offset); } break; case PACKET3_INDX_BUFFER: r = r100_cs_packet_next_reloc(p, &reloc); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); r100_cs_dump_packet(p, pkt); return r; } ib[idx+1] = ib_chunk->kdata[idx+1] + ((u32)reloc->lobj.gpu_offset); r = r100_cs_track_check_pkt3_indx_buffer(p, pkt, reloc->robj); if (r) { return r; } break; case 0x23: /* FIXME: cleanup */ /* 3D_RNDR_GEN_INDX_PRIM on r100/r200 */ r = r100_cs_packet_next_reloc(p, &reloc); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); r100_cs_dump_packet(p, pkt); return r; } ib[idx] = ib_chunk->kdata[idx] + ((u32)reloc->lobj.gpu_offset); break; case PACKET3_3D_DRAW_IMMD: /* triggers drawing using in-packet vertex data */ case PACKET3_3D_DRAW_IMMD_2: /* triggers drawing using in-packet vertex data */ case PACKET3_3D_DRAW_VBUF_2: /* triggers drawing of vertex buffers setup elsewhere */ case PACKET3_3D_DRAW_INDX_2: /* triggers drawing using indices to vertex buffer */ case PACKET3_3D_DRAW_VBUF: /* triggers drawing of vertex buffers setup elsewhere */ case PACKET3_3D_DRAW_INDX: /* triggers drawing using indices to vertex buffer */ case PACKET3_NOP: break; default: DRM_ERROR("Packet3 opcode %x not supported\n", pkt->opcode); return -EINVAL; } return 0; } int r100_cs_parse(struct radeon_cs_parser *p) { struct radeon_cs_packet pkt; int r; do { r = r100_cs_packet_parse(p, &pkt, p->idx); if (r) { return r; } p->idx += pkt.count + 2; switch (pkt.type) { case PACKET_TYPE0: r = r100_packet0_check(p, &pkt); break; case PACKET_TYPE2: break; case PACKET_TYPE3: r = r100_packet3_check(p, &pkt); break; default: DRM_ERROR("Unknown packet type %d !\n", pkt.type); return -EINVAL; } if (r) { return r; } } while (p->idx < p->chunks[p->chunk_ib_idx].length_dw); return 0; } /* * Global GPU functions */ void r100_errata(struct radeon_device *rdev) { rdev->pll_errata = 0; if (rdev->family == CHIP_RV200 || rdev->family == CHIP_RS200) { rdev->pll_errata |= CHIP_ERRATA_PLL_DUMMYREADS; } if (rdev->family == CHIP_RV100 || rdev->family == CHIP_RS100 || rdev->family == CHIP_RS200) { rdev->pll_errata |= CHIP_ERRATA_PLL_DELAY; } } /* Wait for vertical sync on primary CRTC */ void r100_gpu_wait_for_vsync(struct radeon_device *rdev) { uint32_t crtc_gen_cntl, tmp; int i; crtc_gen_cntl = RREG32(RADEON_CRTC_GEN_CNTL); if ((crtc_gen_cntl & RADEON_CRTC_DISP_REQ_EN_B) || !(crtc_gen_cntl & RADEON_CRTC_EN)) { return; } /* Clear the CRTC_VBLANK_SAVE bit */ WREG32(RADEON_CRTC_STATUS, RADEON_CRTC_VBLANK_SAVE_CLEAR); for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(RADEON_CRTC_STATUS); if (tmp & RADEON_CRTC_VBLANK_SAVE) { return; } DRM_UDELAY(1); } } /* Wait for vertical sync on secondary CRTC */ void r100_gpu_wait_for_vsync2(struct radeon_device *rdev) { uint32_t crtc2_gen_cntl, tmp; int i; crtc2_gen_cntl = RREG32(RADEON_CRTC2_GEN_CNTL); if ((crtc2_gen_cntl & RADEON_CRTC2_DISP_REQ_EN_B) || !(crtc2_gen_cntl & RADEON_CRTC2_EN)) return; /* Clear the CRTC_VBLANK_SAVE bit */ WREG32(RADEON_CRTC2_STATUS, RADEON_CRTC2_VBLANK_SAVE_CLEAR); for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(RADEON_CRTC2_STATUS); if (tmp & RADEON_CRTC2_VBLANK_SAVE) { return; } DRM_UDELAY(1); } } int r100_rbbm_fifo_wait_for_entry(struct radeon_device *rdev, unsigned n) { unsigned i; uint32_t tmp; for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(RADEON_RBBM_STATUS) & RADEON_RBBM_FIFOCNT_MASK; if (tmp >= n) { return 0; } DRM_UDELAY(1); } return -1; } int r100_gui_wait_for_idle(struct radeon_device *rdev) { unsigned i; uint32_t tmp; if (r100_rbbm_fifo_wait_for_entry(rdev, 64)) { printk(KERN_WARNING "radeon: wait for empty RBBM fifo failed !" " Bad things might happen.\n"); } for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(RADEON_RBBM_STATUS); if (!(tmp & (1 << 31))) { return 0; } DRM_UDELAY(1); } return -1; } int r100_mc_wait_for_idle(struct radeon_device *rdev) { unsigned i; uint32_t tmp; for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(0x0150); if (tmp & (1 << 2)) { return 0; } DRM_UDELAY(1); } return -1; } void r100_gpu_init(struct radeon_device *rdev) { /* TODO: anythings to do here ? pipes ? */ r100_hdp_reset(rdev); } void r100_hdp_reset(struct radeon_device *rdev) { uint32_t tmp; tmp = RREG32(RADEON_HOST_PATH_CNTL) & RADEON_HDP_APER_CNTL; tmp |= (7 << 28); WREG32(RADEON_HOST_PATH_CNTL, tmp | RADEON_HDP_SOFT_RESET | RADEON_HDP_READ_BUFFER_INVALIDATE); (void)RREG32(RADEON_HOST_PATH_CNTL); udelay(200); WREG32(RADEON_RBBM_SOFT_RESET, 0); WREG32(RADEON_HOST_PATH_CNTL, tmp); (void)RREG32(RADEON_HOST_PATH_CNTL); } int r100_rb2d_reset(struct radeon_device *rdev) { uint32_t tmp; int i; WREG32(RADEON_RBBM_SOFT_RESET, RADEON_SOFT_RESET_E2); (void)RREG32(RADEON_RBBM_SOFT_RESET); udelay(200); WREG32(RADEON_RBBM_SOFT_RESET, 0); /* Wait to prevent race in RBBM_STATUS */ mdelay(1); for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(RADEON_RBBM_STATUS); if (!(tmp & (1 << 26))) { DRM_INFO("RB2D reset succeed (RBBM_STATUS=0x%08X)\n", tmp); return 0; } DRM_UDELAY(1); } tmp = RREG32(RADEON_RBBM_STATUS); DRM_ERROR("Failed to reset RB2D (RBBM_STATUS=0x%08X)!\n", tmp); return -1; } int r100_gpu_reset(struct radeon_device *rdev) { uint32_t status; /* reset order likely matter */ status = RREG32(RADEON_RBBM_STATUS); /* reset HDP */ r100_hdp_reset(rdev); /* reset rb2d */ if (status & ((1 << 17) | (1 << 18) | (1 << 27))) { r100_rb2d_reset(rdev); } /* TODO: reset 3D engine */ /* reset CP */ status = RREG32(RADEON_RBBM_STATUS); if (status & (1 << 16)) { r100_cp_reset(rdev); } /* Check if GPU is idle */ status = RREG32(RADEON_RBBM_STATUS); if (status & (1 << 31)) { DRM_ERROR("Failed to reset GPU (RBBM_STATUS=0x%08X)\n", status); return -1; } DRM_INFO("GPU reset succeed (RBBM_STATUS=0x%08X)\n", status); return 0; } /* * VRAM info */ static void r100_vram_get_type(struct radeon_device *rdev) { uint32_t tmp; rdev->mc.vram_is_ddr = false; if (rdev->flags & RADEON_IS_IGP) rdev->mc.vram_is_ddr = true; else if (RREG32(RADEON_MEM_SDRAM_MODE_REG) & RADEON_MEM_CFG_TYPE_DDR) rdev->mc.vram_is_ddr = true; if ((rdev->family == CHIP_RV100) || (rdev->family == CHIP_RS100) || (rdev->family == CHIP_RS200)) { tmp = RREG32(RADEON_MEM_CNTL); if (tmp & RV100_HALF_MODE) { rdev->mc.vram_width = 32; } else { rdev->mc.vram_width = 64; } if (rdev->flags & RADEON_SINGLE_CRTC) { rdev->mc.vram_width /= 4; rdev->mc.vram_is_ddr = true; } } else if (rdev->family <= CHIP_RV280) { tmp = RREG32(RADEON_MEM_CNTL); if (tmp & RADEON_MEM_NUM_CHANNELS_MASK) { rdev->mc.vram_width = 128; } else { rdev->mc.vram_width = 64; } } else { /* newer IGPs */ rdev->mc.vram_width = 128; } } void r100_vram_info(struct radeon_device *rdev) { r100_vram_get_type(rdev); if (rdev->flags & RADEON_IS_IGP) { uint32_t tom; /* read NB_TOM to get the amount of ram stolen for the GPU */ tom = RREG32(RADEON_NB_TOM); rdev->mc.vram_size = (((tom >> 16) - (tom & 0xffff) + 1) << 16); /* for IGPs we need to keep VRAM where it was put by the BIOS */ rdev->mc.vram_location = (tom & 0xffff) << 16; WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size); } else { rdev->mc.vram_size = RREG32(RADEON_CONFIG_MEMSIZE); /* Some production boards of m6 will report 0 * if it's 8 MB */ if (rdev->mc.vram_size == 0) { rdev->mc.vram_size = 8192 * 1024; WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size); } /* let driver place VRAM */ rdev->mc.vram_location = 0xFFFFFFFFUL; } rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0); } /* * Indirect registers accessor */ void r100_pll_errata_after_index(struct radeon_device *rdev) { if (!(rdev->pll_errata & CHIP_ERRATA_PLL_DUMMYREADS)) { return; } (void)RREG32(RADEON_CLOCK_CNTL_DATA); (void)RREG32(RADEON_CRTC_GEN_CNTL); } static void r100_pll_errata_after_data(struct radeon_device *rdev) { /* This workarounds is necessary on RV100, RS100 and RS200 chips * or the chip could hang on a subsequent access */ if (rdev->pll_errata & CHIP_ERRATA_PLL_DELAY) { udelay(5000); } /* This function is required to workaround a hardware bug in some (all?) * revisions of the R300. This workaround should be called after every * CLOCK_CNTL_INDEX register access. If not, register reads afterward * may not be correct. */ if (rdev->pll_errata & CHIP_ERRATA_R300_CG) { uint32_t save, tmp; save = RREG32(RADEON_CLOCK_CNTL_INDEX); tmp = save & ~(0x3f | RADEON_PLL_WR_EN); WREG32(RADEON_CLOCK_CNTL_INDEX, tmp); tmp = RREG32(RADEON_CLOCK_CNTL_DATA); WREG32(RADEON_CLOCK_CNTL_INDEX, save); } } uint32_t r100_pll_rreg(struct radeon_device *rdev, uint32_t reg) { uint32_t data; WREG8(RADEON_CLOCK_CNTL_INDEX, reg & 0x3f); r100_pll_errata_after_index(rdev); data = RREG32(RADEON_CLOCK_CNTL_DATA); r100_pll_errata_after_data(rdev); return data; } void r100_pll_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) { WREG8(RADEON_CLOCK_CNTL_INDEX, ((reg & 0x3f) | RADEON_PLL_WR_EN)); r100_pll_errata_after_index(rdev); WREG32(RADEON_CLOCK_CNTL_DATA, v); r100_pll_errata_after_data(rdev); } uint32_t r100_mm_rreg(struct radeon_device *rdev, uint32_t reg) { if (reg < 0x10000) return readl(((void __iomem *)rdev->rmmio) + reg); else { writel(reg, ((void __iomem *)rdev->rmmio) + RADEON_MM_INDEX); return readl(((void __iomem *)rdev->rmmio) + RADEON_MM_DATA); } } void r100_mm_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) { if (reg < 0x10000) writel(v, ((void __iomem *)rdev->rmmio) + reg); else { writel(reg, ((void __iomem *)rdev->rmmio) + RADEON_MM_INDEX); writel(v, ((void __iomem *)rdev->rmmio) + RADEON_MM_DATA); } } int r100_init(struct radeon_device *rdev) { return 0; } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int r100_debugfs_rbbm_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; uint32_t reg, value; unsigned i; seq_printf(m, "RBBM_STATUS 0x%08x\n", RREG32(RADEON_RBBM_STATUS)); seq_printf(m, "RBBM_CMDFIFO_STAT 0x%08x\n", RREG32(0xE7C)); seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT)); for (i = 0; i < 64; i++) { WREG32(RADEON_RBBM_CMDFIFO_ADDR, i | 0x100); reg = (RREG32(RADEON_RBBM_CMDFIFO_DATA) - 1) >> 2; WREG32(RADEON_RBBM_CMDFIFO_ADDR, i); value = RREG32(RADEON_RBBM_CMDFIFO_DATA); seq_printf(m, "[0x%03X] 0x%04X=0x%08X\n", i, reg, value); } return 0; } static int r100_debugfs_cp_ring_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; uint32_t rdp, wdp; unsigned count, i, j; radeon_ring_free_size(rdev); rdp = RREG32(RADEON_CP_RB_RPTR); wdp = RREG32(RADEON_CP_RB_WPTR); count = (rdp + rdev->cp.ring_size - wdp) & rdev->cp.ptr_mask; seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT)); seq_printf(m, "CP_RB_WPTR 0x%08x\n", wdp); seq_printf(m, "CP_RB_RPTR 0x%08x\n", rdp); seq_printf(m, "%u free dwords in ring\n", rdev->cp.ring_free_dw); seq_printf(m, "%u dwords in ring\n", count); for (j = 0; j <= count; j++) { i = (rdp + j) & rdev->cp.ptr_mask; seq_printf(m, "r[%04d]=0x%08x\n", i, rdev->cp.ring[i]); } return 0; } static int r100_debugfs_cp_csq_fifo(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; uint32_t csq_stat, csq2_stat, tmp; unsigned r_rptr, r_wptr, ib1_rptr, ib1_wptr, ib2_rptr, ib2_wptr; unsigned i; seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT)); seq_printf(m, "CP_CSQ_MODE 0x%08x\n", RREG32(RADEON_CP_CSQ_MODE)); csq_stat = RREG32(RADEON_CP_CSQ_STAT); csq2_stat = RREG32(RADEON_CP_CSQ2_STAT); r_rptr = (csq_stat >> 0) & 0x3ff; r_wptr = (csq_stat >> 10) & 0x3ff; ib1_rptr = (csq_stat >> 20) & 0x3ff; ib1_wptr = (csq2_stat >> 0) & 0x3ff; ib2_rptr = (csq2_stat >> 10) & 0x3ff; ib2_wptr = (csq2_stat >> 20) & 0x3ff; seq_printf(m, "CP_CSQ_STAT 0x%08x\n", csq_stat); seq_printf(m, "CP_CSQ2_STAT 0x%08x\n", csq2_stat); seq_printf(m, "Ring rptr %u\n", r_rptr); seq_printf(m, "Ring wptr %u\n", r_wptr); seq_printf(m, "Indirect1 rptr %u\n", ib1_rptr); seq_printf(m, "Indirect1 wptr %u\n", ib1_wptr); seq_printf(m, "Indirect2 rptr %u\n", ib2_rptr); seq_printf(m, "Indirect2 wptr %u\n", ib2_wptr); /* FIXME: 0, 128, 640 depends on fifo setup see cp_init_kms * 128 = indirect1_start * 8 & 640 = indirect2_start * 8 */ seq_printf(m, "Ring fifo:\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_CSQ_ADDR, i << 2); tmp = RREG32(RADEON_CP_CSQ_DATA); seq_printf(m, "rfifo[%04d]=0x%08X\n", i, tmp); } seq_printf(m, "Indirect1 fifo:\n"); for (i = 256; i <= 512; i++) { WREG32(RADEON_CP_CSQ_ADDR, i << 2); tmp = RREG32(RADEON_CP_CSQ_DATA); seq_printf(m, "ib1fifo[%04d]=0x%08X\n", i, tmp); } seq_printf(m, "Indirect2 fifo:\n"); for (i = 640; i < ib1_wptr; i++) { WREG32(RADEON_CP_CSQ_ADDR, i << 2); tmp = RREG32(RADEON_CP_CSQ_DATA); seq_printf(m, "ib2fifo[%04d]=0x%08X\n", i, tmp); } return 0; } static int r100_debugfs_mc_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; uint32_t tmp; tmp = RREG32(RADEON_CONFIG_MEMSIZE); seq_printf(m, "CONFIG_MEMSIZE 0x%08x\n", tmp); tmp = RREG32(RADEON_MC_FB_LOCATION); seq_printf(m, "MC_FB_LOCATION 0x%08x\n", tmp); tmp = RREG32(RADEON_BUS_CNTL); seq_printf(m, "BUS_CNTL 0x%08x\n", tmp); tmp = RREG32(RADEON_MC_AGP_LOCATION); seq_printf(m, "MC_AGP_LOCATION 0x%08x\n", tmp); tmp = RREG32(RADEON_AGP_BASE); seq_printf(m, "AGP_BASE 0x%08x\n", tmp); tmp = RREG32(RADEON_HOST_PATH_CNTL); seq_printf(m, "HOST_PATH_CNTL 0x%08x\n", tmp); tmp = RREG32(0x01D0); seq_printf(m, "AIC_CTRL 0x%08x\n", tmp); tmp = RREG32(RADEON_AIC_LO_ADDR); seq_printf(m, "AIC_LO_ADDR 0x%08x\n", tmp); tmp = RREG32(RADEON_AIC_HI_ADDR); seq_printf(m, "AIC_HI_ADDR 0x%08x\n", tmp); tmp = RREG32(0x01E4); seq_printf(m, "AIC_TLB_ADDR 0x%08x\n", tmp); return 0; } static struct drm_info_list r100_debugfs_rbbm_list[] = { {"r100_rbbm_info", r100_debugfs_rbbm_info, 0, NULL}, }; static struct drm_info_list r100_debugfs_cp_list[] = { {"r100_cp_ring_info", r100_debugfs_cp_ring_info, 0, NULL}, {"r100_cp_csq_fifo", r100_debugfs_cp_csq_fifo, 0, NULL}, }; static struct drm_info_list r100_debugfs_mc_info_list[] = { {"r100_mc_info", r100_debugfs_mc_info, 0, NULL}, }; #endif int r100_debugfs_rbbm_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, r100_debugfs_rbbm_list, 1); #else return 0; #endif } int r100_debugfs_cp_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, r100_debugfs_cp_list, 2); #else return 0; #endif } int r100_debugfs_mc_info_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, r100_debugfs_mc_info_list, 1); #else return 0; #endif }