/************************************************************************** * * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: Thomas Hellstrom */ /* Notes: * * We store bo pointer in drm_mm_node struct so we know which bo own a * specific node. There is no protection on the pointer, thus to make * sure things don't go berserk you have to access this pointer while * holding the global lru lock and make sure anytime you free a node you * reset the pointer to NULL. */ #include "ttm/ttm_module.h" #include "ttm/ttm_bo_driver.h" #include "ttm/ttm_placement.h" #include #include #include #include #include #include #define TTM_ASSERT_LOCKED(param) #define TTM_DEBUG(fmt, arg...) #define TTM_BO_HASH_ORDER 13 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); static void ttm_bo_global_kobj_release(struct kobject *kobj); static struct attribute ttm_bo_count = { .name = "bo_count", .mode = S_IRUGO }; static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) { int i; for (i = 0; i <= TTM_PL_PRIV5; i++) if (flags & (1 << i)) { *mem_type = i; return 0; } return -EINVAL; } static void ttm_mem_type_manager_debug(struct ttm_bo_global *glob, struct ttm_mem_type_manager *man) { printk(KERN_ERR TTM_PFX " has_type: %d\n", man->has_type); printk(KERN_ERR TTM_PFX " use_type: %d\n", man->use_type); printk(KERN_ERR TTM_PFX " flags: 0x%08X\n", man->flags); printk(KERN_ERR TTM_PFX " gpu_offset: 0x%08lX\n", man->gpu_offset); printk(KERN_ERR TTM_PFX " io_offset: 0x%08lX\n", man->io_offset); printk(KERN_ERR TTM_PFX " io_size: %ld\n", man->io_size); printk(KERN_ERR TTM_PFX " size: %ld\n", (unsigned long)man->size); printk(KERN_ERR TTM_PFX " available_caching: 0x%08X\n", man->available_caching); printk(KERN_ERR TTM_PFX " default_caching: 0x%08X\n", man->default_caching); spin_lock(&glob->lru_lock); drm_mm_debug_table(&man->manager, TTM_PFX); spin_unlock(&glob->lru_lock); } static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, struct ttm_placement *placement) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_bo_global *glob = bo->glob; struct ttm_mem_type_manager *man; int i, ret, mem_type; printk(KERN_ERR TTM_PFX "No space for %p (%ld pages, %ldK, %ldM)\n", bo, bo->mem.num_pages, bo->mem.size >> 10, bo->mem.size >> 20); for (i = 0; i < placement->num_placement; i++) { ret = ttm_mem_type_from_flags(placement->placement[i], &mem_type); if (ret) return; man = &bdev->man[mem_type]; printk(KERN_ERR TTM_PFX " placement[%d]=0x%08X (%d)\n", i, placement->placement[i], mem_type); ttm_mem_type_manager_debug(glob, man); } } static ssize_t ttm_bo_global_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct ttm_bo_global *glob = container_of(kobj, struct ttm_bo_global, kobj); return snprintf(buffer, PAGE_SIZE, "%lu\n", (unsigned long) atomic_read(&glob->bo_count)); } static struct attribute *ttm_bo_global_attrs[] = { &ttm_bo_count, NULL }; static struct sysfs_ops ttm_bo_global_ops = { .show = &ttm_bo_global_show }; static struct kobj_type ttm_bo_glob_kobj_type = { .release = &ttm_bo_global_kobj_release, .sysfs_ops = &ttm_bo_global_ops, .default_attrs = ttm_bo_global_attrs }; static inline uint32_t ttm_bo_type_flags(unsigned type) { return 1 << (type); } static void ttm_bo_release_list(struct kref *list_kref) { struct ttm_buffer_object *bo = container_of(list_kref, struct ttm_buffer_object, list_kref); struct ttm_bo_device *bdev = bo->bdev; BUG_ON(atomic_read(&bo->list_kref.refcount)); BUG_ON(atomic_read(&bo->kref.refcount)); BUG_ON(atomic_read(&bo->cpu_writers)); BUG_ON(bo->sync_obj != NULL); BUG_ON(bo->mem.mm_node != NULL); BUG_ON(!list_empty(&bo->lru)); BUG_ON(!list_empty(&bo->ddestroy)); if (bo->ttm) ttm_tt_destroy(bo->ttm); atomic_dec(&bo->glob->bo_count); if (bo->destroy) bo->destroy(bo); else { ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size); kfree(bo); } } int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible) { if (interruptible) { int ret = 0; ret = wait_event_interruptible(bo->event_queue, atomic_read(&bo->reserved) == 0); if (unlikely(ret != 0)) return ret; } else { wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0); } return 0; } EXPORT_SYMBOL(ttm_bo_wait_unreserved); static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_mem_type_manager *man; BUG_ON(!atomic_read(&bo->reserved)); if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { BUG_ON(!list_empty(&bo->lru)); man = &bdev->man[bo->mem.mem_type]; list_add_tail(&bo->lru, &man->lru); kref_get(&bo->list_kref); if (bo->ttm != NULL) { list_add_tail(&bo->swap, &bo->glob->swap_lru); kref_get(&bo->list_kref); } } } /** * Call with the lru_lock held. */ static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) { int put_count = 0; if (!list_empty(&bo->swap)) { list_del_init(&bo->swap); ++put_count; } if (!list_empty(&bo->lru)) { list_del_init(&bo->lru); ++put_count; } /* * TODO: Add a driver hook to delete from * driver-specific LRU's here. */ return put_count; } int ttm_bo_reserve_locked(struct ttm_buffer_object *bo, bool interruptible, bool no_wait, bool use_sequence, uint32_t sequence) { struct ttm_bo_global *glob = bo->glob; int ret; while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) { if (use_sequence && bo->seq_valid && (sequence - bo->val_seq < (1 << 31))) { return -EAGAIN; } if (no_wait) return -EBUSY; spin_unlock(&glob->lru_lock); ret = ttm_bo_wait_unreserved(bo, interruptible); spin_lock(&glob->lru_lock); if (unlikely(ret)) return ret; } if (use_sequence) { bo->val_seq = sequence; bo->seq_valid = true; } else { bo->seq_valid = false; } return 0; } EXPORT_SYMBOL(ttm_bo_reserve); static void ttm_bo_ref_bug(struct kref *list_kref) { BUG(); } int ttm_bo_reserve(struct ttm_buffer_object *bo, bool interruptible, bool no_wait, bool use_sequence, uint32_t sequence) { struct ttm_bo_global *glob = bo->glob; int put_count = 0; int ret; spin_lock(&glob->lru_lock); ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence, sequence); if (likely(ret == 0)) put_count = ttm_bo_del_from_lru(bo); spin_unlock(&glob->lru_lock); while (put_count--) kref_put(&bo->list_kref, ttm_bo_ref_bug); return ret; } void ttm_bo_unreserve(struct ttm_buffer_object *bo) { struct ttm_bo_global *glob = bo->glob; spin_lock(&glob->lru_lock); ttm_bo_add_to_lru(bo); atomic_set(&bo->reserved, 0); wake_up_all(&bo->event_queue); spin_unlock(&glob->lru_lock); } EXPORT_SYMBOL(ttm_bo_unreserve); /* * Call bo->mutex locked. */ static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_bo_global *glob = bo->glob; int ret = 0; uint32_t page_flags = 0; TTM_ASSERT_LOCKED(&bo->mutex); bo->ttm = NULL; if (bdev->need_dma32) page_flags |= TTM_PAGE_FLAG_DMA32; switch (bo->type) { case ttm_bo_type_device: if (zero_alloc) page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; case ttm_bo_type_kernel: bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, page_flags, glob->dummy_read_page); if (unlikely(bo->ttm == NULL)) ret = -ENOMEM; break; case ttm_bo_type_user: bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, page_flags | TTM_PAGE_FLAG_USER, glob->dummy_read_page); if (unlikely(bo->ttm == NULL)) { ret = -ENOMEM; break; } ret = ttm_tt_set_user(bo->ttm, current, bo->buffer_start, bo->num_pages); if (unlikely(ret != 0)) ttm_tt_destroy(bo->ttm); break; default: printk(KERN_ERR TTM_PFX "Illegal buffer object type\n"); ret = -EINVAL; break; } return ret; } static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem, bool evict, bool interruptible, bool no_wait) { struct ttm_bo_device *bdev = bo->bdev; bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; int ret = 0; if (old_is_pci || new_is_pci || ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) ttm_bo_unmap_virtual(bo); /* * Create and bind a ttm if required. */ if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) { ret = ttm_bo_add_ttm(bo, false); if (ret) goto out_err; ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); if (ret) goto out_err; if (mem->mem_type != TTM_PL_SYSTEM) { ret = ttm_tt_bind(bo->ttm, mem); if (ret) goto out_err; } if (bo->mem.mem_type == TTM_PL_SYSTEM) { bo->mem = *mem; mem->mm_node = NULL; goto moved; } } if (bdev->driver->move_notify) bdev->driver->move_notify(bo, mem); if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) ret = ttm_bo_move_ttm(bo, evict, no_wait, mem); else if (bdev->driver->move) ret = bdev->driver->move(bo, evict, interruptible, no_wait, mem); else ret = ttm_bo_move_memcpy(bo, evict, no_wait, mem); if (ret) goto out_err; moved: if (bo->evicted) { ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); if (ret) printk(KERN_ERR TTM_PFX "Can not flush read caches\n"); bo->evicted = false; } if (bo->mem.mm_node) { spin_lock(&bo->lock); bo->offset = (bo->mem.mm_node->start << PAGE_SHIFT) + bdev->man[bo->mem.mem_type].gpu_offset; bo->cur_placement = bo->mem.placement; spin_unlock(&bo->lock); } return 0; out_err: new_man = &bdev->man[bo->mem.mem_type]; if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { ttm_tt_unbind(bo->ttm); ttm_tt_destroy(bo->ttm); bo->ttm = NULL; } return ret; } /** * If bo idle, remove from delayed- and lru lists, and unref. * If not idle, and already on delayed list, do nothing. * If not idle, and not on delayed list, put on delayed list, * up the list_kref and schedule a delayed list check. */ static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, bool remove_all) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_bo_global *glob = bo->glob; struct ttm_bo_driver *driver = bdev->driver; int ret; spin_lock(&bo->lock); (void) ttm_bo_wait(bo, false, false, !remove_all); if (!bo->sync_obj) { int put_count; spin_unlock(&bo->lock); spin_lock(&glob->lru_lock); put_count = ttm_bo_del_from_lru(bo); ret = ttm_bo_reserve_locked(bo, false, false, false, 0); BUG_ON(ret); if (bo->ttm) ttm_tt_unbind(bo->ttm); if (!list_empty(&bo->ddestroy)) { list_del_init(&bo->ddestroy); ++put_count; } if (bo->mem.mm_node) { bo->mem.mm_node->private = NULL; drm_mm_put_block(bo->mem.mm_node); bo->mem.mm_node = NULL; } spin_unlock(&glob->lru_lock); atomic_set(&bo->reserved, 0); while (put_count--) kref_put(&bo->list_kref, ttm_bo_ref_bug); return 0; } spin_lock(&glob->lru_lock); if (list_empty(&bo->ddestroy)) { void *sync_obj = bo->sync_obj; void *sync_obj_arg = bo->sync_obj_arg; kref_get(&bo->list_kref); list_add_tail(&bo->ddestroy, &bdev->ddestroy); spin_unlock(&glob->lru_lock); spin_unlock(&bo->lock); if (sync_obj) driver->sync_obj_flush(sync_obj, sync_obj_arg); schedule_delayed_work(&bdev->wq, ((HZ / 100) < 1) ? 1 : HZ / 100); ret = 0; } else { spin_unlock(&glob->lru_lock); spin_unlock(&bo->lock); ret = -EBUSY; } return ret; } /** * Traverse the delayed list, and call ttm_bo_cleanup_refs on all * encountered buffers. */ static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) { struct ttm_bo_global *glob = bdev->glob; struct ttm_buffer_object *entry, *nentry; struct list_head *list, *next; int ret; spin_lock(&glob->lru_lock); list_for_each_safe(list, next, &bdev->ddestroy) { entry = list_entry(list, struct ttm_buffer_object, ddestroy); nentry = NULL; /* * Protect the next list entry from destruction while we * unlock the lru_lock. */ if (next != &bdev->ddestroy) { nentry = list_entry(next, struct ttm_buffer_object, ddestroy); kref_get(&nentry->list_kref); } kref_get(&entry->list_kref); spin_unlock(&glob->lru_lock); ret = ttm_bo_cleanup_refs(entry, remove_all); kref_put(&entry->list_kref, ttm_bo_release_list); spin_lock(&glob->lru_lock); if (nentry) { bool next_onlist = !list_empty(next); spin_unlock(&glob->lru_lock); kref_put(&nentry->list_kref, ttm_bo_release_list); spin_lock(&glob->lru_lock); /* * Someone might have raced us and removed the * next entry from the list. We don't bother restarting * list traversal. */ if (!next_onlist) break; } if (ret) break; } ret = !list_empty(&bdev->ddestroy); spin_unlock(&glob->lru_lock); return ret; } static void ttm_bo_delayed_workqueue(struct work_struct *work) { struct ttm_bo_device *bdev = container_of(work, struct ttm_bo_device, wq.work); if (ttm_bo_delayed_delete(bdev, false)) { schedule_delayed_work(&bdev->wq, ((HZ / 100) < 1) ? 1 : HZ / 100); } } static void ttm_bo_release(struct kref *kref) { struct ttm_buffer_object *bo = container_of(kref, struct ttm_buffer_object, kref); struct ttm_bo_device *bdev = bo->bdev; if (likely(bo->vm_node != NULL)) { rb_erase(&bo->vm_rb, &bdev->addr_space_rb); drm_mm_put_block(bo->vm_node); bo->vm_node = NULL; } write_unlock(&bdev->vm_lock); ttm_bo_cleanup_refs(bo, false); kref_put(&bo->list_kref, ttm_bo_release_list); write_lock(&bdev->vm_lock); } void ttm_bo_unref(struct ttm_buffer_object **p_bo) { struct ttm_buffer_object *bo = *p_bo; struct ttm_bo_device *bdev = bo->bdev; *p_bo = NULL; write_lock(&bdev->vm_lock); kref_put(&bo->kref, ttm_bo_release); write_unlock(&bdev->vm_lock); } EXPORT_SYMBOL(ttm_bo_unref); static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, bool no_wait) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_bo_global *glob = bo->glob; struct ttm_mem_reg evict_mem; struct ttm_placement placement; int ret = 0; spin_lock(&bo->lock); ret = ttm_bo_wait(bo, false, interruptible, no_wait); spin_unlock(&bo->lock); if (unlikely(ret != 0)) { if (ret != -ERESTARTSYS) { printk(KERN_ERR TTM_PFX "Failed to expire sync object before " "buffer eviction.\n"); } goto out; } BUG_ON(!atomic_read(&bo->reserved)); evict_mem = bo->mem; evict_mem.mm_node = NULL; placement.fpfn = 0; placement.lpfn = 0; placement.num_placement = 0; placement.num_busy_placement = 0; bdev->driver->evict_flags(bo, &placement); ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, no_wait); if (ret) { if (ret != -ERESTARTSYS) { printk(KERN_ERR TTM_PFX "Failed to find memory space for " "buffer 0x%p eviction.\n", bo); ttm_bo_mem_space_debug(bo, &placement); } goto out; } ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, no_wait); if (ret) { if (ret != -ERESTARTSYS) printk(KERN_ERR TTM_PFX "Buffer eviction failed\n"); spin_lock(&glob->lru_lock); if (evict_mem.mm_node) { evict_mem.mm_node->private = NULL; drm_mm_put_block(evict_mem.mm_node); evict_mem.mm_node = NULL; } spin_unlock(&glob->lru_lock); goto out; } bo->evicted = true; out: return ret; } static int ttm_mem_evict_first(struct ttm_bo_device *bdev, uint32_t mem_type, bool interruptible, bool no_wait) { struct ttm_bo_global *glob = bdev->glob; struct ttm_mem_type_manager *man = &bdev->man[mem_type]; struct ttm_buffer_object *bo; int ret, put_count = 0; spin_lock(&glob->lru_lock); bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru); kref_get(&bo->list_kref); ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, false, 0); if (likely(ret == 0)) put_count = ttm_bo_del_from_lru(bo); spin_unlock(&glob->lru_lock); if (unlikely(ret != 0)) return ret; while (put_count--) kref_put(&bo->list_kref, ttm_bo_ref_bug); ret = ttm_bo_evict(bo, interruptible, no_wait); ttm_bo_unreserve(bo); kref_put(&bo->list_kref, ttm_bo_release_list); return ret; } static int ttm_bo_man_get_node(struct ttm_buffer_object *bo, struct ttm_mem_type_manager *man, struct ttm_placement *placement, struct ttm_mem_reg *mem, struct drm_mm_node **node) { struct ttm_bo_global *glob = bo->glob; unsigned long lpfn; int ret; lpfn = placement->lpfn; if (!lpfn) lpfn = man->size; *node = NULL; do { ret = drm_mm_pre_get(&man->manager); if (unlikely(ret)) return ret; spin_lock(&glob->lru_lock); *node = drm_mm_search_free_in_range(&man->manager, mem->num_pages, mem->page_alignment, placement->fpfn, lpfn, 1); if (unlikely(*node == NULL)) { spin_unlock(&glob->lru_lock); return 0; } *node = drm_mm_get_block_atomic_range(*node, mem->num_pages, mem->page_alignment, placement->fpfn, lpfn); spin_unlock(&glob->lru_lock); } while (*node == NULL); return 0; } /** * Repeatedly evict memory from the LRU for @mem_type until we create enough * space, or we've evicted everything and there isn't enough space. */ static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, uint32_t mem_type, struct ttm_placement *placement, struct ttm_mem_reg *mem, bool interruptible, bool no_wait) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_bo_global *glob = bdev->glob; struct ttm_mem_type_manager *man = &bdev->man[mem_type]; struct drm_mm_node *node; int ret; do { ret = ttm_bo_man_get_node(bo, man, placement, mem, &node); if (unlikely(ret != 0)) return ret; if (node) break; spin_lock(&glob->lru_lock); if (list_empty(&man->lru)) { spin_unlock(&glob->lru_lock); break; } spin_unlock(&glob->lru_lock); ret = ttm_mem_evict_first(bdev, mem_type, interruptible, no_wait); if (unlikely(ret != 0)) return ret; } while (1); if (node == NULL) return -ENOMEM; mem->mm_node = node; mem->mem_type = mem_type; return 0; } static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, uint32_t cur_placement, uint32_t proposed_placement) { uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; /** * Keep current caching if possible. */ if ((cur_placement & caching) != 0) result |= (cur_placement & caching); else if ((man->default_caching & caching) != 0) result |= man->default_caching; else if ((TTM_PL_FLAG_CACHED & caching) != 0) result |= TTM_PL_FLAG_CACHED; else if ((TTM_PL_FLAG_WC & caching) != 0) result |= TTM_PL_FLAG_WC; else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) result |= TTM_PL_FLAG_UNCACHED; return result; } static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, bool disallow_fixed, uint32_t mem_type, uint32_t proposed_placement, uint32_t *masked_placement) { uint32_t cur_flags = ttm_bo_type_flags(mem_type); if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed) return false; if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) return false; if ((proposed_placement & man->available_caching) == 0) return false; cur_flags |= (proposed_placement & man->available_caching); *masked_placement = cur_flags; return true; } /** * Creates space for memory region @mem according to its type. * * This function first searches for free space in compatible memory types in * the priority order defined by the driver. If free space isn't found, then * ttm_bo_mem_force_space is attempted in priority order to evict and find * space. */ int ttm_bo_mem_space(struct ttm_buffer_object *bo, struct ttm_placement *placement, struct ttm_mem_reg *mem, bool interruptible, bool no_wait) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_mem_type_manager *man; uint32_t mem_type = TTM_PL_SYSTEM; uint32_t cur_flags = 0; bool type_found = false; bool type_ok = false; bool has_erestartsys = false; struct drm_mm_node *node = NULL; int i, ret; mem->mm_node = NULL; for (i = 0; i < placement->num_placement; ++i) { ret = ttm_mem_type_from_flags(placement->placement[i], &mem_type); if (ret) return ret; man = &bdev->man[mem_type]; type_ok = ttm_bo_mt_compatible(man, bo->type == ttm_bo_type_user, mem_type, placement->placement[i], &cur_flags); if (!type_ok) continue; cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags); /* * Use the access and other non-mapping-related flag bits from * the memory placement flags to the current flags */ ttm_flag_masked(&cur_flags, placement->placement[i], ~TTM_PL_MASK_MEMTYPE); if (mem_type == TTM_PL_SYSTEM) break; if (man->has_type && man->use_type) { type_found = true; ret = ttm_bo_man_get_node(bo, man, placement, mem, &node); if (unlikely(ret)) return ret; } if (node) break; } if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || node) { mem->mm_node = node; mem->mem_type = mem_type; mem->placement = cur_flags; if (node) node->private = bo; return 0; } if (!type_found) return -EINVAL; for (i = 0; i < placement->num_busy_placement; ++i) { ret = ttm_mem_type_from_flags(placement->busy_placement[i], &mem_type); if (ret) return ret; man = &bdev->man[mem_type]; if (!man->has_type) continue; if (!ttm_bo_mt_compatible(man, bo->type == ttm_bo_type_user, mem_type, placement->busy_placement[i], &cur_flags)) continue; cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags); /* * Use the access and other non-mapping-related flag bits from * the memory placement flags to the current flags */ ttm_flag_masked(&cur_flags, placement->busy_placement[i], ~TTM_PL_MASK_MEMTYPE); ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, interruptible, no_wait); if (ret == 0 && mem->mm_node) { mem->placement = cur_flags; mem->mm_node->private = bo; return 0; } if (ret == -ERESTARTSYS) has_erestartsys = true; } ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; return ret; } EXPORT_SYMBOL(ttm_bo_mem_space); int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait) { if ((atomic_read(&bo->cpu_writers) > 0) && no_wait) return -EBUSY; return wait_event_interruptible(bo->event_queue, atomic_read(&bo->cpu_writers) == 0); } EXPORT_SYMBOL(ttm_bo_wait_cpu); int ttm_bo_move_buffer(struct ttm_buffer_object *bo, struct ttm_placement *placement, bool interruptible, bool no_wait) { struct ttm_bo_global *glob = bo->glob; int ret = 0; struct ttm_mem_reg mem; BUG_ON(!atomic_read(&bo->reserved)); /* * FIXME: It's possible to pipeline buffer moves. * Have the driver move function wait for idle when necessary, * instead of doing it here. */ spin_lock(&bo->lock); ret = ttm_bo_wait(bo, false, interruptible, no_wait); spin_unlock(&bo->lock); if (ret) return ret; mem.num_pages = bo->num_pages; mem.size = mem.num_pages << PAGE_SHIFT; mem.page_alignment = bo->mem.page_alignment; /* * Determine where to move the buffer. */ ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait); if (ret) goto out_unlock; ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait); out_unlock: if (ret && mem.mm_node) { spin_lock(&glob->lru_lock); mem.mm_node->private = NULL; drm_mm_put_block(mem.mm_node); spin_unlock(&glob->lru_lock); } return ret; } static int ttm_bo_mem_compat(struct ttm_placement *placement, struct ttm_mem_reg *mem) { int i; for (i = 0; i < placement->num_placement; i++) { if ((placement->placement[i] & mem->placement & TTM_PL_MASK_CACHING) && (placement->placement[i] & mem->placement & TTM_PL_MASK_MEM)) return i; } return -1; } int ttm_bo_validate(struct ttm_buffer_object *bo, struct ttm_placement *placement, bool interruptible, bool no_wait) { int ret; BUG_ON(!atomic_read(&bo->reserved)); /* Check that range is valid */ if (placement->lpfn || placement->fpfn) if (placement->fpfn > placement->lpfn || (placement->lpfn - placement->fpfn) < bo->num_pages) return -EINVAL; /* * Check whether we need to move buffer. */ ret = ttm_bo_mem_compat(placement, &bo->mem); if (ret < 0) { ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait); if (ret) return ret; } else { /* * Use the access and other non-mapping-related flag bits from * the compatible memory placement flags to the active flags */ ttm_flag_masked(&bo->mem.placement, placement->placement[ret], ~TTM_PL_MASK_MEMTYPE); } /* * We might need to add a TTM. */ if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { ret = ttm_bo_add_ttm(bo, true); if (ret) return ret; } return 0; } EXPORT_SYMBOL(ttm_bo_validate); int ttm_bo_check_placement(struct ttm_buffer_object *bo, struct ttm_placement *placement) { int i; if (placement->fpfn || placement->lpfn) { if (bo->mem.num_pages > (placement->lpfn - placement->fpfn)) { printk(KERN_ERR TTM_PFX "Page number range to small " "Need %lu pages, range is [%u, %u]\n", bo->mem.num_pages, placement->fpfn, placement->lpfn); return -EINVAL; } } for (i = 0; i < placement->num_placement; i++) { if (!capable(CAP_SYS_ADMIN)) { if (placement->placement[i] & TTM_PL_FLAG_NO_EVICT) { printk(KERN_ERR TTM_PFX "Need to be root to " "modify NO_EVICT status.\n"); return -EINVAL; } } } for (i = 0; i < placement->num_busy_placement; i++) { if (!capable(CAP_SYS_ADMIN)) { if (placement->busy_placement[i] & TTM_PL_FLAG_NO_EVICT) { printk(KERN_ERR TTM_PFX "Need to be root to " "modify NO_EVICT status.\n"); return -EINVAL; } } } return 0; } int ttm_bo_init(struct ttm_bo_device *bdev, struct ttm_buffer_object *bo, unsigned long size, enum ttm_bo_type type, struct ttm_placement *placement, uint32_t page_alignment, unsigned long buffer_start, bool interruptible, struct file *persistant_swap_storage, size_t acc_size, void (*destroy) (struct ttm_buffer_object *)) { int ret = 0; unsigned long num_pages; size += buffer_start & ~PAGE_MASK; num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; if (num_pages == 0) { printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n"); return -EINVAL; } bo->destroy = destroy; spin_lock_init(&bo->lock); kref_init(&bo->kref); kref_init(&bo->list_kref); atomic_set(&bo->cpu_writers, 0); atomic_set(&bo->reserved, 1); init_waitqueue_head(&bo->event_queue); INIT_LIST_HEAD(&bo->lru); INIT_LIST_HEAD(&bo->ddestroy); INIT_LIST_HEAD(&bo->swap); bo->bdev = bdev; bo->glob = bdev->glob; bo->type = type; bo->num_pages = num_pages; bo->mem.mem_type = TTM_PL_SYSTEM; bo->mem.num_pages = bo->num_pages; bo->mem.mm_node = NULL; bo->mem.page_alignment = page_alignment; bo->buffer_start = buffer_start & PAGE_MASK; bo->priv_flags = 0; bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); bo->seq_valid = false; bo->persistant_swap_storage = persistant_swap_storage; bo->acc_size = acc_size; atomic_inc(&bo->glob->bo_count); ret = ttm_bo_check_placement(bo, placement); if (unlikely(ret != 0)) goto out_err; /* * For ttm_bo_type_device buffers, allocate * address space from the device. */ if (bo->type == ttm_bo_type_device) { ret = ttm_bo_setup_vm(bo); if (ret) goto out_err; } ret = ttm_bo_validate(bo, placement, interruptible, false); if (ret) goto out_err; ttm_bo_unreserve(bo); return 0; out_err: ttm_bo_unreserve(bo); ttm_bo_unref(&bo); return ret; } EXPORT_SYMBOL(ttm_bo_init); static inline size_t ttm_bo_size(struct ttm_bo_global *glob, unsigned long num_pages) { size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) & PAGE_MASK; return glob->ttm_bo_size + 2 * page_array_size; } int ttm_bo_create(struct ttm_bo_device *bdev, unsigned long size, enum ttm_bo_type type, struct ttm_placement *placement, uint32_t page_alignment, unsigned long buffer_start, bool interruptible, struct file *persistant_swap_storage, struct ttm_buffer_object **p_bo) { struct ttm_buffer_object *bo; struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; int ret; size_t acc_size = ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); if (unlikely(ret != 0)) return ret; bo = kzalloc(sizeof(*bo), GFP_KERNEL); if (unlikely(bo == NULL)) { ttm_mem_global_free(mem_glob, acc_size); return -ENOMEM; } ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, buffer_start, interruptible, persistant_swap_storage, acc_size, NULL); if (likely(ret == 0)) *p_bo = bo; return ret; } static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, unsigned mem_type, bool allow_errors) { struct ttm_mem_type_manager *man = &bdev->man[mem_type]; struct ttm_bo_global *glob = bdev->glob; int ret; /* * Can't use standard list traversal since we're unlocking. */ spin_lock(&glob->lru_lock); while (!list_empty(&man->lru)) { spin_unlock(&glob->lru_lock); ret = ttm_mem_evict_first(bdev, mem_type, false, false); if (ret) { if (allow_errors) { return ret; } else { printk(KERN_ERR TTM_PFX "Cleanup eviction failed\n"); } } spin_lock(&glob->lru_lock); } spin_unlock(&glob->lru_lock); return 0; } int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) { struct ttm_bo_global *glob = bdev->glob; struct ttm_mem_type_manager *man; int ret = -EINVAL; if (mem_type >= TTM_NUM_MEM_TYPES) { printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type); return ret; } man = &bdev->man[mem_type]; if (!man->has_type) { printk(KERN_ERR TTM_PFX "Trying to take down uninitialized " "memory manager type %u\n", mem_type); return ret; } man->use_type = false; man->has_type = false; ret = 0; if (mem_type > 0) { ttm_bo_force_list_clean(bdev, mem_type, false); spin_lock(&glob->lru_lock); if (drm_mm_clean(&man->manager)) drm_mm_takedown(&man->manager); else ret = -EBUSY; spin_unlock(&glob->lru_lock); } return ret; } EXPORT_SYMBOL(ttm_bo_clean_mm); int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) { struct ttm_mem_type_manager *man = &bdev->man[mem_type]; if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { printk(KERN_ERR TTM_PFX "Illegal memory manager memory type %u.\n", mem_type); return -EINVAL; } if (!man->has_type) { printk(KERN_ERR TTM_PFX "Memory type %u has not been initialized.\n", mem_type); return 0; } return ttm_bo_force_list_clean(bdev, mem_type, true); } EXPORT_SYMBOL(ttm_bo_evict_mm); int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, unsigned long p_size) { int ret = -EINVAL; struct ttm_mem_type_manager *man; if (type >= TTM_NUM_MEM_TYPES) { printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", type); return ret; } man = &bdev->man[type]; if (man->has_type) { printk(KERN_ERR TTM_PFX "Memory manager already initialized for type %d\n", type); return ret; } ret = bdev->driver->init_mem_type(bdev, type, man); if (ret) return ret; ret = 0; if (type != TTM_PL_SYSTEM) { if (!p_size) { printk(KERN_ERR TTM_PFX "Zero size memory manager type %d\n", type); return ret; } ret = drm_mm_init(&man->manager, 0, p_size); if (ret) return ret; } man->has_type = true; man->use_type = true; man->size = p_size; INIT_LIST_HEAD(&man->lru); return 0; } EXPORT_SYMBOL(ttm_bo_init_mm); static void ttm_bo_global_kobj_release(struct kobject *kobj) { struct ttm_bo_global *glob = container_of(kobj, struct ttm_bo_global, kobj); ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); __free_page(glob->dummy_read_page); kfree(glob); } void ttm_bo_global_release(struct ttm_global_reference *ref) { struct ttm_bo_global *glob = ref->object; kobject_del(&glob->kobj); kobject_put(&glob->kobj); } EXPORT_SYMBOL(ttm_bo_global_release); int ttm_bo_global_init(struct ttm_global_reference *ref) { struct ttm_bo_global_ref *bo_ref = container_of(ref, struct ttm_bo_global_ref, ref); struct ttm_bo_global *glob = ref->object; int ret; mutex_init(&glob->device_list_mutex); spin_lock_init(&glob->lru_lock); glob->mem_glob = bo_ref->mem_glob; glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); if (unlikely(glob->dummy_read_page == NULL)) { ret = -ENOMEM; goto out_no_drp; } INIT_LIST_HEAD(&glob->swap_lru); INIT_LIST_HEAD(&glob->device_list); ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); if (unlikely(ret != 0)) { printk(KERN_ERR TTM_PFX "Could not register buffer object swapout.\n"); goto out_no_shrink; } glob->ttm_bo_extra_size = ttm_round_pot(sizeof(struct ttm_tt)) + ttm_round_pot(sizeof(struct ttm_backend)); glob->ttm_bo_size = glob->ttm_bo_extra_size + ttm_round_pot(sizeof(struct ttm_buffer_object)); atomic_set(&glob->bo_count, 0); kobject_init(&glob->kobj, &ttm_bo_glob_kobj_type); ret = kobject_add(&glob->kobj, ttm_get_kobj(), "buffer_objects"); if (unlikely(ret != 0)) kobject_put(&glob->kobj); return ret; out_no_shrink: __free_page(glob->dummy_read_page); out_no_drp: kfree(glob); return ret; } EXPORT_SYMBOL(ttm_bo_global_init); int ttm_bo_device_release(struct ttm_bo_device *bdev) { int ret = 0; unsigned i = TTM_NUM_MEM_TYPES; struct ttm_mem_type_manager *man; struct ttm_bo_global *glob = bdev->glob; while (i--) { man = &bdev->man[i]; if (man->has_type) { man->use_type = false; if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { ret = -EBUSY; printk(KERN_ERR TTM_PFX "DRM memory manager type %d " "is not clean.\n", i); } man->has_type = false; } } mutex_lock(&glob->device_list_mutex); list_del(&bdev->device_list); mutex_unlock(&glob->device_list_mutex); if (!cancel_delayed_work(&bdev->wq)) flush_scheduled_work(); while (ttm_bo_delayed_delete(bdev, true)) ; spin_lock(&glob->lru_lock); if (list_empty(&bdev->ddestroy)) TTM_DEBUG("Delayed destroy list was clean\n"); if (list_empty(&bdev->man[0].lru)) TTM_DEBUG("Swap list was clean\n"); spin_unlock(&glob->lru_lock); BUG_ON(!drm_mm_clean(&bdev->addr_space_mm)); write_lock(&bdev->vm_lock); drm_mm_takedown(&bdev->addr_space_mm); write_unlock(&bdev->vm_lock); return ret; } EXPORT_SYMBOL(ttm_bo_device_release); int ttm_bo_device_init(struct ttm_bo_device *bdev, struct ttm_bo_global *glob, struct ttm_bo_driver *driver, uint64_t file_page_offset, bool need_dma32) { int ret = -EINVAL; rwlock_init(&bdev->vm_lock); bdev->driver = driver; memset(bdev->man, 0, sizeof(bdev->man)); /* * Initialize the system memory buffer type. * Other types need to be driver / IOCTL initialized. */ ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); if (unlikely(ret != 0)) goto out_no_sys; bdev->addr_space_rb = RB_ROOT; ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); if (unlikely(ret != 0)) goto out_no_addr_mm; INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); bdev->nice_mode = true; INIT_LIST_HEAD(&bdev->ddestroy); bdev->dev_mapping = NULL; bdev->glob = glob; bdev->need_dma32 = need_dma32; mutex_lock(&glob->device_list_mutex); list_add_tail(&bdev->device_list, &glob->device_list); mutex_unlock(&glob->device_list_mutex); return 0; out_no_addr_mm: ttm_bo_clean_mm(bdev, 0); out_no_sys: return ret; } EXPORT_SYMBOL(ttm_bo_device_init); /* * buffer object vm functions. */ bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { if (mem->mem_type == TTM_PL_SYSTEM) return false; if (man->flags & TTM_MEMTYPE_FLAG_CMA) return false; if (mem->placement & TTM_PL_FLAG_CACHED) return false; } return true; } int ttm_bo_pci_offset(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, unsigned long *bus_base, unsigned long *bus_offset, unsigned long *bus_size) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; *bus_size = 0; if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) return -EINVAL; if (ttm_mem_reg_is_pci(bdev, mem)) { *bus_offset = mem->mm_node->start << PAGE_SHIFT; *bus_size = mem->num_pages << PAGE_SHIFT; *bus_base = man->io_offset; } return 0; } void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) { struct ttm_bo_device *bdev = bo->bdev; loff_t offset = (loff_t) bo->addr_space_offset; loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT; if (!bdev->dev_mapping) return; unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1); } EXPORT_SYMBOL(ttm_bo_unmap_virtual); static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) { struct ttm_bo_device *bdev = bo->bdev; struct rb_node **cur = &bdev->addr_space_rb.rb_node; struct rb_node *parent = NULL; struct ttm_buffer_object *cur_bo; unsigned long offset = bo->vm_node->start; unsigned long cur_offset; while (*cur) { parent = *cur; cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb); cur_offset = cur_bo->vm_node->start; if (offset < cur_offset) cur = &parent->rb_left; else if (offset > cur_offset) cur = &parent->rb_right; else BUG(); } rb_link_node(&bo->vm_rb, parent, cur); rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb); } /** * ttm_bo_setup_vm: * * @bo: the buffer to allocate address space for * * Allocate address space in the drm device so that applications * can mmap the buffer and access the contents. This only * applies to ttm_bo_type_device objects as others are not * placed in the drm device address space. */ static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) { struct ttm_bo_device *bdev = bo->bdev; int ret; retry_pre_get: ret = drm_mm_pre_get(&bdev->addr_space_mm); if (unlikely(ret != 0)) return ret; write_lock(&bdev->vm_lock); bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, bo->mem.num_pages, 0, 0); if (unlikely(bo->vm_node == NULL)) { ret = -ENOMEM; goto out_unlock; } bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, bo->mem.num_pages, 0); if (unlikely(bo->vm_node == NULL)) { write_unlock(&bdev->vm_lock); goto retry_pre_get; } ttm_bo_vm_insert_rb(bo); write_unlock(&bdev->vm_lock); bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; return 0; out_unlock: write_unlock(&bdev->vm_lock); return ret; } int ttm_bo_wait(struct ttm_buffer_object *bo, bool lazy, bool interruptible, bool no_wait) { struct ttm_bo_driver *driver = bo->bdev->driver; void *sync_obj; void *sync_obj_arg; int ret = 0; if (likely(bo->sync_obj == NULL)) return 0; while (bo->sync_obj) { if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) { void *tmp_obj = bo->sync_obj; bo->sync_obj = NULL; clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); spin_unlock(&bo->lock); driver->sync_obj_unref(&tmp_obj); spin_lock(&bo->lock); continue; } if (no_wait) return -EBUSY; sync_obj = driver->sync_obj_ref(bo->sync_obj); sync_obj_arg = bo->sync_obj_arg; spin_unlock(&bo->lock); ret = driver->sync_obj_wait(sync_obj, sync_obj_arg, lazy, interruptible); if (unlikely(ret != 0)) { driver->sync_obj_unref(&sync_obj); spin_lock(&bo->lock); return ret; } spin_lock(&bo->lock); if (likely(bo->sync_obj == sync_obj && bo->sync_obj_arg == sync_obj_arg)) { void *tmp_obj = bo->sync_obj; bo->sync_obj = NULL; clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); spin_unlock(&bo->lock); driver->sync_obj_unref(&sync_obj); driver->sync_obj_unref(&tmp_obj); spin_lock(&bo->lock); } else { spin_unlock(&bo->lock); driver->sync_obj_unref(&sync_obj); spin_lock(&bo->lock); } } return 0; } EXPORT_SYMBOL(ttm_bo_wait); void ttm_bo_unblock_reservation(struct ttm_buffer_object *bo) { atomic_set(&bo->reserved, 0); wake_up_all(&bo->event_queue); } int ttm_bo_block_reservation(struct ttm_buffer_object *bo, bool interruptible, bool no_wait) { int ret; while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) { if (no_wait) return -EBUSY; else if (interruptible) { ret = wait_event_interruptible (bo->event_queue, atomic_read(&bo->reserved) == 0); if (unlikely(ret != 0)) return ret; } else { wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0); } } return 0; } int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) { int ret = 0; /* * Using ttm_bo_reserve instead of ttm_bo_block_reservation * makes sure the lru lists are updated. */ ret = ttm_bo_reserve(bo, true, no_wait, false, 0); if (unlikely(ret != 0)) return ret; spin_lock(&bo->lock); ret = ttm_bo_wait(bo, false, true, no_wait); spin_unlock(&bo->lock); if (likely(ret == 0)) atomic_inc(&bo->cpu_writers); ttm_bo_unreserve(bo); return ret; } EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) { if (atomic_dec_and_test(&bo->cpu_writers)) wake_up_all(&bo->event_queue); } EXPORT_SYMBOL(ttm_bo_synccpu_write_release); /** * A buffer object shrink method that tries to swap out the first * buffer object on the bo_global::swap_lru list. */ static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) { struct ttm_bo_global *glob = container_of(shrink, struct ttm_bo_global, shrink); struct ttm_buffer_object *bo; int ret = -EBUSY; int put_count; uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); spin_lock(&glob->lru_lock); while (ret == -EBUSY) { if (unlikely(list_empty(&glob->swap_lru))) { spin_unlock(&glob->lru_lock); return -EBUSY; } bo = list_first_entry(&glob->swap_lru, struct ttm_buffer_object, swap); kref_get(&bo->list_kref); /** * Reserve buffer. Since we unlock while sleeping, we need * to re-check that nobody removed us from the swap-list while * we slept. */ ret = ttm_bo_reserve_locked(bo, false, true, false, 0); if (unlikely(ret == -EBUSY)) { spin_unlock(&glob->lru_lock); ttm_bo_wait_unreserved(bo, false); kref_put(&bo->list_kref, ttm_bo_release_list); spin_lock(&glob->lru_lock); } } BUG_ON(ret != 0); put_count = ttm_bo_del_from_lru(bo); spin_unlock(&glob->lru_lock); while (put_count--) kref_put(&bo->list_kref, ttm_bo_ref_bug); /** * Wait for GPU, then move to system cached. */ spin_lock(&bo->lock); ret = ttm_bo_wait(bo, false, false, false); spin_unlock(&bo->lock); if (unlikely(ret != 0)) goto out; if ((bo->mem.placement & swap_placement) != swap_placement) { struct ttm_mem_reg evict_mem; evict_mem = bo->mem; evict_mem.mm_node = NULL; evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; evict_mem.mem_type = TTM_PL_SYSTEM; ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, false, false); if (unlikely(ret != 0)) goto out; } ttm_bo_unmap_virtual(bo); /** * Swap out. Buffer will be swapped in again as soon as * anyone tries to access a ttm page. */ ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage); out: /** * * Unreserve without putting on LRU to avoid swapping out an * already swapped buffer. */ atomic_set(&bo->reserved, 0); wake_up_all(&bo->event_queue); kref_put(&bo->list_kref, ttm_bo_release_list); return ret; } void ttm_bo_swapout_all(struct ttm_bo_device *bdev) { while (ttm_bo_swapout(&bdev->glob->shrink) == 0) ; }