/*
    adm1021.c - Part of lm_sensors, Linux kernel modules for hardware
		monitoring
    Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl> and
    Philip Edelbrock <phil@netroedge.com>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>


/* Addresses to scan */
static const unsigned short normal_i2c[] = {
	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END };

/* Insmod parameters */
I2C_CLIENT_INSMOD_8(adm1021, adm1023, max1617, max1617a, thmc10, lm84, gl523sm,
			mc1066);

/* adm1021 constants specified below */

/* The adm1021 registers */
/* Read-only */
/* For nr in 0-1 */
#define ADM1021_REG_TEMP(nr)		(nr)
#define ADM1021_REG_STATUS		0x02
/* 0x41 = AD, 0x49 = TI, 0x4D = Maxim, 0x23 = Genesys , 0x54 = Onsemi */
#define ADM1021_REG_MAN_ID		0xFE
/* ADM1021 = 0x0X, ADM1023 = 0x3X */
#define ADM1021_REG_DEV_ID		0xFF
/* These use different addresses for reading/writing */
#define ADM1021_REG_CONFIG_R		0x03
#define ADM1021_REG_CONFIG_W		0x09
#define ADM1021_REG_CONV_RATE_R		0x04
#define ADM1021_REG_CONV_RATE_W		0x0A
/* These are for the ADM1023's additional precision on the remote temp sensor */
#define ADM1023_REG_REM_TEMP_PREC	0x10
#define ADM1023_REG_REM_OFFSET		0x11
#define ADM1023_REG_REM_OFFSET_PREC	0x12
#define ADM1023_REG_REM_TOS_PREC	0x13
#define ADM1023_REG_REM_THYST_PREC	0x14
/* limits */
/* For nr in 0-1 */
#define ADM1021_REG_TOS_R(nr)		(0x05 + 2 * (nr))
#define ADM1021_REG_TOS_W(nr)		(0x0B + 2 * (nr))
#define ADM1021_REG_THYST_R(nr)		(0x06 + 2 * (nr))
#define ADM1021_REG_THYST_W(nr)		(0x0C + 2 * (nr))
/* write-only */
#define ADM1021_REG_ONESHOT		0x0F

/* Initial values */

/* Note: Even though I left the low and high limits named os and hyst,
they don't quite work like a thermostat the way the LM75 does.  I.e.,
a lower temp than THYST actually triggers an alarm instead of
clearing it.  Weird, ey?   --Phil  */

/* Each client has this additional data */
struct adm1021_data {
	struct device *hwmon_dev;
	enum chips type;

	struct mutex update_lock;
	char valid;		/* !=0 if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	s8 temp_max[2];		/* Register values */
	s8 temp_min[2];
	s8 temp[2];
	u8 alarms;
	/* Special values for ADM1023 only */
	u8 remote_temp_prec;
	u8 remote_temp_os_prec;
	u8 remote_temp_hyst_prec;
	u8 remote_temp_offset;
	u8 remote_temp_offset_prec;
};

static int adm1021_probe(struct i2c_client *client,
			 const struct i2c_device_id *id);
static int adm1021_detect(struct i2c_client *client, int kind,
			  struct i2c_board_info *info);
static void adm1021_init_client(struct i2c_client *client);
static int adm1021_remove(struct i2c_client *client);
static struct adm1021_data *adm1021_update_device(struct device *dev);

/* (amalysh) read only mode, otherwise any limit's writing confuse BIOS */
static int read_only;


static const struct i2c_device_id adm1021_id[] = {
	{ "adm1021", adm1021 },
	{ "adm1023", adm1023 },
	{ "max1617", max1617 },
	{ "max1617a", max1617a },
	{ "thmc10", thmc10 },
	{ "lm84", lm84 },
	{ "gl523sm", gl523sm },
	{ "mc1066", mc1066 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, adm1021_id);

/* This is the driver that will be inserted */
static struct i2c_driver adm1021_driver = {
	.class		= I2C_CLASS_HWMON,
	.driver = {
		.name	= "adm1021",
	},
	.probe		= adm1021_probe,
	.remove		= adm1021_remove,
	.id_table	= adm1021_id,
	.detect		= adm1021_detect,
	.address_data	= &addr_data,
};

static ssize_t show_temp(struct device *dev,
			 struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct adm1021_data *data = adm1021_update_device(dev);

	return sprintf(buf, "%d\n", 1000 * data->temp[index]);
}

static ssize_t show_temp_max(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct adm1021_data *data = adm1021_update_device(dev);

	return sprintf(buf, "%d\n", 1000 * data->temp_max[index]);
}

static ssize_t show_temp_min(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct adm1021_data *data = adm1021_update_device(dev);

	return sprintf(buf, "%d\n", 1000 * data->temp_min[index]);
}

static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	int index = to_sensor_dev_attr(attr)->index;
	struct adm1021_data *data = adm1021_update_device(dev);
	return sprintf(buf, "%u\n", (data->alarms >> index) & 1);
}

static ssize_t show_alarms(struct device *dev,
			   struct device_attribute *attr,
			   char *buf)
{
	struct adm1021_data *data = adm1021_update_device(dev);
	return sprintf(buf, "%u\n", data->alarms);
}

static ssize_t set_temp_max(struct device *dev,
			    struct device_attribute *devattr,
			    const char *buf, size_t count)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct i2c_client *client = to_i2c_client(dev);
	struct adm1021_data *data = i2c_get_clientdata(client);
	long temp = simple_strtol(buf, NULL, 10) / 1000;

	mutex_lock(&data->update_lock);
	data->temp_max[index] = SENSORS_LIMIT(temp, -128, 127);
	if (!read_only)
		i2c_smbus_write_byte_data(client, ADM1021_REG_TOS_W(index),
					  data->temp_max[index]);
	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t set_temp_min(struct device *dev,
			    struct device_attribute *devattr,
			    const char *buf, size_t count)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct i2c_client *client = to_i2c_client(dev);
	struct adm1021_data *data = i2c_get_clientdata(client);
	long temp = simple_strtol(buf, NULL, 10) / 1000;

	mutex_lock(&data->update_lock);
	data->temp_min[index] = SENSORS_LIMIT(temp, -128, 127);
	if (!read_only)
		i2c_smbus_write_byte_data(client, ADM1021_REG_THYST_W(index),
					  data->temp_min[index]);
	mutex_unlock(&data->update_lock);

	return count;
}

static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_max,
			  set_temp_max, 0);
static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp_min,
			  set_temp_min, 0);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp_max,
			  set_temp_max, 1);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp_min,
			  set_temp_min, 1);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);

static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);

static struct attribute *adm1021_attributes[] = {
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_min.dev_attr.attr,
	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp2_max.dev_attr.attr,
	&sensor_dev_attr_temp2_min.dev_attr.attr,
	&sensor_dev_attr_temp2_input.dev_attr.attr,
	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_fault.dev_attr.attr,
	&dev_attr_alarms.attr,
	NULL
};

static const struct attribute_group adm1021_group = {
	.attrs = adm1021_attributes,
};

/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm1021_detect(struct i2c_client *client, int kind,
			  struct i2c_board_info *info)
{
	struct i2c_adapter *adapter = client->adapter;
	int i;
	const char *type_name = "";
	int conv_rate, status, config;

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
		pr_debug("adm1021: detect failed, "
			 "smbus byte data not supported!\n");
		return -ENODEV;
	}

	status = i2c_smbus_read_byte_data(client, ADM1021_REG_STATUS);
	conv_rate = i2c_smbus_read_byte_data(client,
					     ADM1021_REG_CONV_RATE_R);
	config = i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R);

	/* Now, we do the remaining detection. */
	if (kind < 0) {
		if ((status & 0x03) != 0x00 || (config & 0x3F) != 0x00
		    || (conv_rate & 0xF8) != 0x00) {
			pr_debug("adm1021: detect failed, "
				 "chip not detected!\n");
			return -ENODEV;
		}
	}

	/* Determine the chip type. */
	if (kind <= 0) {
		i = i2c_smbus_read_byte_data(client, ADM1021_REG_MAN_ID);
		if (i == 0x41)
			if ((i2c_smbus_read_byte_data(client,
					ADM1021_REG_DEV_ID) & 0xF0) == 0x30)
				kind = adm1023;
			else
				kind = adm1021;
		else if (i == 0x49)
			kind = thmc10;
		else if (i == 0x23)
			kind = gl523sm;
		else if ((i == 0x4d) &&
			 (i2c_smbus_read_byte_data(client,
						   ADM1021_REG_DEV_ID) == 0x01))
			kind = max1617a;
		else if (i == 0x54)
			kind = mc1066;
		/* LM84 Mfr ID in a different place, and it has more unused bits */
		else if (conv_rate == 0x00
			 && (kind == 0 /* skip extra detection */
			     || ((config & 0x7F) == 0x00
				 && (status & 0xAB) == 0x00)))
			kind = lm84;
		else
			kind = max1617;
	}

	if (kind == max1617) {
		type_name = "max1617";
	} else if (kind == max1617a) {
		type_name = "max1617a";
	} else if (kind == adm1021) {
		type_name = "adm1021";
	} else if (kind == adm1023) {
		type_name = "adm1023";
	} else if (kind == thmc10) {
		type_name = "thmc10";
	} else if (kind == lm84) {
		type_name = "lm84";
	} else if (kind == gl523sm) {
		type_name = "gl523sm";
	} else if (kind == mc1066) {
		type_name = "mc1066";
	}
	pr_debug("adm1021: Detected chip %s at adapter %d, address 0x%02x.\n",
		 type_name, i2c_adapter_id(adapter), client->addr);
	strlcpy(info->type, type_name, I2C_NAME_SIZE);

	return 0;
}

static int adm1021_probe(struct i2c_client *client,
			 const struct i2c_device_id *id)
{
	struct adm1021_data *data;
	int err;

	data = kzalloc(sizeof(struct adm1021_data), GFP_KERNEL);
	if (!data) {
		pr_debug("adm1021: detect failed, kzalloc failed!\n");
		err = -ENOMEM;
		goto error0;
	}

	i2c_set_clientdata(client, data);
	data->type = id->driver_data;
	mutex_init(&data->update_lock);

	/* Initialize the ADM1021 chip */
	if (data->type != lm84 && !read_only)
		adm1021_init_client(client);

	/* Register sysfs hooks */
	if ((err = sysfs_create_group(&client->dev.kobj, &adm1021_group)))
		goto error1;

	data->hwmon_dev = hwmon_device_register(&client->dev);
	if (IS_ERR(data->hwmon_dev)) {
		err = PTR_ERR(data->hwmon_dev);
		goto error3;
	}

	return 0;

error3:
	sysfs_remove_group(&client->dev.kobj, &adm1021_group);
error1:
	kfree(data);
error0:
	return err;
}

static void adm1021_init_client(struct i2c_client *client)
{
	/* Enable ADC and disable suspend mode */
	i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W,
		i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R) & 0xBF);
	/* Set Conversion rate to 1/sec (this can be tinkered with) */
	i2c_smbus_write_byte_data(client, ADM1021_REG_CONV_RATE_W, 0x04);
}

static int adm1021_remove(struct i2c_client *client)
{
	struct adm1021_data *data = i2c_get_clientdata(client);

	hwmon_device_unregister(data->hwmon_dev);
	sysfs_remove_group(&client->dev.kobj, &adm1021_group);

	kfree(data);
	return 0;
}

static struct adm1021_data *adm1021_update_device(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct adm1021_data *data = i2c_get_clientdata(client);

	mutex_lock(&data->update_lock);

	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
	    || !data->valid) {
		int i;

		dev_dbg(&client->dev, "Starting adm1021 update\n");

		for (i = 0; i < 2; i++) {
			data->temp[i] = i2c_smbus_read_byte_data(client,
						ADM1021_REG_TEMP(i));
			data->temp_max[i] = i2c_smbus_read_byte_data(client,
						ADM1021_REG_TOS_R(i));
			data->temp_min[i] = i2c_smbus_read_byte_data(client,
						ADM1021_REG_THYST_R(i));
		}
		data->alarms = i2c_smbus_read_byte_data(client,
						ADM1021_REG_STATUS) & 0x7c;
		if (data->type == adm1023) {
			data->remote_temp_prec =
				i2c_smbus_read_byte_data(client,
						ADM1023_REG_REM_TEMP_PREC);
			data->remote_temp_os_prec =
				i2c_smbus_read_byte_data(client,
						ADM1023_REG_REM_TOS_PREC);
			data->remote_temp_hyst_prec =
				i2c_smbus_read_byte_data(client,
						ADM1023_REG_REM_THYST_PREC);
			data->remote_temp_offset =
				i2c_smbus_read_byte_data(client,
						ADM1023_REG_REM_OFFSET);
			data->remote_temp_offset_prec =
				i2c_smbus_read_byte_data(client,
						ADM1023_REG_REM_OFFSET_PREC);
		}
		data->last_updated = jiffies;
		data->valid = 1;
	}

	mutex_unlock(&data->update_lock);

	return data;
}

static int __init sensors_adm1021_init(void)
{
	return i2c_add_driver(&adm1021_driver);
}

static void __exit sensors_adm1021_exit(void)
{
	i2c_del_driver(&adm1021_driver);
}

MODULE_AUTHOR ("Frodo Looijaard <frodol@dds.nl> and "
		"Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("adm1021 driver");
MODULE_LICENSE("GPL");

module_param(read_only, bool, 0);
MODULE_PARM_DESC(read_only, "Don't set any values, read only mode");

module_init(sensors_adm1021_init)
module_exit(sensors_adm1021_exit)