/* adm1026.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Copyright (C) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com> Copyright (C) 2004 Justin Thiessen <jthiessen@penguincomputing.com> Chip details at: <http://www.analog.com/UploadedFiles/Data_Sheets/779263102ADM1026_a.pdf> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; /* Insmod parameters */ I2C_CLIENT_INSMOD_1(adm1026); static int gpio_input[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static int gpio_output[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static int gpio_inverted[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static int gpio_normal[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static int gpio_fan[8] = { -1, -1, -1, -1, -1, -1, -1, -1 }; module_param_array(gpio_input,int,NULL,0); MODULE_PARM_DESC(gpio_input,"List of GPIO pins (0-16) to program as inputs"); module_param_array(gpio_output,int,NULL,0); MODULE_PARM_DESC(gpio_output,"List of GPIO pins (0-16) to program as " "outputs"); module_param_array(gpio_inverted,int,NULL,0); MODULE_PARM_DESC(gpio_inverted,"List of GPIO pins (0-16) to program as " "inverted"); module_param_array(gpio_normal,int,NULL,0); MODULE_PARM_DESC(gpio_normal,"List of GPIO pins (0-16) to program as " "normal/non-inverted"); module_param_array(gpio_fan,int,NULL,0); MODULE_PARM_DESC(gpio_fan,"List of GPIO pins (0-7) to program as fan tachs"); /* Many ADM1026 constants specified below */ /* The ADM1026 registers */ #define ADM1026_REG_CONFIG1 0x00 #define CFG1_MONITOR 0x01 #define CFG1_INT_ENABLE 0x02 #define CFG1_INT_CLEAR 0x04 #define CFG1_AIN8_9 0x08 #define CFG1_THERM_HOT 0x10 #define CFG1_DAC_AFC 0x20 #define CFG1_PWM_AFC 0x40 #define CFG1_RESET 0x80 #define ADM1026_REG_CONFIG2 0x01 /* CONFIG2 controls FAN0/GPIO0 through FAN7/GPIO7 */ #define ADM1026_REG_CONFIG3 0x07 #define CFG3_GPIO16_ENABLE 0x01 #define CFG3_CI_CLEAR 0x02 #define CFG3_VREF_250 0x04 #define CFG3_GPIO16_DIR 0x40 #define CFG3_GPIO16_POL 0x80 #define ADM1026_REG_E2CONFIG 0x13 #define E2CFG_READ 0x01 #define E2CFG_WRITE 0x02 #define E2CFG_ERASE 0x04 #define E2CFG_ROM 0x08 #define E2CFG_CLK_EXT 0x80 /* There are 10 general analog inputs and 7 dedicated inputs * They are: * 0 - 9 = AIN0 - AIN9 * 10 = Vbat * 11 = 3.3V Standby * 12 = 3.3V Main * 13 = +5V * 14 = Vccp (CPU core voltage) * 15 = +12V * 16 = -12V */ static u16 ADM1026_REG_IN[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x27, 0x29, 0x26, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f }; static u16 ADM1026_REG_IN_MIN[] = { 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x6d, 0x49, 0x6b, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f }; static u16 ADM1026_REG_IN_MAX[] = { 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x6c, 0x41, 0x6a, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47 }; /* Temperatures are: * 0 - Internal * 1 - External 1 * 2 - External 2 */ static u16 ADM1026_REG_TEMP[] = { 0x1f, 0x28, 0x29 }; static u16 ADM1026_REG_TEMP_MIN[] = { 0x69, 0x48, 0x49 }; static u16 ADM1026_REG_TEMP_MAX[] = { 0x68, 0x40, 0x41 }; static u16 ADM1026_REG_TEMP_TMIN[] = { 0x10, 0x11, 0x12 }; static u16 ADM1026_REG_TEMP_THERM[] = { 0x0d, 0x0e, 0x0f }; static u16 ADM1026_REG_TEMP_OFFSET[] = { 0x1e, 0x6e, 0x6f }; #define ADM1026_REG_FAN(nr) (0x38 + (nr)) #define ADM1026_REG_FAN_MIN(nr) (0x60 + (nr)) #define ADM1026_REG_FAN_DIV_0_3 0x02 #define ADM1026_REG_FAN_DIV_4_7 0x03 #define ADM1026_REG_DAC 0x04 #define ADM1026_REG_PWM 0x05 #define ADM1026_REG_GPIO_CFG_0_3 0x08 #define ADM1026_REG_GPIO_CFG_4_7 0x09 #define ADM1026_REG_GPIO_CFG_8_11 0x0a #define ADM1026_REG_GPIO_CFG_12_15 0x0b /* CFG_16 in REG_CFG3 */ #define ADM1026_REG_GPIO_STATUS_0_7 0x24 #define ADM1026_REG_GPIO_STATUS_8_15 0x25 /* STATUS_16 in REG_STATUS4 */ #define ADM1026_REG_GPIO_MASK_0_7 0x1c #define ADM1026_REG_GPIO_MASK_8_15 0x1d /* MASK_16 in REG_MASK4 */ #define ADM1026_REG_COMPANY 0x16 #define ADM1026_REG_VERSTEP 0x17 /* These are the recognized values for the above regs */ #define ADM1026_COMPANY_ANALOG_DEV 0x41 #define ADM1026_VERSTEP_GENERIC 0x40 #define ADM1026_VERSTEP_ADM1026 0x44 #define ADM1026_REG_MASK1 0x18 #define ADM1026_REG_MASK2 0x19 #define ADM1026_REG_MASK3 0x1a #define ADM1026_REG_MASK4 0x1b #define ADM1026_REG_STATUS1 0x20 #define ADM1026_REG_STATUS2 0x21 #define ADM1026_REG_STATUS3 0x22 #define ADM1026_REG_STATUS4 0x23 #define ADM1026_FAN_ACTIVATION_TEMP_HYST -6 #define ADM1026_FAN_CONTROL_TEMP_RANGE 20 #define ADM1026_PWM_MAX 255 /* Conversions. Rounding and limit checking is only done on the TO_REG * variants. Note that you should be a bit careful with which arguments * these macros are called: arguments may be evaluated more than once. */ /* IN are scaled acording to built-in resistors. These are the * voltages corresponding to 3/4 of full scale (192 or 0xc0) * NOTE: The -12V input needs an additional factor to account * for the Vref pullup resistor. * NEG12_OFFSET = SCALE * Vref / V-192 - Vref * = 13875 * 2.50 / 1.875 - 2500 * = 16000 * * The values in this table are based on Table II, page 15 of the * datasheet. */ static int adm1026_scaling[] = { /* .001 Volts */ 2250, 2250, 2250, 2250, 2250, 2250, 1875, 1875, 1875, 1875, 3000, 3330, 3330, 4995, 2250, 12000, 13875 }; #define NEG12_OFFSET 16000 #define SCALE(val,from,to) (((val)*(to) + ((from)/2))/(from)) #define INS_TO_REG(n,val) (SENSORS_LIMIT(SCALE(val,adm1026_scaling[n],192),\ 0,255)) #define INS_FROM_REG(n,val) (SCALE(val,192,adm1026_scaling[n])) /* FAN speed is measured using 22.5kHz clock and counts for 2 pulses * and we assume a 2 pulse-per-rev fan tach signal * 22500 kHz * 60 (sec/min) * 2 (pulse) / 2 (pulse/rev) == 1350000 */ #define FAN_TO_REG(val,div) ((val)<=0 ? 0xff : SENSORS_LIMIT(1350000/((val)*\ (div)),1,254)) #define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==0xff ? 0 : 1350000/((val)*\ (div))) #define DIV_FROM_REG(val) (1<<(val)) #define DIV_TO_REG(val) ((val)>=8 ? 3 : (val)>=4 ? 2 : (val)>=2 ? 1 : 0) /* Temperature is reported in 1 degC increments */ #define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)+((val)<0 ? -500 : 500))/1000,\ -127,127)) #define TEMP_FROM_REG(val) ((val) * 1000) #define OFFSET_TO_REG(val) (SENSORS_LIMIT(((val)+((val)<0 ? -500 : 500))/1000,\ -127,127)) #define OFFSET_FROM_REG(val) ((val) * 1000) #define PWM_TO_REG(val) (SENSORS_LIMIT(val,0,255)) #define PWM_FROM_REG(val) (val) #define PWM_MIN_TO_REG(val) ((val) & 0xf0) #define PWM_MIN_FROM_REG(val) (((val) & 0xf0) + ((val) >> 4)) /* Analog output is a voltage, and scaled to millivolts. The datasheet * indicates that the DAC could be used to drive the fans, but in our * example board (Arima HDAMA) it isn't connected to the fans at all. */ #define DAC_TO_REG(val) (SENSORS_LIMIT(((((val)*255)+500)/2500),0,255)) #define DAC_FROM_REG(val) (((val)*2500)/255) /* Typically used with systems using a v9.1 VRM spec ? */ #define ADM1026_INIT_VRM 91 /* Chip sampling rates * * Some sensors are not updated more frequently than once per second * so it doesn't make sense to read them more often than that. * We cache the results and return the saved data if the driver * is called again before a second has elapsed. * * Also, there is significant configuration data for this chip * So, we keep the config data up to date in the cache * when it is written and only sample it once every 5 *minutes* */ #define ADM1026_DATA_INTERVAL (1 * HZ) #define ADM1026_CONFIG_INTERVAL (5 * 60 * HZ) /* We allow for multiple chips in a single system. * * For each registered ADM1026, we need to keep state information * at client->data. The adm1026_data structure is dynamically * allocated, when a new client structure is allocated. */ struct pwm_data { u8 pwm; u8 enable; u8 auto_pwm_min; }; struct adm1026_data { struct i2c_client client; struct class_device *class_dev; enum chips type; struct mutex update_lock; int valid; /* !=0 if following fields are valid */ unsigned long last_reading; /* In jiffies */ unsigned long last_config; /* In jiffies */ u8 in[17]; /* Register value */ u8 in_max[17]; /* Register value */ u8 in_min[17]; /* Register value */ s8 temp[3]; /* Register value */ s8 temp_min[3]; /* Register value */ s8 temp_max[3]; /* Register value */ s8 temp_tmin[3]; /* Register value */ s8 temp_crit[3]; /* Register value */ s8 temp_offset[3]; /* Register value */ u8 fan[8]; /* Register value */ u8 fan_min[8]; /* Register value */ u8 fan_div[8]; /* Decoded value */ struct pwm_data pwm1; /* Pwm control values */ int vid; /* Decoded value */ u8 vrm; /* VRM version */ u8 analog_out; /* Register value (DAC) */ long alarms; /* Register encoding, combined */ long alarm_mask; /* Register encoding, combined */ long gpio; /* Register encoding, combined */ long gpio_mask; /* Register encoding, combined */ u8 gpio_config[17]; /* Decoded value */ u8 config1; /* Register value */ u8 config2; /* Register value */ u8 config3; /* Register value */ }; static int adm1026_attach_adapter(struct i2c_adapter *adapter); static int adm1026_detect(struct i2c_adapter *adapter, int address, int kind); static int adm1026_detach_client(struct i2c_client *client); static int adm1026_read_value(struct i2c_client *client, u8 reg); static int adm1026_write_value(struct i2c_client *client, u8 reg, int value); static void adm1026_print_gpio(struct i2c_client *client); static void adm1026_fixup_gpio(struct i2c_client *client); static struct adm1026_data *adm1026_update_device(struct device *dev); static void adm1026_init_client(struct i2c_client *client); static struct i2c_driver adm1026_driver = { .driver = { .name = "adm1026", }, .attach_adapter = adm1026_attach_adapter, .detach_client = adm1026_detach_client, }; static int adm1026_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) { return 0; } return i2c_probe(adapter, &addr_data, adm1026_detect); } static int adm1026_read_value(struct i2c_client *client, u8 reg) { int res; if (reg < 0x80) { /* "RAM" locations */ res = i2c_smbus_read_byte_data(client, reg) & 0xff; } else { /* EEPROM, do nothing */ res = 0; } return res; } static int adm1026_write_value(struct i2c_client *client, u8 reg, int value) { int res; if (reg < 0x80) { /* "RAM" locations */ res = i2c_smbus_write_byte_data(client, reg, value); } else { /* EEPROM, do nothing */ res = 0; } return res; } static void adm1026_init_client(struct i2c_client *client) { int value, i; struct adm1026_data *data = i2c_get_clientdata(client); dev_dbg(&client->dev, "Initializing device\n"); /* Read chip config */ data->config1 = adm1026_read_value(client, ADM1026_REG_CONFIG1); data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2); data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3); /* Inform user of chip config */ dev_dbg(&client->dev, "ADM1026_REG_CONFIG1 is: 0x%02x\n", data->config1); if ((data->config1 & CFG1_MONITOR) == 0) { dev_dbg(&client->dev, "Monitoring not currently " "enabled.\n"); } if (data->config1 & CFG1_INT_ENABLE) { dev_dbg(&client->dev, "SMBALERT interrupts are " "enabled.\n"); } if (data->config1 & CFG1_AIN8_9) { dev_dbg(&client->dev, "in8 and in9 enabled. " "temp3 disabled.\n"); } else { dev_dbg(&client->dev, "temp3 enabled. in8 and " "in9 disabled.\n"); } if (data->config1 & CFG1_THERM_HOT) { dev_dbg(&client->dev, "Automatic THERM, PWM, " "and temp limits enabled.\n"); } value = data->config3; if (data->config3 & CFG3_GPIO16_ENABLE) { dev_dbg(&client->dev, "GPIO16 enabled. THERM " "pin disabled.\n"); } else { dev_dbg(&client->dev, "THERM pin enabled. " "GPIO16 disabled.\n"); } if (data->config3 & CFG3_VREF_250) { dev_dbg(&client->dev, "Vref is 2.50 Volts.\n"); } else { dev_dbg(&client->dev, "Vref is 1.82 Volts.\n"); } /* Read and pick apart the existing GPIO configuration */ value = 0; for (i = 0;i <= 15;++i) { if ((i & 0x03) == 0) { value = adm1026_read_value(client, ADM1026_REG_GPIO_CFG_0_3 + i/4); } data->gpio_config[i] = value & 0x03; value >>= 2; } data->gpio_config[16] = (data->config3 >> 6) & 0x03; /* ... and then print it */ adm1026_print_gpio(client); /* If the user asks us to reprogram the GPIO config, then * do it now. */ if (gpio_input[0] != -1 || gpio_output[0] != -1 || gpio_inverted[0] != -1 || gpio_normal[0] != -1 || gpio_fan[0] != -1) { adm1026_fixup_gpio(client); } /* WE INTENTIONALLY make no changes to the limits, * offsets, pwms, fans and zones. If they were * configured, we don't want to mess with them. * If they weren't, the default is 100% PWM, no * control and will suffice until 'sensors -s' * can be run by the user. We DO set the default * value for pwm1.auto_pwm_min to its maximum * so that enabling automatic pwm fan control * without first setting a value for pwm1.auto_pwm_min * will not result in potentially dangerous fan speed decrease. */ data->pwm1.auto_pwm_min=255; /* Start monitoring */ value = adm1026_read_value(client, ADM1026_REG_CONFIG1); /* Set MONITOR, clear interrupt acknowledge and s/w reset */ value = (value | CFG1_MONITOR) & (~CFG1_INT_CLEAR & ~CFG1_RESET); dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value); data->config1 = value; adm1026_write_value(client, ADM1026_REG_CONFIG1, value); /* initialize fan_div[] to hardware defaults */ value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3) | (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7) << 8); for (i = 0;i <= 7;++i) { data->fan_div[i] = DIV_FROM_REG(value & 0x03); value >>= 2; } } static void adm1026_print_gpio(struct i2c_client *client) { struct adm1026_data *data = i2c_get_clientdata(client); int i; dev_dbg(&client->dev, "GPIO config is:"); for (i = 0;i <= 7;++i) { if (data->config2 & (1 << i)) { dev_dbg(&client->dev, "\t%sGP%s%d\n", data->gpio_config[i] & 0x02 ? "" : "!", data->gpio_config[i] & 0x01 ? "OUT" : "IN", i); } else { dev_dbg(&client->dev, "\tFAN%d\n", i); } } for (i = 8;i <= 15;++i) { dev_dbg(&client->dev, "\t%sGP%s%d\n", data->gpio_config[i] & 0x02 ? "" : "!", data->gpio_config[i] & 0x01 ? "OUT" : "IN", i); } if (data->config3 & CFG3_GPIO16_ENABLE) { dev_dbg(&client->dev, "\t%sGP%s16\n", data->gpio_config[16] & 0x02 ? "" : "!", data->gpio_config[16] & 0x01 ? "OUT" : "IN"); } else { /* GPIO16 is THERM */ dev_dbg(&client->dev, "\tTHERM\n"); } } static void adm1026_fixup_gpio(struct i2c_client *client) { struct adm1026_data *data = i2c_get_clientdata(client); int i; int value; /* Make the changes requested. */ /* We may need to unlock/stop monitoring or soft-reset the * chip before we can make changes. This hasn't been * tested much. FIXME */ /* Make outputs */ for (i = 0;i <= 16;++i) { if (gpio_output[i] >= 0 && gpio_output[i] <= 16) { data->gpio_config[gpio_output[i]] |= 0x01; } /* if GPIO0-7 is output, it isn't a FAN tach */ if (gpio_output[i] >= 0 && gpio_output[i] <= 7) { data->config2 |= 1 << gpio_output[i]; } } /* Input overrides output */ for (i = 0;i <= 16;++i) { if (gpio_input[i] >= 0 && gpio_input[i] <= 16) { data->gpio_config[gpio_input[i]] &= ~ 0x01; } /* if GPIO0-7 is input, it isn't a FAN tach */ if (gpio_input[i] >= 0 && gpio_input[i] <= 7) { data->config2 |= 1 << gpio_input[i]; } } /* Inverted */ for (i = 0;i <= 16;++i) { if (gpio_inverted[i] >= 0 && gpio_inverted[i] <= 16) { data->gpio_config[gpio_inverted[i]] &= ~ 0x02; } } /* Normal overrides inverted */ for (i = 0;i <= 16;++i) { if (gpio_normal[i] >= 0 && gpio_normal[i] <= 16) { data->gpio_config[gpio_normal[i]] |= 0x02; } } /* Fan overrides input and output */ for (i = 0;i <= 7;++i) { if (gpio_fan[i] >= 0 && gpio_fan[i] <= 7) { data->config2 &= ~(1 << gpio_fan[i]); } } /* Write new configs to registers */ adm1026_write_value(client, ADM1026_REG_CONFIG2, data->config2); data->config3 = (data->config3 & 0x3f) | ((data->gpio_config[16] & 0x03) << 6); adm1026_write_value(client, ADM1026_REG_CONFIG3, data->config3); for (i = 15, value = 0;i >= 0;--i) { value <<= 2; value |= data->gpio_config[i] & 0x03; if ((i & 0x03) == 0) { adm1026_write_value(client, ADM1026_REG_GPIO_CFG_0_3 + i/4, value); value = 0; } } /* Print the new config */ adm1026_print_gpio(client); } static struct adm1026_data *adm1026_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int i; long value, alarms, gpio; mutex_lock(&data->update_lock); if (!data->valid || time_after(jiffies, data->last_reading + ADM1026_DATA_INTERVAL)) { /* Things that change quickly */ dev_dbg(&client->dev,"Reading sensor values\n"); for (i = 0;i <= 16;++i) { data->in[i] = adm1026_read_value(client, ADM1026_REG_IN[i]); } for (i = 0;i <= 7;++i) { data->fan[i] = adm1026_read_value(client, ADM1026_REG_FAN(i)); } for (i = 0;i <= 2;++i) { /* NOTE: temp[] is s8 and we assume 2's complement * "conversion" in the assignment */ data->temp[i] = adm1026_read_value(client, ADM1026_REG_TEMP[i]); } data->pwm1.pwm = adm1026_read_value(client, ADM1026_REG_PWM); data->analog_out = adm1026_read_value(client, ADM1026_REG_DAC); /* GPIO16 is MSbit of alarms, move it to gpio */ alarms = adm1026_read_value(client, ADM1026_REG_STATUS4); gpio = alarms & 0x80 ? 0x0100 : 0; /* GPIO16 */ alarms &= 0x7f; alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_STATUS3); alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_STATUS2); alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_STATUS1); data->alarms = alarms; /* Read the GPIO values */ gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_STATUS_8_15); gpio <<= 8; gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_STATUS_0_7); data->gpio = gpio; data->last_reading = jiffies; }; /* last_reading */ if (!data->valid || time_after(jiffies, data->last_config + ADM1026_CONFIG_INTERVAL)) { /* Things that don't change often */ dev_dbg(&client->dev, "Reading config values\n"); for (i = 0;i <= 16;++i) { data->in_min[i] = adm1026_read_value(client, ADM1026_REG_IN_MIN[i]); data->in_max[i] = adm1026_read_value(client, ADM1026_REG_IN_MAX[i]); } value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3) | (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7) << 8); for (i = 0;i <= 7;++i) { data->fan_min[i] = adm1026_read_value(client, ADM1026_REG_FAN_MIN(i)); data->fan_div[i] = DIV_FROM_REG(value & 0x03); value >>= 2; } for (i = 0; i <= 2; ++i) { /* NOTE: temp_xxx[] are s8 and we assume 2's * complement "conversion" in the assignment */ data->temp_min[i] = adm1026_read_value(client, ADM1026_REG_TEMP_MIN[i]); data->temp_max[i] = adm1026_read_value(client, ADM1026_REG_TEMP_MAX[i]); data->temp_tmin[i] = adm1026_read_value(client, ADM1026_REG_TEMP_TMIN[i]); data->temp_crit[i] = adm1026_read_value(client, ADM1026_REG_TEMP_THERM[i]); data->temp_offset[i] = adm1026_read_value(client, ADM1026_REG_TEMP_OFFSET[i]); } /* Read the STATUS/alarm masks */ alarms = adm1026_read_value(client, ADM1026_REG_MASK4); gpio = alarms & 0x80 ? 0x0100 : 0; /* GPIO16 */ alarms = (alarms & 0x7f) << 8; alarms |= adm1026_read_value(client, ADM1026_REG_MASK3); alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_MASK2); alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_MASK1); data->alarm_mask = alarms; /* Read the GPIO values */ gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_8_15); gpio <<= 8; gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_0_7); data->gpio_mask = gpio; /* Read various values from CONFIG1 */ data->config1 = adm1026_read_value(client, ADM1026_REG_CONFIG1); if (data->config1 & CFG1_PWM_AFC) { data->pwm1.enable = 2; data->pwm1.auto_pwm_min = PWM_MIN_FROM_REG(data->pwm1.pwm); } /* Read the GPIO config */ data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2); data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3); data->gpio_config[16] = (data->config3 >> 6) & 0x03; value = 0; for (i = 0;i <= 15;++i) { if ((i & 0x03) == 0) { value = adm1026_read_value(client, ADM1026_REG_GPIO_CFG_0_3 + i/4); } data->gpio_config[i] = value & 0x03; value >>= 2; } data->last_config = jiffies; }; /* last_config */ dev_dbg(&client->dev, "Setting VID from GPIO11-15.\n"); data->vid = (data->gpio >> 11) & 0x1f; data->valid = 1; mutex_unlock(&data->update_lock); return data; } static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in[nr])); } static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_min[nr])); } static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_min[nr] = INS_TO_REG(nr, val); adm1026_write_value(client, ADM1026_REG_IN_MIN[nr], data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_max[nr])); } static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_max[nr] = INS_TO_REG(nr, val); adm1026_write_value(client, ADM1026_REG_IN_MAX[nr], data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } #define in_reg(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in, \ NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in_max, set_in_max, offset); in_reg(0); in_reg(1); in_reg(2); in_reg(3); in_reg(4); in_reg(5); in_reg(6); in_reg(7); in_reg(8); in_reg(9); in_reg(10); in_reg(11); in_reg(12); in_reg(13); in_reg(14); in_reg(15); static ssize_t show_in16(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in[16]) - NEG12_OFFSET); } static ssize_t show_in16_min(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in_min[16]) - NEG12_OFFSET); } static ssize_t set_in16_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_min[16] = INS_TO_REG(16, val + NEG12_OFFSET); adm1026_write_value(client, ADM1026_REG_IN_MIN[16], data->in_min[16]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_in16_max(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in_max[16]) - NEG12_OFFSET); } static ssize_t set_in16_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_max[16] = INS_TO_REG(16, val+NEG12_OFFSET); adm1026_write_value(client, ADM1026_REG_IN_MAX[16], data->in_max[16]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(in16_input, S_IRUGO, show_in16, NULL, 16); static SENSOR_DEVICE_ATTR(in16_min, S_IRUGO | S_IWUSR, show_in16_min, set_in16_min, 16); static SENSOR_DEVICE_ATTR(in16_max, S_IRUGO | S_IWUSR, show_in16_max, set_in16_max, 16); /* Now add fan read/write functions */ static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan[nr], data->fan_div[nr])); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan_min[nr], data->fan_div[nr])); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, data->fan_div[nr]); adm1026_write_value(client, ADM1026_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } #define fan_offset(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan, NULL, \ offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1); fan_offset(1); fan_offset(2); fan_offset(3); fan_offset(4); fan_offset(5); fan_offset(6); fan_offset(7); fan_offset(8); /* Adjust fan_min to account for new fan divisor */ static void fixup_fan_min(struct device *dev, int fan, int old_div) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int new_min; int new_div = data->fan_div[fan]; /* 0 and 0xff are special. Don't adjust them */ if (data->fan_min[fan] == 0 || data->fan_min[fan] == 0xff) { return; } new_min = data->fan_min[fan] * old_div / new_div; new_min = SENSORS_LIMIT(new_min, 1, 254); data->fan_min[fan] = new_min; adm1026_write_value(client, ADM1026_REG_FAN_MIN(fan), new_min); } /* Now add fan_div read/write functions */ static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", data->fan_div[nr]); } static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val,orig_div,new_div,shift; val = simple_strtol(buf, NULL, 10); new_div = DIV_TO_REG(val); if (new_div == 0) { return -EINVAL; } mutex_lock(&data->update_lock); orig_div = data->fan_div[nr]; data->fan_div[nr] = DIV_FROM_REG(new_div); if (nr < 4) { /* 0 <= nr < 4 */ shift = 2 * nr; adm1026_write_value(client, ADM1026_REG_FAN_DIV_0_3, ((DIV_TO_REG(orig_div) & (~(0x03 << shift))) | (new_div << shift))); } else { /* 3 < nr < 8 */ shift = 2 * (nr - 4); adm1026_write_value(client, ADM1026_REG_FAN_DIV_4_7, ((DIV_TO_REG(orig_div) & (~(0x03 << (2 * shift)))) | (new_div << shift))); } if (data->fan_div[nr] != orig_div) { fixup_fan_min(dev,nr,orig_div); } mutex_unlock(&data->update_lock); return count; } #define fan_offset_div(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ show_fan_div, set_fan_div, offset - 1); fan_offset_div(1); fan_offset_div(2); fan_offset_div(3); fan_offset_div(4); fan_offset_div(5); fan_offset_div(6); fan_offset_div(7); fan_offset_div(8); /* Temps */ static ssize_t show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp[nr])); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_min[nr])); } static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_min[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_MIN[nr], data->temp_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_max[nr])); } static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_max[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_MAX[nr], data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } #define temp_reg(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp, \ NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \ show_temp_min, set_temp_min, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ show_temp_max, set_temp_max, offset - 1); temp_reg(1); temp_reg(2); temp_reg(3); static ssize_t show_temp_offset(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_offset[nr])); } static ssize_t set_temp_offset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_offset[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_OFFSET[nr], data->temp_offset[nr]); mutex_unlock(&data->update_lock); return count; } #define temp_offset_reg(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \ show_temp_offset, set_temp_offset, offset - 1); temp_offset_reg(1); temp_offset_reg(2); temp_offset_reg(3); static ssize_t show_temp_auto_point1_temp_hyst(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG( ADM1026_FAN_ACTIVATION_TEMP_HYST + data->temp_tmin[nr])); } static ssize_t show_temp_auto_point2_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_tmin[nr] + ADM1026_FAN_CONTROL_TEMP_RANGE)); } static ssize_t show_temp_auto_point1_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_tmin[nr])); } static ssize_t set_temp_auto_point1_temp(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_tmin[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_TMIN[nr], data->temp_tmin[nr]); mutex_unlock(&data->update_lock); return count; } #define temp_auto_point(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_auto_point1_temp, S_IRUGO | S_IWUSR, \ show_temp_auto_point1_temp, set_temp_auto_point1_temp, \ offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_auto_point1_temp_hyst, S_IRUGO, \ show_temp_auto_point1_temp_hyst, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_auto_point2_temp, S_IRUGO, \ show_temp_auto_point2_temp, NULL, offset - 1); temp_auto_point(1); temp_auto_point(2); temp_auto_point(3); static ssize_t show_temp_crit_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", (data->config1 & CFG1_THERM_HOT) >> 4); } static ssize_t set_temp_crit_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); if ((val == 1) || (val==0)) { mutex_lock(&data->update_lock); data->config1 = (data->config1 & ~CFG1_THERM_HOT) | (val << 4); adm1026_write_value(client, ADM1026_REG_CONFIG1, data->config1); mutex_unlock(&data->update_lock); } return count; } #define temp_crit_enable(offset) \ static DEVICE_ATTR(temp##offset##_crit_enable, S_IRUGO | S_IWUSR, \ show_temp_crit_enable, set_temp_crit_enable); temp_crit_enable(1); temp_crit_enable(2); temp_crit_enable(3); static ssize_t show_temp_crit(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_crit[nr])); } static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_crit[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_THERM[nr], data->temp_crit[nr]); mutex_unlock(&data->update_lock); return count; } #define temp_crit_reg(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \ show_temp_crit, set_temp_crit, offset - 1); temp_crit_reg(1); temp_crit_reg(2); temp_crit_reg(3); static ssize_t show_analog_out_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", DAC_FROM_REG(data->analog_out)); } static ssize_t set_analog_out_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->analog_out = DAC_TO_REG(val); adm1026_write_value(client, ADM1026_REG_DAC, data->analog_out); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(analog_out, S_IRUGO | S_IWUSR, show_analog_out_reg, set_analog_out_reg); static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", vid_from_reg(data->vid & 0x3f, data->vrm)); } static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL); static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", data->vrm); } static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); data->vrm = simple_strtol(buf, NULL, 10); return count; } static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg); static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%ld\n", (long) (data->alarms)); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); static ssize_t show_alarm_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%ld\n", data->alarm_mask); } static ssize_t set_alarm_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); unsigned long mask; mutex_lock(&data->update_lock); data->alarm_mask = val & 0x7fffffff; mask = data->alarm_mask | (data->gpio_mask & 0x10000 ? 0x80000000 : 0); adm1026_write_value(client, ADM1026_REG_MASK1, mask & 0xff); mask >>= 8; adm1026_write_value(client, ADM1026_REG_MASK2, mask & 0xff); mask >>= 8; adm1026_write_value(client, ADM1026_REG_MASK3, mask & 0xff); mask >>= 8; adm1026_write_value(client, ADM1026_REG_MASK4, mask & 0xff); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(alarm_mask, S_IRUGO | S_IWUSR, show_alarm_mask, set_alarm_mask); static ssize_t show_gpio(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%ld\n", data->gpio); } static ssize_t set_gpio(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); long gpio; mutex_lock(&data->update_lock); data->gpio = val & 0x1ffff; gpio = data->gpio; adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_0_7,gpio & 0xff); gpio >>= 8; adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_8_15,gpio & 0xff); gpio = ((gpio >> 1) & 0x80) | (data->alarms >> 24 & 0x7f); adm1026_write_value(client, ADM1026_REG_STATUS4,gpio & 0xff); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(gpio, S_IRUGO | S_IWUSR, show_gpio, set_gpio); static ssize_t show_gpio_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%ld\n", data->gpio_mask); } static ssize_t set_gpio_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); long mask; mutex_lock(&data->update_lock); data->gpio_mask = val & 0x1ffff; mask = data->gpio_mask; adm1026_write_value(client, ADM1026_REG_GPIO_MASK_0_7,mask & 0xff); mask >>= 8; adm1026_write_value(client, ADM1026_REG_GPIO_MASK_8_15,mask & 0xff); mask = ((mask >> 1) & 0x80) | (data->alarm_mask >> 24 & 0x7f); adm1026_write_value(client, ADM1026_REG_MASK1,mask & 0xff); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(gpio_mask, S_IRUGO | S_IWUSR, show_gpio_mask, set_gpio_mask); static ssize_t show_pwm_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", PWM_FROM_REG(data->pwm1.pwm)); } static ssize_t set_pwm_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); if (data->pwm1.enable == 1) { int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->pwm1.pwm = PWM_TO_REG(val); adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm); mutex_unlock(&data->update_lock); } return count; } static ssize_t show_auto_pwm_min(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", data->pwm1.auto_pwm_min); } static ssize_t set_auto_pwm_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->pwm1.auto_pwm_min = SENSORS_LIMIT(val,0,255); if (data->pwm1.enable == 2) { /* apply immediately */ data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) | PWM_MIN_TO_REG(data->pwm1.auto_pwm_min)); adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm); } mutex_unlock(&data->update_lock); return count; } static ssize_t show_auto_pwm_max(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf,"%d\n", ADM1026_PWM_MAX); } static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf,"%d\n", data->pwm1.enable); } static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1026_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); int old_enable; if ((val >= 0) && (val < 3)) { mutex_lock(&data->update_lock); old_enable = data->pwm1.enable; data->pwm1.enable = val; data->config1 = (data->config1 & ~CFG1_PWM_AFC) | ((val == 2) ? CFG1_PWM_AFC : 0); adm1026_write_value(client, ADM1026_REG_CONFIG1, data->config1); if (val == 2) { /* apply pwm1_auto_pwm_min to pwm1 */ data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) | PWM_MIN_TO_REG(data->pwm1.auto_pwm_min)); adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm); } else if (!((old_enable == 1) && (val == 1))) { /* set pwm to safe value */ data->pwm1.pwm = 255; adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm); } mutex_unlock(&data->update_lock); } return count; } /* enable PWM fan control */ static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg); static DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg); static DEVICE_ATTR(pwm3, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg); static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable, set_pwm_enable); static DEVICE_ATTR(pwm2_enable, S_IRUGO | S_IWUSR, show_pwm_enable, set_pwm_enable); static DEVICE_ATTR(pwm3_enable, S_IRUGO | S_IWUSR, show_pwm_enable, set_pwm_enable); static DEVICE_ATTR(temp1_auto_point1_pwm, S_IRUGO | S_IWUSR, show_auto_pwm_min, set_auto_pwm_min); static DEVICE_ATTR(temp2_auto_point1_pwm, S_IRUGO | S_IWUSR, show_auto_pwm_min, set_auto_pwm_min); static DEVICE_ATTR(temp3_auto_point1_pwm, S_IRUGO | S_IWUSR, show_auto_pwm_min, set_auto_pwm_min); static DEVICE_ATTR(temp1_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL); static DEVICE_ATTR(temp2_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL); static DEVICE_ATTR(temp3_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL); static struct attribute *adm1026_attributes[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in8_input.dev_attr.attr, &sensor_dev_attr_in8_max.dev_attr.attr, &sensor_dev_attr_in8_min.dev_attr.attr, &sensor_dev_attr_in9_input.dev_attr.attr, &sensor_dev_attr_in9_max.dev_attr.attr, &sensor_dev_attr_in9_min.dev_attr.attr, &sensor_dev_attr_in10_input.dev_attr.attr, &sensor_dev_attr_in10_max.dev_attr.attr, &sensor_dev_attr_in10_min.dev_attr.attr, &sensor_dev_attr_in11_input.dev_attr.attr, &sensor_dev_attr_in11_max.dev_attr.attr, &sensor_dev_attr_in11_min.dev_attr.attr, &sensor_dev_attr_in12_input.dev_attr.attr, &sensor_dev_attr_in12_max.dev_attr.attr, &sensor_dev_attr_in12_min.dev_attr.attr, &sensor_dev_attr_in13_input.dev_attr.attr, &sensor_dev_attr_in13_max.dev_attr.attr, &sensor_dev_attr_in13_min.dev_attr.attr, &sensor_dev_attr_in14_input.dev_attr.attr, &sensor_dev_attr_in14_max.dev_attr.attr, &sensor_dev_attr_in14_min.dev_attr.attr, &sensor_dev_attr_in15_input.dev_attr.attr, &sensor_dev_attr_in15_max.dev_attr.attr, &sensor_dev_attr_in15_min.dev_attr.attr, &sensor_dev_attr_in16_input.dev_attr.attr, &sensor_dev_attr_in16_max.dev_attr.attr, &sensor_dev_attr_in16_min.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan3_div.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan4_div.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan5_input.dev_attr.attr, &sensor_dev_attr_fan5_div.dev_attr.attr, &sensor_dev_attr_fan5_min.dev_attr.attr, &sensor_dev_attr_fan6_input.dev_attr.attr, &sensor_dev_attr_fan6_div.dev_attr.attr, &sensor_dev_attr_fan6_min.dev_attr.attr, &sensor_dev_attr_fan7_input.dev_attr.attr, &sensor_dev_attr_fan7_div.dev_attr.attr, &sensor_dev_attr_fan7_min.dev_attr.attr, &sensor_dev_attr_fan8_input.dev_attr.attr, &sensor_dev_attr_fan8_div.dev_attr.attr, &sensor_dev_attr_fan8_min.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp1_offset.dev_attr.attr, &sensor_dev_attr_temp2_offset.dev_attr.attr, &sensor_dev_attr_temp3_offset.dev_attr.attr, &sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp1_auto_point1_temp_hyst.dev_attr.attr, &sensor_dev_attr_temp2_auto_point1_temp_hyst.dev_attr.attr, &sensor_dev_attr_temp3_auto_point1_temp_hyst.dev_attr.attr, &sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &dev_attr_temp1_crit_enable.attr, &dev_attr_temp2_crit_enable.attr, &dev_attr_temp3_crit_enable.attr, &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, &dev_attr_alarms.attr, &dev_attr_alarm_mask.attr, &dev_attr_gpio.attr, &dev_attr_gpio_mask.attr, &dev_attr_pwm1.attr, &dev_attr_pwm2.attr, &dev_attr_pwm3.attr, &dev_attr_pwm1_enable.attr, &dev_attr_pwm2_enable.attr, &dev_attr_pwm3_enable.attr, &dev_attr_temp1_auto_point1_pwm.attr, &dev_attr_temp2_auto_point1_pwm.attr, &dev_attr_temp3_auto_point1_pwm.attr, &dev_attr_temp1_auto_point2_pwm.attr, &dev_attr_temp2_auto_point2_pwm.attr, &dev_attr_temp3_auto_point2_pwm.attr, &dev_attr_analog_out.attr, NULL }; static const struct attribute_group adm1026_group = { .attrs = adm1026_attributes, }; static int adm1026_detect(struct i2c_adapter *adapter, int address, int kind) { int company, verstep; struct i2c_client *new_client; struct adm1026_data *data; int err = 0; const char *type_name = ""; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { /* We need to be able to do byte I/O */ goto exit; }; /* OK. For now, we presume we have a valid client. We now create the client structure, even though we cannot fill it completely yet. But it allows us to access adm1026_{read,write}_value. */ if (!(data = kzalloc(sizeof(struct adm1026_data), GFP_KERNEL))) { err = -ENOMEM; goto exit; } new_client = &data->client; i2c_set_clientdata(new_client, data); new_client->addr = address; new_client->adapter = adapter; new_client->driver = &adm1026_driver; new_client->flags = 0; /* Now, we do the remaining detection. */ company = adm1026_read_value(new_client, ADM1026_REG_COMPANY); verstep = adm1026_read_value(new_client, ADM1026_REG_VERSTEP); dev_dbg(&new_client->dev, "Detecting device at %d,0x%02x with" " COMPANY: 0x%02x and VERSTEP: 0x%02x\n", i2c_adapter_id(new_client->adapter), new_client->addr, company, verstep); /* If auto-detecting, Determine the chip type. */ if (kind <= 0) { dev_dbg(&new_client->dev, "Autodetecting device at %d,0x%02x " "...\n", i2c_adapter_id(adapter), address); if (company == ADM1026_COMPANY_ANALOG_DEV && verstep == ADM1026_VERSTEP_ADM1026) { kind = adm1026; } else if (company == ADM1026_COMPANY_ANALOG_DEV && (verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) { dev_err(&adapter->dev, ": Unrecognized stepping " "0x%02x. Defaulting to ADM1026.\n", verstep); kind = adm1026; } else if ((verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) { dev_err(&adapter->dev, ": Found version/stepping " "0x%02x. Assuming generic ADM1026.\n", verstep); kind = any_chip; } else { dev_dbg(&new_client->dev, ": Autodetection " "failed\n"); /* Not an ADM1026 ... */ if (kind == 0) { /* User used force=x,y */ dev_err(&adapter->dev, "Generic ADM1026 not " "found at %d,0x%02x. Try " "force_adm1026.\n", i2c_adapter_id(adapter), address); } err = 0; goto exitfree; } } /* Fill in the chip specific driver values */ switch (kind) { case any_chip : type_name = "adm1026"; break; case adm1026 : type_name = "adm1026"; break; default : dev_err(&adapter->dev, ": Internal error, invalid " "kind (%d)!", kind); err = -EFAULT; goto exitfree; } strlcpy(new_client->name, type_name, I2C_NAME_SIZE); /* Fill in the remaining client fields */ data->type = kind; data->valid = 0; mutex_init(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(new_client))) goto exitfree; /* Set the VRM version */ data->vrm = vid_which_vrm(); /* Initialize the ADM1026 chip */ adm1026_init_client(new_client); /* Register sysfs hooks */ if ((err = sysfs_create_group(&new_client->dev.kobj, &adm1026_group))) goto exitdetach; data->class_dev = hwmon_device_register(&new_client->dev); if (IS_ERR(data->class_dev)) { err = PTR_ERR(data->class_dev); goto exitremove; } return 0; /* Error out and cleanup code */ exitremove: sysfs_remove_group(&new_client->dev.kobj, &adm1026_group); exitdetach: i2c_detach_client(new_client); exitfree: kfree(data); exit: return err; } static int adm1026_detach_client(struct i2c_client *client) { struct adm1026_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->class_dev); sysfs_remove_group(&client->dev.kobj, &adm1026_group); i2c_detach_client(client); kfree(data); return 0; } static int __init sm_adm1026_init(void) { return i2c_add_driver(&adm1026_driver); } static void __exit sm_adm1026_exit(void) { i2c_del_driver(&adm1026_driver); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, " "Justin Thiessen <jthiessen@penguincomputing.com>"); MODULE_DESCRIPTION("ADM1026 driver"); module_init(sm_adm1026_init); module_exit(sm_adm1026_exit);