/* * A hwmon driver for the Analog Devices ADT7473 * Copyright (C) 2007 IBM * * Author: Darrick J. Wong <djwong@us.ibm.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/module.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/log2.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2C, 0x2D, 0x2E, I2C_CLIENT_END }; /* Insmod parameters */ I2C_CLIENT_INSMOD_1(adt7473); /* ADT7473 registers */ #define ADT7473_REG_BASE_ADDR 0x20 #define ADT7473_REG_VOLT_BASE_ADDR 0x21 #define ADT7473_REG_VOLT_MIN_BASE_ADDR 0x46 #define ADT7473_REG_TEMP_BASE_ADDR 0x25 #define ADT7473_REG_TEMP_LIMITS_BASE_ADDR 0x4E #define ADT7473_REG_TEMP_TMIN_BASE_ADDR 0x67 #define ADT7473_REG_TEMP_TMAX_BASE_ADDR 0x6A #define ADT7473_REG_FAN_BASE_ADDR 0x28 #define ADT7473_REG_FAN_MIN_BASE_ADDR 0x54 #define ADT7473_REG_PWM_BASE_ADDR 0x30 #define ADT7473_REG_PWM_MIN_BASE_ADDR 0x64 #define ADT7473_REG_PWM_MAX_BASE_ADDR 0x38 #define ADT7473_REG_PWM_BHVR_BASE_ADDR 0x5C #define ADT7473_PWM_BHVR_MASK 0xE0 #define ADT7473_PWM_BHVR_SHIFT 5 #define ADT7473_REG_CFG1 0x40 #define ADT7473_CFG1_START 0x01 #define ADT7473_CFG1_READY 0x04 #define ADT7473_REG_CFG2 0x73 #define ADT7473_REG_CFG3 0x78 #define ADT7473_REG_CFG4 0x7D #define ADT7473_CFG4_MAX_DUTY_AT_OVT 0x08 #define ADT7473_REG_CFG5 0x7C #define ADT7473_CFG5_TEMP_TWOS 0x01 #define ADT7473_CFG5_TEMP_OFFSET 0x02 #define ADT7473_REG_DEVICE 0x3D #define ADT7473_VENDOR 0x41 #define ADT7473_REG_VENDOR 0x3E #define ADT7473_DEVICE 0x73 #define ADT7473_REG_REVISION 0x3F #define ADT7473_REV_68 0x68 #define ADT7473_REV_69 0x69 #define ADT7473_REG_ALARM1 0x41 #define ADT7473_VCCP_ALARM 0x02 #define ADT7473_VCC_ALARM 0x04 #define ADT7473_R1T_ALARM 0x10 #define ADT7473_LT_ALARM 0x20 #define ADT7473_R2T_ALARM 0x40 #define ADT7473_OOL 0x80 #define ADT7473_REG_ALARM2 0x42 #define ADT7473_OVT_ALARM 0x02 #define ADT7473_FAN1_ALARM 0x04 #define ADT7473_FAN2_ALARM 0x08 #define ADT7473_FAN3_ALARM 0x10 #define ADT7473_FAN4_ALARM 0x20 #define ADT7473_R1T_SHORT 0x40 #define ADT7473_R2T_SHORT 0x80 #define ALARM2(x) ((x) << 8) #define ADT7473_VOLT_COUNT 2 #define ADT7473_REG_VOLT(x) (ADT7473_REG_VOLT_BASE_ADDR + (x)) #define ADT7473_REG_VOLT_MIN(x) (ADT7473_REG_VOLT_MIN_BASE_ADDR + ((x) * 2)) #define ADT7473_REG_VOLT_MAX(x) (ADT7473_REG_VOLT_MIN_BASE_ADDR + \ ((x) * 2) + 1) #define ADT7473_TEMP_COUNT 3 #define ADT7473_REG_TEMP(x) (ADT7473_REG_TEMP_BASE_ADDR + (x)) #define ADT7473_REG_TEMP_MIN(x) (ADT7473_REG_TEMP_LIMITS_BASE_ADDR + ((x) * 2)) #define ADT7473_REG_TEMP_MAX(x) (ADT7473_REG_TEMP_LIMITS_BASE_ADDR + \ ((x) * 2) + 1) #define ADT7473_REG_TEMP_TMIN(x) (ADT7473_REG_TEMP_TMIN_BASE_ADDR + (x)) #define ADT7473_REG_TEMP_TMAX(x) (ADT7473_REG_TEMP_TMAX_BASE_ADDR + (x)) #define ADT7473_FAN_COUNT 4 #define ADT7473_REG_FAN(x) (ADT7473_REG_FAN_BASE_ADDR + ((x) * 2)) #define ADT7473_REG_FAN_MIN(x) (ADT7473_REG_FAN_MIN_BASE_ADDR + ((x) * 2)) #define ADT7473_PWM_COUNT 3 #define ADT7473_REG_PWM(x) (ADT7473_REG_PWM_BASE_ADDR + (x)) #define ADT7473_REG_PWM_MAX(x) (ADT7473_REG_PWM_MAX_BASE_ADDR + (x)) #define ADT7473_REG_PWM_MIN(x) (ADT7473_REG_PWM_MIN_BASE_ADDR + (x)) #define ADT7473_REG_PWM_BHVR(x) (ADT7473_REG_PWM_BHVR_BASE_ADDR + (x)) /* How often do we reread sensors values? (In jiffies) */ #define SENSOR_REFRESH_INTERVAL (2 * HZ) /* How often do we reread sensor limit values? (In jiffies) */ #define LIMIT_REFRESH_INTERVAL (60 * HZ) /* datasheet says to divide this number by the fan reading to get fan rpm */ #define FAN_PERIOD_TO_RPM(x) ((90000 * 60) / (x)) #define FAN_RPM_TO_PERIOD FAN_PERIOD_TO_RPM #define FAN_PERIOD_INVALID 65535 #define FAN_DATA_VALID(x) ((x) && (x) != FAN_PERIOD_INVALID) #define ROUND_DIV(x, divisor) (((x) + ((divisor) / 2)) / (divisor)) struct adt7473_data { struct device *hwmon_dev; struct attribute_group attrs; struct mutex lock; char sensors_valid; char limits_valid; unsigned long sensors_last_updated; /* In jiffies */ unsigned long limits_last_updated; /* In jiffies */ u8 volt[ADT7473_VOLT_COUNT]; s8 volt_min[ADT7473_VOLT_COUNT]; s8 volt_max[ADT7473_VOLT_COUNT]; s8 temp[ADT7473_TEMP_COUNT]; s8 temp_min[ADT7473_TEMP_COUNT]; s8 temp_max[ADT7473_TEMP_COUNT]; s8 temp_tmin[ADT7473_TEMP_COUNT]; /* This is called the !THERM limit in the datasheet */ s8 temp_tmax[ADT7473_TEMP_COUNT]; u16 fan[ADT7473_FAN_COUNT]; u16 fan_min[ADT7473_FAN_COUNT]; u8 pwm[ADT7473_PWM_COUNT]; u8 pwm_max[ADT7473_PWM_COUNT]; u8 pwm_min[ADT7473_PWM_COUNT]; u8 pwm_behavior[ADT7473_PWM_COUNT]; u8 temp_twos_complement; u8 temp_offset; u16 alarm; u8 max_duty_at_overheat; }; static int adt7473_probe(struct i2c_client *client, const struct i2c_device_id *id); static int adt7473_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); static int adt7473_remove(struct i2c_client *client); static const struct i2c_device_id adt7473_id[] = { { "adt7473", adt7473 }, { } }; MODULE_DEVICE_TABLE(i2c, adt7473_id); static struct i2c_driver adt7473_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adt7473", }, .probe = adt7473_probe, .remove = adt7473_remove, .id_table = adt7473_id, .detect = adt7473_detect, .address_data = &addr_data, }; /* * 16-bit registers on the ADT7473 are low-byte first. The data sheet says * that the low byte must be read before the high byte. */ static inline int adt7473_read_word_data(struct i2c_client *client, u8 reg) { u16 foo; foo = i2c_smbus_read_byte_data(client, reg); foo |= ((u16)i2c_smbus_read_byte_data(client, reg + 1) << 8); return foo; } static inline int adt7473_write_word_data(struct i2c_client *client, u8 reg, u16 value) { return i2c_smbus_write_byte_data(client, reg, value & 0xFF) && i2c_smbus_write_byte_data(client, reg + 1, value >> 8); } static void adt7473_init_client(struct i2c_client *client) { int reg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG1); if (!(reg & ADT7473_CFG1_READY)) { dev_err(&client->dev, "Chip not ready.\n"); } else { /* start monitoring */ i2c_smbus_write_byte_data(client, ADT7473_REG_CFG1, reg | ADT7473_CFG1_START); } } static struct adt7473_data *adt7473_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); unsigned long local_jiffies = jiffies; u8 cfg; int i; mutex_lock(&data->lock); if (time_before(local_jiffies, data->sensors_last_updated + SENSOR_REFRESH_INTERVAL) && data->sensors_valid) goto no_sensor_update; for (i = 0; i < ADT7473_VOLT_COUNT; i++) data->volt[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_VOLT(i)); /* Determine temperature encoding */ cfg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG5); data->temp_twos_complement = (cfg & ADT7473_CFG5_TEMP_TWOS); /* * What does this do? it implies a variable temperature sensor * offset, but the datasheet doesn't say anything about this bit * and other parts of the datasheet imply that "offset64" mode * means that you shift temp values by -64 if the above bit was set. */ data->temp_offset = (cfg & ADT7473_CFG5_TEMP_OFFSET); for (i = 0; i < ADT7473_TEMP_COUNT; i++) data->temp[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_TEMP(i)); for (i = 0; i < ADT7473_FAN_COUNT; i++) data->fan[i] = adt7473_read_word_data(client, ADT7473_REG_FAN(i)); for (i = 0; i < ADT7473_PWM_COUNT; i++) data->pwm[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_PWM(i)); data->alarm = i2c_smbus_read_byte_data(client, ADT7473_REG_ALARM1); if (data->alarm & ADT7473_OOL) data->alarm |= ALARM2(i2c_smbus_read_byte_data(client, ADT7473_REG_ALARM2)); data->sensors_last_updated = local_jiffies; data->sensors_valid = 1; no_sensor_update: if (time_before(local_jiffies, data->limits_last_updated + LIMIT_REFRESH_INTERVAL) && data->limits_valid) goto out; for (i = 0; i < ADT7473_VOLT_COUNT; i++) { data->volt_min[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_VOLT_MIN(i)); data->volt_max[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_VOLT_MAX(i)); } for (i = 0; i < ADT7473_TEMP_COUNT; i++) { data->temp_min[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_TEMP_MIN(i)); data->temp_max[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_TEMP_MAX(i)); data->temp_tmin[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_TEMP_TMIN(i)); data->temp_tmax[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_TEMP_TMAX(i)); } for (i = 0; i < ADT7473_FAN_COUNT; i++) data->fan_min[i] = adt7473_read_word_data(client, ADT7473_REG_FAN_MIN(i)); for (i = 0; i < ADT7473_PWM_COUNT; i++) { data->pwm_max[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_PWM_MAX(i)); data->pwm_min[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_PWM_MIN(i)); data->pwm_behavior[i] = i2c_smbus_read_byte_data(client, ADT7473_REG_PWM_BHVR(i)); } i = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG4); data->max_duty_at_overheat = !!(i & ADT7473_CFG4_MAX_DUTY_AT_OVT); data->limits_last_updated = local_jiffies; data->limits_valid = 1; out: mutex_unlock(&data->lock); return data; } /* * Conversions */ /* IN are scaled acording to built-in resistors */ static const int adt7473_scaling[] = { /* .001 Volts */ 2250, 3300 }; #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from)) static int decode_volt(int volt_index, u8 raw) { return SCALE(raw, 192, adt7473_scaling[volt_index]); } static u8 encode_volt(int volt_index, int cooked) { int raw = SCALE(cooked, adt7473_scaling[volt_index], 192); return SENSORS_LIMIT(raw, 0, 255); } static ssize_t show_volt_min(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", decode_volt(attr->index, data->volt_min[attr->index])); } static ssize_t set_volt_min(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long volt; if (strict_strtol(buf, 10, &volt)) return -EINVAL; volt = encode_volt(attr->index, volt); mutex_lock(&data->lock); data->volt_min[attr->index] = volt; i2c_smbus_write_byte_data(client, ADT7473_REG_VOLT_MIN(attr->index), volt); mutex_unlock(&data->lock); return count; } static ssize_t show_volt_max(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", decode_volt(attr->index, data->volt_max[attr->index])); } static ssize_t set_volt_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long volt; if (strict_strtol(buf, 10, &volt)) return -EINVAL; volt = encode_volt(attr->index, volt); mutex_lock(&data->lock); data->volt_max[attr->index] = volt; i2c_smbus_write_byte_data(client, ADT7473_REG_VOLT_MAX(attr->index), volt); mutex_unlock(&data->lock); return count; } static ssize_t show_volt(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", decode_volt(attr->index, data->volt[attr->index])); } /* * This chip can report temperature data either as a two's complement * number in the range -128 to 127, or as an unsigned number that must * be offset by 64. */ static int decode_temp(u8 twos_complement, u8 raw) { return twos_complement ? (s8)raw : raw - 64; } static u8 encode_temp(u8 twos_complement, int cooked) { u8 ret = twos_complement ? cooked & 0xFF : cooked + 64; return SENSORS_LIMIT(ret, 0, 255); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", 1000 * decode_temp( data->temp_twos_complement, data->temp_min[attr->index])); } static ssize_t set_temp_min(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; temp = ROUND_DIV(temp, 1000); temp = encode_temp(data->temp_twos_complement, temp); mutex_lock(&data->lock); data->temp_min[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_MIN(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t show_temp_max(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", 1000 * decode_temp( data->temp_twos_complement, data->temp_max[attr->index])); } static ssize_t set_temp_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; temp = ROUND_DIV(temp, 1000); temp = encode_temp(data->temp_twos_complement, temp); mutex_lock(&data->lock); data->temp_max[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_MAX(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", 1000 * decode_temp( data->temp_twos_complement, data->temp[attr->index])); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); if (FAN_DATA_VALID(data->fan_min[attr->index])) return sprintf(buf, "%d\n", FAN_PERIOD_TO_RPM(data->fan_min[attr->index])); else return sprintf(buf, "0\n"); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp) || !temp) return -EINVAL; temp = FAN_RPM_TO_PERIOD(temp); temp = SENSORS_LIMIT(temp, 1, 65534); mutex_lock(&data->lock); data->fan_min[attr->index] = temp; adt7473_write_word_data(client, ADT7473_REG_FAN_MIN(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t show_fan(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); if (FAN_DATA_VALID(data->fan[attr->index])) return sprintf(buf, "%d\n", FAN_PERIOD_TO_RPM(data->fan[attr->index])); else return sprintf(buf, "0\n"); } static ssize_t show_max_duty_at_crit(struct device *dev, struct device_attribute *devattr, char *buf) { struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", data->max_duty_at_overheat); } static ssize_t set_max_duty_at_crit(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { u8 reg; struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; mutex_lock(&data->lock); data->max_duty_at_overheat = !!temp; reg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG4); if (temp) reg |= ADT7473_CFG4_MAX_DUTY_AT_OVT; else reg &= ~ADT7473_CFG4_MAX_DUTY_AT_OVT; i2c_smbus_write_byte_data(client, ADT7473_REG_CFG4, reg); mutex_unlock(&data->lock); return count; } static ssize_t show_pwm(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", data->pwm[attr->index]); } static ssize_t set_pwm(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; temp = SENSORS_LIMIT(temp, 0, 255); mutex_lock(&data->lock); data->pwm[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7473_REG_PWM(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t show_pwm_max(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", data->pwm_max[attr->index]); } static ssize_t set_pwm_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; temp = SENSORS_LIMIT(temp, 0, 255); mutex_lock(&data->lock); data->pwm_max[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_MAX(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t show_pwm_min(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", data->pwm_min[attr->index]); } static ssize_t set_pwm_min(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; temp = SENSORS_LIMIT(temp, 0, 255); mutex_lock(&data->lock); data->pwm_min[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_MIN(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t show_temp_tmax(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", 1000 * decode_temp( data->temp_twos_complement, data->temp_tmax[attr->index])); } static ssize_t set_temp_tmax(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; temp = ROUND_DIV(temp, 1000); temp = encode_temp(data->temp_twos_complement, temp); mutex_lock(&data->lock); data->temp_tmax[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_TMAX(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t show_temp_tmin(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); return sprintf(buf, "%d\n", 1000 * decode_temp( data->temp_twos_complement, data->temp_tmin[attr->index])); } static ssize_t set_temp_tmin(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; temp = ROUND_DIV(temp, 1000); temp = encode_temp(data->temp_twos_complement, temp); mutex_lock(&data->lock); data->temp_tmin[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_TMIN(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); switch (data->pwm_behavior[attr->index] >> ADT7473_PWM_BHVR_SHIFT) { case 3: return sprintf(buf, "0\n"); case 7: return sprintf(buf, "1\n"); default: return sprintf(buf, "2\n"); } } static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { u8 reg; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; switch (temp) { case 0: temp = 3; break; case 1: temp = 7; break; case 2: /* Enter automatic mode with fans off */ temp = 4; break; default: return -EINVAL; } mutex_lock(&data->lock); reg = i2c_smbus_read_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index)); reg = (temp << ADT7473_PWM_BHVR_SHIFT) | (reg & ~ADT7473_PWM_BHVR_MASK); i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index), reg); data->pwm_behavior[attr->index] = reg; mutex_unlock(&data->lock); return count; } static ssize_t show_pwm_auto_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); int bhvr = data->pwm_behavior[attr->index] >> ADT7473_PWM_BHVR_SHIFT; switch (bhvr) { case 3: case 4: case 7: return sprintf(buf, "0\n"); case 0: case 1: case 5: case 6: return sprintf(buf, "%d\n", bhvr + 1); case 2: return sprintf(buf, "4\n"); } /* shouldn't ever get here */ BUG(); } static ssize_t set_pwm_auto_temp(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { u8 reg; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct adt7473_data *data = i2c_get_clientdata(client); long temp; if (strict_strtol(buf, 10, &temp)) return -EINVAL; switch (temp) { case 1: case 2: case 6: case 7: temp--; break; case 0: temp = 4; break; default: return -EINVAL; } mutex_lock(&data->lock); reg = i2c_smbus_read_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index)); reg = (temp << ADT7473_PWM_BHVR_SHIFT) | (reg & ~ADT7473_PWM_BHVR_MASK); i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index), reg); data->pwm_behavior[attr->index] = reg; mutex_unlock(&data->lock); return count; } static ssize_t show_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7473_data *data = adt7473_update_device(dev); if (data->alarm & attr->index) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_volt_max, set_volt_max, 0); static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_volt_max, set_volt_max, 1); static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_volt_min, set_volt_min, 0); static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_volt_min, set_volt_min, 1); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_volt, NULL, 0); static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_volt, NULL, 1); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, ADT7473_VCCP_ALARM); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, ADT7473_VCC_ALARM); static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_max, set_temp_max, 0); static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp_max, set_temp_max, 1); static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO, show_temp_max, set_temp_max, 2); static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp_min, set_temp_min, 0); static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp_min, set_temp_min, 1); static SENSOR_DEVICE_ATTR(temp3_min, S_IWUSR | S_IRUGO, show_temp_min, set_temp_min, 2); static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2); static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, ADT7473_R1T_ALARM | ALARM2(ADT7473_R1T_SHORT)); static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, ADT7473_LT_ALARM); static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, ADT7473_R2T_ALARM | ALARM2(ADT7473_R2T_SHORT)); static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min, set_fan_min, 0); static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min, set_fan_min, 1); static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min, set_fan_min, 2); static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min, set_fan_min, 3); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0); static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1); static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2); static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, ALARM2(ADT7473_FAN1_ALARM)); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, ALARM2(ADT7473_FAN2_ALARM)); static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, ALARM2(ADT7473_FAN3_ALARM)); static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, ALARM2(ADT7473_FAN4_ALARM)); static SENSOR_DEVICE_ATTR(pwm_use_point2_pwm_at_crit, S_IWUSR | S_IRUGO, show_max_duty_at_crit, set_max_duty_at_crit, 0); static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 0); static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 1); static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 2); static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IWUSR | S_IRUGO, show_pwm_min, set_pwm_min, 0); static SENSOR_DEVICE_ATTR(pwm2_auto_point1_pwm, S_IWUSR | S_IRUGO, show_pwm_min, set_pwm_min, 1); static SENSOR_DEVICE_ATTR(pwm3_auto_point1_pwm, S_IWUSR | S_IRUGO, show_pwm_min, set_pwm_min, 2); static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IWUSR | S_IRUGO, show_pwm_max, set_pwm_max, 0); static SENSOR_DEVICE_ATTR(pwm2_auto_point2_pwm, S_IWUSR | S_IRUGO, show_pwm_max, set_pwm_max, 1); static SENSOR_DEVICE_ATTR(pwm3_auto_point2_pwm, S_IWUSR | S_IRUGO, show_pwm_max, set_pwm_max, 2); static SENSOR_DEVICE_ATTR(temp1_auto_point1_temp, S_IWUSR | S_IRUGO, show_temp_tmin, set_temp_tmin, 0); static SENSOR_DEVICE_ATTR(temp2_auto_point1_temp, S_IWUSR | S_IRUGO, show_temp_tmin, set_temp_tmin, 1); static SENSOR_DEVICE_ATTR(temp3_auto_point1_temp, S_IWUSR | S_IRUGO, show_temp_tmin, set_temp_tmin, 2); static SENSOR_DEVICE_ATTR(temp1_auto_point2_temp, S_IWUSR | S_IRUGO, show_temp_tmax, set_temp_tmax, 0); static SENSOR_DEVICE_ATTR(temp2_auto_point2_temp, S_IWUSR | S_IRUGO, show_temp_tmax, set_temp_tmax, 1); static SENSOR_DEVICE_ATTR(temp3_auto_point2_temp, S_IWUSR | S_IRUGO, show_temp_tmax, set_temp_tmax, 2); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable, set_pwm_enable, 0); static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable, set_pwm_enable, 1); static SENSOR_DEVICE_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable, set_pwm_enable, 2); static SENSOR_DEVICE_ATTR(pwm1_auto_channels_temp, S_IWUSR | S_IRUGO, show_pwm_auto_temp, set_pwm_auto_temp, 0); static SENSOR_DEVICE_ATTR(pwm2_auto_channels_temp, S_IWUSR | S_IRUGO, show_pwm_auto_temp, set_pwm_auto_temp, 1); static SENSOR_DEVICE_ATTR(pwm3_auto_channels_temp, S_IWUSR | S_IRUGO, show_pwm_auto_temp, set_pwm_auto_temp, 2); static struct attribute *adt7473_attr[] = { &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_fan4_alarm.dev_attr.attr, &sensor_dev_attr_pwm_use_point2_pwm_at_crit.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm3_enable.dev_attr.attr, &sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr, NULL }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int adt7473_detect(struct i2c_client *client, int kind, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; if (kind <= 0) { int vendor, device, revision; vendor = i2c_smbus_read_byte_data(client, ADT7473_REG_VENDOR); if (vendor != ADT7473_VENDOR) return -ENODEV; device = i2c_smbus_read_byte_data(client, ADT7473_REG_DEVICE); if (device != ADT7473_DEVICE) return -ENODEV; revision = i2c_smbus_read_byte_data(client, ADT7473_REG_REVISION); if (revision != ADT7473_REV_68 && revision != ADT7473_REV_69) return -ENODEV; } else dev_dbg(&adapter->dev, "detection forced\n"); strlcpy(info->type, "adt7473", I2C_NAME_SIZE); return 0; } static int adt7473_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct adt7473_data *data; int err; data = kzalloc(sizeof(struct adt7473_data), GFP_KERNEL); if (!data) { err = -ENOMEM; goto exit; } i2c_set_clientdata(client, data); mutex_init(&data->lock); dev_info(&client->dev, "%s chip found\n", client->name); /* Initialize the ADT7473 chip */ adt7473_init_client(client); /* Register sysfs hooks */ data->attrs.attrs = adt7473_attr; err = sysfs_create_group(&client->dev.kobj, &data->attrs); if (err) goto exit_free; data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove; } return 0; exit_remove: sysfs_remove_group(&client->dev.kobj, &data->attrs); exit_free: kfree(data); exit: return err; } static int adt7473_remove(struct i2c_client *client) { struct adt7473_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &data->attrs); kfree(data); return 0; } static int __init adt7473_init(void) { return i2c_add_driver(&adt7473_driver); } static void __exit adt7473_exit(void) { i2c_del_driver(&adt7473_driver); } MODULE_AUTHOR("Darrick J. Wong <djwong@us.ibm.com>"); MODULE_DESCRIPTION("ADT7473 driver"); MODULE_LICENSE("GPL"); module_init(adt7473_init); module_exit(adt7473_exit);