/* * IDE host driver for AT91 (SAM9, CAP9, AT572D940HF) Static Memory Controller * with Compact Flash True IDE logic * * Copyright (c) 2008, 2009 Kelvatek Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/ide.h> #include <linux/platform_device.h> #include <mach/board.h> #include <mach/gpio.h> #include <mach/at91sam9263.h> #include <mach/at91sam9_smc.h> #include <mach/at91sam9263_matrix.h> #define DRV_NAME "at91_ide" #define perr(fmt, args...) pr_err(DRV_NAME ": " fmt, ##args) #define pdbg(fmt, args...) pr_debug("%s " fmt, __func__, ##args) /* * Access to IDE device is possible through EBI Static Memory Controller * with Compact Flash logic. For details see EBI and SMC datasheet sections * of any microcontroller from AT91SAM9 family. * * Within SMC chip select address space, lines A[23:21] distinguish Compact * Flash modes (I/O, common memory, attribute memory, True IDE). IDE modes are: * 0x00c0000 - True IDE * 0x00e0000 - Alternate True IDE (Alt Status Register) * * On True IDE mode Task File and Data Register are mapped at the same address. * To distinguish access between these two different bus data width is used: * 8Bit for Task File, 16Bit for Data I/O. * * After initialization we do 8/16 bit flipping (changes in SMC MODE register) * only inside IDE callback routines which are serialized by IDE layer, * so no additional locking needed. */ #define TASK_FILE 0x00c00000 #define ALT_MODE 0x00e00000 #define REGS_SIZE 8 #define enter_16bit(cs, mode) do { \ mode = at91_sys_read(AT91_SMC_MODE(cs)); \ at91_sys_write(AT91_SMC_MODE(cs), mode | AT91_SMC_DBW_16); \ } while (0) #define leave_16bit(cs, mode) at91_sys_write(AT91_SMC_MODE(cs), mode); static void set_smc_timings(const u8 chipselect, const u16 cycle, const u16 setup, const u16 pulse, const u16 data_float, int use_iordy) { unsigned long mode = AT91_SMC_READMODE | AT91_SMC_WRITEMODE | AT91_SMC_BAT_SELECT; /* disable or enable waiting for IORDY signal */ if (use_iordy) mode |= AT91_SMC_EXNWMODE_READY; /* add data float cycles if needed */ if (data_float) mode |= AT91_SMC_TDF_(data_float); at91_sys_write(AT91_SMC_MODE(chipselect), mode); /* setup timings in SMC */ at91_sys_write(AT91_SMC_SETUP(chipselect), AT91_SMC_NWESETUP_(setup) | AT91_SMC_NCS_WRSETUP_(0) | AT91_SMC_NRDSETUP_(setup) | AT91_SMC_NCS_RDSETUP_(0)); at91_sys_write(AT91_SMC_PULSE(chipselect), AT91_SMC_NWEPULSE_(pulse) | AT91_SMC_NCS_WRPULSE_(cycle) | AT91_SMC_NRDPULSE_(pulse) | AT91_SMC_NCS_RDPULSE_(cycle)); at91_sys_write(AT91_SMC_CYCLE(chipselect), AT91_SMC_NWECYCLE_(cycle) | AT91_SMC_NRDCYCLE_(cycle)); } static unsigned int calc_mck_cycles(unsigned int ns, unsigned int mck_hz) { u64 tmp = ns; tmp *= mck_hz; tmp += 1000*1000*1000 - 1; /* round up */ do_div(tmp, 1000*1000*1000); return (unsigned int) tmp; } static void apply_timings(const u8 chipselect, const u8 pio, const struct ide_timing *timing, int use_iordy) { unsigned int t0, t1, t2, t6z; unsigned int cycle, setup, pulse, data_float; unsigned int mck_hz; struct clk *mck; /* see table 22 of Compact Flash standard 4.1 for the meaning, * we do not stretch active (t2) time, so setup (t1) + hold time (th) * assure at least minimal recovery (t2i) time */ t0 = timing->cyc8b; t1 = timing->setup; t2 = timing->act8b; t6z = (pio < 5) ? 30 : 20; pdbg("t0=%u t1=%u t2=%u t6z=%u\n", t0, t1, t2, t6z); mck = clk_get(NULL, "mck"); BUG_ON(IS_ERR(mck)); mck_hz = clk_get_rate(mck); pdbg("mck_hz=%u\n", mck_hz); cycle = calc_mck_cycles(t0, mck_hz); setup = calc_mck_cycles(t1, mck_hz); pulse = calc_mck_cycles(t2, mck_hz); data_float = calc_mck_cycles(t6z, mck_hz); pdbg("cycle=%u setup=%u pulse=%u data_float=%u\n", cycle, setup, pulse, data_float); set_smc_timings(chipselect, cycle, setup, pulse, data_float, use_iordy); } static void at91_ide_input_data(ide_drive_t *drive, struct ide_cmd *cmd, void *buf, unsigned int len) { ide_hwif_t *hwif = drive->hwif; struct ide_io_ports *io_ports = &hwif->io_ports; u8 chipselect = hwif->select_data; unsigned long mode; pdbg("cs %u buf %p len %d\n", chipselect, buf, len); len++; enter_16bit(chipselect, mode); readsw((void __iomem *)io_ports->data_addr, buf, len / 2); leave_16bit(chipselect, mode); } static void at91_ide_output_data(ide_drive_t *drive, struct ide_cmd *cmd, void *buf, unsigned int len) { ide_hwif_t *hwif = drive->hwif; struct ide_io_ports *io_ports = &hwif->io_ports; u8 chipselect = hwif->select_data; unsigned long mode; pdbg("cs %u buf %p len %d\n", chipselect, buf, len); enter_16bit(chipselect, mode); writesw((void __iomem *)io_ports->data_addr, buf, len / 2); leave_16bit(chipselect, mode); } static void at91_ide_set_pio_mode(ide_drive_t *drive, const u8 pio) { struct ide_timing *timing; u8 chipselect = drive->hwif->select_data; int use_iordy = 0; pdbg("chipselect %u pio %u\n", chipselect, pio); timing = ide_timing_find_mode(XFER_PIO_0 + pio); BUG_ON(!timing); if ((pio > 2 || ata_id_has_iordy(drive->id)) && !(ata_id_is_cfa(drive->id) && pio > 4)) use_iordy = 1; apply_timings(chipselect, pio, timing, use_iordy); } static const struct ide_tp_ops at91_ide_tp_ops = { .exec_command = ide_exec_command, .read_status = ide_read_status, .read_altstatus = ide_read_altstatus, .write_devctl = ide_write_devctl, .dev_select = ide_dev_select, .tf_load = ide_tf_load, .tf_read = ide_tf_read, .input_data = at91_ide_input_data, .output_data = at91_ide_output_data, }; static const struct ide_port_ops at91_ide_port_ops = { .set_pio_mode = at91_ide_set_pio_mode, }; static const struct ide_port_info at91_ide_port_info __initdata = { .port_ops = &at91_ide_port_ops, .tp_ops = &at91_ide_tp_ops, .host_flags = IDE_HFLAG_MMIO | IDE_HFLAG_NO_DMA | IDE_HFLAG_SINGLE | IDE_HFLAG_NO_IO_32BIT | IDE_HFLAG_UNMASK_IRQS, .pio_mask = ATA_PIO6, }; /* * If interrupt is delivered through GPIO, IRQ are triggered on falling * and rising edge of signal. Whereas IDE device request interrupt on high * level (rising edge in our case). This mean we have fake interrupts, so * we need to check interrupt pin and exit instantly from ISR when line * is on low level. */ irqreturn_t at91_irq_handler(int irq, void *dev_id) { int ntries = 8; int pin_val1, pin_val2; /* additional deglitch, line can be noisy in badly designed PCB */ do { pin_val1 = at91_get_gpio_value(irq); pin_val2 = at91_get_gpio_value(irq); } while (pin_val1 != pin_val2 && --ntries > 0); if (pin_val1 == 0 || ntries <= 0) return IRQ_HANDLED; return ide_intr(irq, dev_id); } static int __init at91_ide_probe(struct platform_device *pdev) { int ret; hw_regs_t hw; hw_regs_t *hws[] = { &hw, NULL, NULL, NULL }; struct ide_host *host; struct resource *res; unsigned long tf_base = 0, ctl_base = 0; struct at91_cf_data *board = pdev->dev.platform_data; if (!board) return -ENODEV; if (board->det_pin && at91_get_gpio_value(board->det_pin) != 0) { perr("no device detected\n"); return -ENODEV; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { perr("can't get memory resource\n"); return -ENODEV; } if (!devm_request_mem_region(&pdev->dev, res->start + TASK_FILE, REGS_SIZE, "ide") || !devm_request_mem_region(&pdev->dev, res->start + ALT_MODE, REGS_SIZE, "alt")) { perr("memory resources in use\n"); return -EBUSY; } pdbg("chipselect %u irq %u res %08lx\n", board->chipselect, board->irq_pin, (unsigned long) res->start); tf_base = (unsigned long) devm_ioremap(&pdev->dev, res->start + TASK_FILE, REGS_SIZE); ctl_base = (unsigned long) devm_ioremap(&pdev->dev, res->start + ALT_MODE, REGS_SIZE); if (!tf_base || !ctl_base) { perr("can't map memory regions\n"); return -EBUSY; } memset(&hw, 0, sizeof(hw)); if (board->flags & AT91_IDE_SWAP_A0_A2) { /* workaround for stupid hardware bug */ hw.io_ports.data_addr = tf_base + 0; hw.io_ports.error_addr = tf_base + 4; hw.io_ports.nsect_addr = tf_base + 2; hw.io_ports.lbal_addr = tf_base + 6; hw.io_ports.lbam_addr = tf_base + 1; hw.io_ports.lbah_addr = tf_base + 5; hw.io_ports.device_addr = tf_base + 3; hw.io_ports.command_addr = tf_base + 7; hw.io_ports.ctl_addr = ctl_base + 3; } else ide_std_init_ports(&hw, tf_base, ctl_base + 6); hw.irq = board->irq_pin; hw.chipset = ide_generic; hw.dev = &pdev->dev; host = ide_host_alloc(&at91_ide_port_info, hws); if (!host) { perr("failed to allocate ide host\n"); return -ENOMEM; } /* setup Static Memory Controller - PIO 0 as default */ apply_timings(board->chipselect, 0, ide_timing_find_mode(XFER_PIO_0), 0); /* with GPIO interrupt we have to do quirks in handler */ if (board->irq_pin >= PIN_BASE) host->irq_handler = at91_irq_handler; host->ports[0]->select_data = board->chipselect; ret = ide_host_register(host, &at91_ide_port_info, hws); if (ret) { perr("failed to register ide host\n"); goto err_free_host; } platform_set_drvdata(pdev, host); return 0; err_free_host: ide_host_free(host); return ret; } static int __exit at91_ide_remove(struct platform_device *pdev) { struct ide_host *host = platform_get_drvdata(pdev); ide_host_remove(host); return 0; } static struct platform_driver at91_ide_driver = { .driver = { .name = DRV_NAME, .owner = THIS_MODULE, }, .remove = __exit_p(at91_ide_remove), }; static int __init at91_ide_init(void) { return platform_driver_probe(&at91_ide_driver, at91_ide_probe); } static void __exit at91_ide_exit(void) { platform_driver_unregister(&at91_ide_driver); } module_init(at91_ide_init); module_exit(at91_ide_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Stanislaw Gruszka <stf_xl@wp.pl>");