/* * Copyright (c) 2004 Topspin Communications. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * $Id: mthca_allocator.c 1349 2004-12-16 21:09:43Z roland $ */ #include <linux/errno.h> #include <linux/slab.h> #include <linux/bitmap.h> #include "mthca_dev.h" /* Trivial bitmap-based allocator */ u32 mthca_alloc(struct mthca_alloc *alloc) { unsigned long flags; u32 obj; spin_lock_irqsave(&alloc->lock, flags); obj = find_next_zero_bit(alloc->table, alloc->max, alloc->last); if (obj >= alloc->max) { alloc->top = (alloc->top + alloc->max) & alloc->mask; obj = find_first_zero_bit(alloc->table, alloc->max); } if (obj < alloc->max) { set_bit(obj, alloc->table); obj |= alloc->top; } else obj = -1; spin_unlock_irqrestore(&alloc->lock, flags); return obj; } void mthca_free(struct mthca_alloc *alloc, u32 obj) { unsigned long flags; obj &= alloc->max - 1; spin_lock_irqsave(&alloc->lock, flags); clear_bit(obj, alloc->table); alloc->last = min(alloc->last, obj); alloc->top = (alloc->top + alloc->max) & alloc->mask; spin_unlock_irqrestore(&alloc->lock, flags); } int mthca_alloc_init(struct mthca_alloc *alloc, u32 num, u32 mask, u32 reserved) { int i; /* num must be a power of 2 */ if (num != 1 << (ffs(num) - 1)) return -EINVAL; alloc->last = 0; alloc->top = 0; alloc->max = num; alloc->mask = mask; spin_lock_init(&alloc->lock); alloc->table = kmalloc(BITS_TO_LONGS(num) * sizeof (long), GFP_KERNEL); if (!alloc->table) return -ENOMEM; bitmap_zero(alloc->table, num); for (i = 0; i < reserved; ++i) set_bit(i, alloc->table); return 0; } void mthca_alloc_cleanup(struct mthca_alloc *alloc) { kfree(alloc->table); } /* * Array of pointers with lazy allocation of leaf pages. Callers of * _get, _set and _clear methods must use a lock or otherwise * serialize access to the array. */ #define MTHCA_ARRAY_MASK (PAGE_SIZE / sizeof (void *) - 1) void *mthca_array_get(struct mthca_array *array, int index) { int p = (index * sizeof (void *)) >> PAGE_SHIFT; if (array->page_list[p].page) return array->page_list[p].page[index & MTHCA_ARRAY_MASK]; else return NULL; } int mthca_array_set(struct mthca_array *array, int index, void *value) { int p = (index * sizeof (void *)) >> PAGE_SHIFT; /* Allocate with GFP_ATOMIC because we'll be called with locks held. */ if (!array->page_list[p].page) array->page_list[p].page = (void **) get_zeroed_page(GFP_ATOMIC); if (!array->page_list[p].page) return -ENOMEM; array->page_list[p].page[index & MTHCA_ARRAY_MASK] = value; ++array->page_list[p].used; return 0; } void mthca_array_clear(struct mthca_array *array, int index) { int p = (index * sizeof (void *)) >> PAGE_SHIFT; if (--array->page_list[p].used == 0) { free_page((unsigned long) array->page_list[p].page); array->page_list[p].page = NULL; } else array->page_list[p].page[index & MTHCA_ARRAY_MASK] = NULL; if (array->page_list[p].used < 0) pr_debug("Array %p index %d page %d with ref count %d < 0\n", array, index, p, array->page_list[p].used); } int mthca_array_init(struct mthca_array *array, int nent) { int npage = (nent * sizeof (void *) + PAGE_SIZE - 1) / PAGE_SIZE; int i; array->page_list = kmalloc(npage * sizeof *array->page_list, GFP_KERNEL); if (!array->page_list) return -ENOMEM; for (i = 0; i < npage; ++i) { array->page_list[i].page = NULL; array->page_list[i].used = 0; } return 0; } void mthca_array_cleanup(struct mthca_array *array, int nent) { int i; for (i = 0; i < (nent * sizeof (void *) + PAGE_SIZE - 1) / PAGE_SIZE; ++i) free_page((unsigned long) array->page_list[i].page); kfree(array->page_list); } /* * Handling for queue buffers -- we allocate a bunch of memory and * register it in a memory region at HCA virtual address 0. If the * requested size is > max_direct, we split the allocation into * multiple pages, so we don't require too much contiguous memory. */ int mthca_buf_alloc(struct mthca_dev *dev, int size, int max_direct, union mthca_buf *buf, int *is_direct, struct mthca_pd *pd, int hca_write, struct mthca_mr *mr) { int err = -ENOMEM; int npages, shift; u64 *dma_list = NULL; dma_addr_t t; int i; if (size <= max_direct) { *is_direct = 1; npages = 1; shift = get_order(size) + PAGE_SHIFT; buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev, size, &t, GFP_KERNEL); if (!buf->direct.buf) return -ENOMEM; pci_unmap_addr_set(&buf->direct, mapping, t); memset(buf->direct.buf, 0, size); while (t & ((1 << shift) - 1)) { --shift; npages *= 2; } dma_list = kmalloc(npages * sizeof *dma_list, GFP_KERNEL); if (!dma_list) goto err_free; for (i = 0; i < npages; ++i) dma_list[i] = t + i * (1 << shift); } else { *is_direct = 0; npages = (size + PAGE_SIZE - 1) / PAGE_SIZE; shift = PAGE_SHIFT; dma_list = kmalloc(npages * sizeof *dma_list, GFP_KERNEL); if (!dma_list) return -ENOMEM; buf->page_list = kmalloc(npages * sizeof *buf->page_list, GFP_KERNEL); if (!buf->page_list) goto err_out; for (i = 0; i < npages; ++i) buf->page_list[i].buf = NULL; for (i = 0; i < npages; ++i) { buf->page_list[i].buf = dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE, &t, GFP_KERNEL); if (!buf->page_list[i].buf) goto err_free; dma_list[i] = t; pci_unmap_addr_set(&buf->page_list[i], mapping, t); memset(buf->page_list[i].buf, 0, PAGE_SIZE); } } err = mthca_mr_alloc_phys(dev, pd->pd_num, dma_list, shift, npages, 0, size, MTHCA_MPT_FLAG_LOCAL_READ | (hca_write ? MTHCA_MPT_FLAG_LOCAL_WRITE : 0), mr); if (err) goto err_free; kfree(dma_list); return 0; err_free: mthca_buf_free(dev, size, buf, *is_direct, NULL); err_out: kfree(dma_list); return err; } void mthca_buf_free(struct mthca_dev *dev, int size, union mthca_buf *buf, int is_direct, struct mthca_mr *mr) { int i; if (mr) mthca_free_mr(dev, mr); if (is_direct) dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf, pci_unmap_addr(&buf->direct, mapping)); else { for (i = 0; i < (size + PAGE_SIZE - 1) / PAGE_SIZE; ++i) dma_free_coherent(&dev->pdev->dev, PAGE_SIZE, buf->page_list[i].buf, pci_unmap_addr(&buf->page_list[i], mapping)); kfree(buf->page_list); } }