/* $Id: elsa_ser.c,v 2.14.2.3 2004/02/11 13:21:33 keil Exp $ * * stuff for the serial modem on ELSA cards * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * */ #include <linux/serial.h> #include <linux/serial_reg.h> #define MAX_MODEM_BUF 256 #define WAKEUP_CHARS (MAX_MODEM_BUF/2) #define RS_ISR_PASS_LIMIT 256 #define BASE_BAUD ( 1843200 / 16 ) //#define SERIAL_DEBUG_OPEN 1 //#define SERIAL_DEBUG_INTR 1 //#define SERIAL_DEBUG_FLOW 1 #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_FLOW #undef SERIAL_DEBUG_REG //#define SERIAL_DEBUG_REG 1 #ifdef SERIAL_DEBUG_REG static u_char deb[32]; const char *ModemIn[] = {"RBR","IER","IIR","LCR","MCR","LSR","MSR","SCR"}; const char *ModemOut[] = {"THR","IER","FCR","LCR","MCR","LSR","MSR","SCR"}; #endif static char *MInit_1 = "AT&F&C1E0&D2\r\0"; static char *MInit_2 = "ATL2M1S64=13\r\0"; static char *MInit_3 = "AT+FCLASS=0\r\0"; static char *MInit_4 = "ATV1S2=128X1\r\0"; static char *MInit_5 = "AT\\V8\\N3\r\0"; static char *MInit_6 = "ATL0M0&G0%E1\r\0"; static char *MInit_7 = "AT%L1%M0%C3\r\0"; static char *MInit_speed28800 = "AT%G0%B28800\r\0"; static char *MInit_dialout = "ATs7=60 x1 d\r\0"; static char *MInit_dialin = "ATs7=60 x1 a\r\0"; static inline unsigned int serial_in(struct IsdnCardState *cs, int offset) { #ifdef SERIAL_DEBUG_REG u_int val = inb(cs->hw.elsa.base + 8 + offset); debugl1(cs,"in %s %02x",ModemIn[offset], val); return(val); #else return inb(cs->hw.elsa.base + 8 + offset); #endif } static inline unsigned int serial_inp(struct IsdnCardState *cs, int offset) { #ifdef SERIAL_DEBUG_REG #ifdef ELSA_SERIAL_NOPAUSE_IO u_int val = inb(cs->hw.elsa.base + 8 + offset); debugl1(cs,"inp %s %02x",ModemIn[offset], val); #else u_int val = inb_p(cs->hw.elsa.base + 8 + offset); debugl1(cs,"inP %s %02x",ModemIn[offset], val); #endif return(val); #else #ifdef ELSA_SERIAL_NOPAUSE_IO return inb(cs->hw.elsa.base + 8 + offset); #else return inb_p(cs->hw.elsa.base + 8 + offset); #endif #endif } static inline void serial_out(struct IsdnCardState *cs, int offset, int value) { #ifdef SERIAL_DEBUG_REG debugl1(cs,"out %s %02x",ModemOut[offset], value); #endif outb(value, cs->hw.elsa.base + 8 + offset); } static inline void serial_outp(struct IsdnCardState *cs, int offset, int value) { #ifdef SERIAL_DEBUG_REG #ifdef ELSA_SERIAL_NOPAUSE_IO debugl1(cs,"outp %s %02x",ModemOut[offset], value); #else debugl1(cs,"outP %s %02x",ModemOut[offset], value); #endif #endif #ifdef ELSA_SERIAL_NOPAUSE_IO outb(value, cs->hw.elsa.base + 8 + offset); #else outb_p(value, cs->hw.elsa.base + 8 + offset); #endif } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct IsdnCardState *cs, int baud) { int quot = 0, baud_base; unsigned cval, fcr = 0; int bits; /* byte size and parity */ cval = 0x03; bits = 10; /* Determine divisor based on baud rate */ baud_base = BASE_BAUD; quot = baud_base / baud; /* If the quotient is ever zero, default to 9600 bps */ if (!quot) quot = baud_base / 9600; /* Set up FIFO's */ if ((baud_base / quot) < 2400) fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1; else fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8; serial_outp(cs, UART_FCR, fcr); /* CTS flow control flag and modem status interrupts */ cs->hw.elsa.IER &= ~UART_IER_MSI; cs->hw.elsa.IER |= UART_IER_MSI; serial_outp(cs, UART_IER, cs->hw.elsa.IER); debugl1(cs,"modem quot=0x%x", quot); serial_outp(cs, UART_LCR, cval | UART_LCR_DLAB);/* set DLAB */ serial_outp(cs, UART_DLL, quot & 0xff); /* LS of divisor */ serial_outp(cs, UART_DLM, quot >> 8); /* MS of divisor */ serial_outp(cs, UART_LCR, cval); /* reset DLAB */ serial_inp(cs, UART_RX); } static int mstartup(struct IsdnCardState *cs) { int retval=0; /* * Clear the FIFO buffers and disable them * (they will be reenabled in change_speed()) */ serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); /* * At this point there's no way the LSR could still be 0xFF; * if it is, then bail out, because there's likely no UART * here. */ if (serial_inp(cs, UART_LSR) == 0xff) { retval = -ENODEV; goto errout; } /* * Clear the interrupt registers. */ (void) serial_inp(cs, UART_RX); (void) serial_inp(cs, UART_IIR); (void) serial_inp(cs, UART_MSR); /* * Now, initialize the UART */ serial_outp(cs, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */ cs->hw.elsa.MCR = 0; cs->hw.elsa.MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2; serial_outp(cs, UART_MCR, cs->hw.elsa.MCR); /* * Finally, enable interrupts */ cs->hw.elsa.IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI; serial_outp(cs, UART_IER, cs->hw.elsa.IER); /* enable interrupts */ /* * And clear the interrupt registers again for luck. */ (void)serial_inp(cs, UART_LSR); (void)serial_inp(cs, UART_RX); (void)serial_inp(cs, UART_IIR); (void)serial_inp(cs, UART_MSR); cs->hw.elsa.transcnt = cs->hw.elsa.transp = 0; cs->hw.elsa.rcvcnt = cs->hw.elsa.rcvp =0; /* * and set the speed of the serial port */ change_speed(cs, BASE_BAUD); cs->hw.elsa.MFlag = 1; errout: return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void mshutdown(struct IsdnCardState *cs) { #ifdef SERIAL_DEBUG_OPEN printk(KERN_DEBUG"Shutting down serial ...."); #endif /* * clear delta_msr_wait queue to avoid mem leaks: we may free the irq * here so the queue might never be waken up */ cs->hw.elsa.IER = 0; serial_outp(cs, UART_IER, 0x00); /* disable all intrs */ cs->hw.elsa.MCR &= ~UART_MCR_OUT2; /* disable break condition */ serial_outp(cs, UART_LCR, serial_inp(cs, UART_LCR) & ~UART_LCR_SBC); cs->hw.elsa.MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); serial_outp(cs, UART_MCR, cs->hw.elsa.MCR); /* disable FIFO's */ serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); serial_inp(cs, UART_RX); /* read data port to reset things */ #ifdef SERIAL_DEBUG_OPEN printk(" done\n"); #endif } static inline int write_modem(struct BCState *bcs) { int ret=0; struct IsdnCardState *cs = bcs->cs; int count, len, fp; if (!bcs->tx_skb) return 0; if (bcs->tx_skb->len <= 0) return 0; len = bcs->tx_skb->len; if (len > MAX_MODEM_BUF - cs->hw.elsa.transcnt) len = MAX_MODEM_BUF - cs->hw.elsa.transcnt; fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp; fp &= (MAX_MODEM_BUF -1); count = len; if (count > MAX_MODEM_BUF - fp) { count = MAX_MODEM_BUF - fp; skb_copy_from_linear_data(bcs->tx_skb, cs->hw.elsa.transbuf + fp, count); skb_pull(bcs->tx_skb, count); cs->hw.elsa.transcnt += count; ret = count; count = len - count; fp = 0; } skb_copy_from_linear_data(bcs->tx_skb, cs->hw.elsa.transbuf + fp, count); skb_pull(bcs->tx_skb, count); cs->hw.elsa.transcnt += count; ret += count; if (cs->hw.elsa.transcnt && !(cs->hw.elsa.IER & UART_IER_THRI)) { cs->hw.elsa.IER |= UART_IER_THRI; serial_outp(cs, UART_IER, cs->hw.elsa.IER); } return(ret); } static inline void modem_fill(struct BCState *bcs) { if (bcs->tx_skb) { if (bcs->tx_skb->len) { write_modem(bcs); return; } else { if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) && (PACKET_NOACK != bcs->tx_skb->pkt_type)) { u_long flags; spin_lock_irqsave(&bcs->aclock, flags); bcs->ackcnt += bcs->hw.hscx.count; spin_unlock_irqrestore(&bcs->aclock, flags); schedule_event(bcs, B_ACKPENDING); } dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; } } if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { bcs->hw.hscx.count = 0; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); write_modem(bcs); } else { test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); schedule_event(bcs, B_XMTBUFREADY); } } static inline void receive_chars(struct IsdnCardState *cs, int *status) { unsigned char ch; struct sk_buff *skb; do { ch = serial_in(cs, UART_RX); if (cs->hw.elsa.rcvcnt >= MAX_MODEM_BUF) break; cs->hw.elsa.rcvbuf[cs->hw.elsa.rcvcnt++] = ch; #ifdef SERIAL_DEBUG_INTR printk("DR%02x:%02x...", ch, *status); #endif if (*status & (UART_LSR_BI | UART_LSR_PE | UART_LSR_FE | UART_LSR_OE)) { #ifdef SERIAL_DEBUG_INTR printk("handling exept...."); #endif } *status = serial_inp(cs, UART_LSR); } while (*status & UART_LSR_DR); if (cs->hw.elsa.MFlag == 2) { if (!(skb = dev_alloc_skb(cs->hw.elsa.rcvcnt))) printk(KERN_WARNING "ElsaSER: receive out of memory\n"); else { memcpy(skb_put(skb, cs->hw.elsa.rcvcnt), cs->hw.elsa.rcvbuf, cs->hw.elsa.rcvcnt); skb_queue_tail(& cs->hw.elsa.bcs->rqueue, skb); } schedule_event(cs->hw.elsa.bcs, B_RCVBUFREADY); } else { char tmp[128]; char *t = tmp; t += sprintf(t, "modem read cnt %d", cs->hw.elsa.rcvcnt); QuickHex(t, cs->hw.elsa.rcvbuf, cs->hw.elsa.rcvcnt); debugl1(cs, tmp); } cs->hw.elsa.rcvcnt = 0; } static inline void transmit_chars(struct IsdnCardState *cs, int *intr_done) { int count; debugl1(cs, "transmit_chars: p(%x) cnt(%x)", cs->hw.elsa.transp, cs->hw.elsa.transcnt); if (cs->hw.elsa.transcnt <= 0) { cs->hw.elsa.IER &= ~UART_IER_THRI; serial_out(cs, UART_IER, cs->hw.elsa.IER); return; } count = 16; do { serial_outp(cs, UART_TX, cs->hw.elsa.transbuf[cs->hw.elsa.transp++]); if (cs->hw.elsa.transp >= MAX_MODEM_BUF) cs->hw.elsa.transp=0; if (--cs->hw.elsa.transcnt <= 0) break; } while (--count > 0); if ((cs->hw.elsa.transcnt < WAKEUP_CHARS) && (cs->hw.elsa.MFlag==2)) modem_fill(cs->hw.elsa.bcs); #ifdef SERIAL_DEBUG_INTR printk("THRE..."); #endif if (intr_done) *intr_done = 0; if (cs->hw.elsa.transcnt <= 0) { cs->hw.elsa.IER &= ~UART_IER_THRI; serial_outp(cs, UART_IER, cs->hw.elsa.IER); } } static void rs_interrupt_elsa(struct IsdnCardState *cs) { int status, iir, msr; int pass_counter = 0; #ifdef SERIAL_DEBUG_INTR printk(KERN_DEBUG "rs_interrupt_single(%d)...", cs->irq); #endif do { status = serial_inp(cs, UART_LSR); debugl1(cs,"rs LSR %02x", status); #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if (status & UART_LSR_DR) receive_chars(cs, &status); if (status & UART_LSR_THRE) transmit_chars(cs, NULL); if (pass_counter++ > RS_ISR_PASS_LIMIT) { printk("rs_single loop break.\n"); break; } iir = serial_inp(cs, UART_IIR); debugl1(cs,"rs IIR %02x", iir); if ((iir & 0xf) == 0) { msr = serial_inp(cs, UART_MSR); debugl1(cs,"rs MSR %02x", msr); } } while (!(iir & UART_IIR_NO_INT)); #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } extern int open_hscxstate(struct IsdnCardState *cs, struct BCState *bcs); extern void modehscx(struct BCState *bcs, int mode, int bc); extern void hscx_l2l1(struct PStack *st, int pr, void *arg); static void close_elsastate(struct BCState *bcs) { modehscx(bcs, 0, bcs->channel); if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) { if (bcs->hw.hscx.rcvbuf) { if (bcs->mode != L1_MODE_MODEM) kfree(bcs->hw.hscx.rcvbuf); bcs->hw.hscx.rcvbuf = NULL; } skb_queue_purge(&bcs->rqueue); skb_queue_purge(&bcs->squeue); if (bcs->tx_skb) { dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); } } } static void modem_write_cmd(struct IsdnCardState *cs, u_char *buf, int len) { int count, fp; u_char *msg = buf; if (!len) return; if (len > (MAX_MODEM_BUF - cs->hw.elsa.transcnt)) { return; } fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp; fp &= (MAX_MODEM_BUF -1); count = len; if (count > MAX_MODEM_BUF - fp) { count = MAX_MODEM_BUF - fp; memcpy(cs->hw.elsa.transbuf + fp, msg, count); cs->hw.elsa.transcnt += count; msg += count; count = len - count; fp = 0; } memcpy(cs->hw.elsa.transbuf + fp, msg, count); cs->hw.elsa.transcnt += count; if (cs->hw.elsa.transcnt && !(cs->hw.elsa.IER & UART_IER_THRI)) { cs->hw.elsa.IER |= UART_IER_THRI; serial_outp(cs, UART_IER, cs->hw.elsa.IER); } } static void modem_set_init(struct IsdnCardState *cs) { int timeout; #define RCV_DELAY 20000 modem_write_cmd(cs, MInit_1, strlen(MInit_1)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY); modem_write_cmd(cs, MInit_2, strlen(MInit_2)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY); modem_write_cmd(cs, MInit_3, strlen(MInit_3)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY); modem_write_cmd(cs, MInit_4, strlen(MInit_4)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY ); modem_write_cmd(cs, MInit_5, strlen(MInit_5)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY); modem_write_cmd(cs, MInit_6, strlen(MInit_6)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY); modem_write_cmd(cs, MInit_7, strlen(MInit_7)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY); } static void modem_set_dial(struct IsdnCardState *cs, int outgoing) { int timeout; #define RCV_DELAY 20000 modem_write_cmd(cs, MInit_speed28800, strlen(MInit_speed28800)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY); if (outgoing) modem_write_cmd(cs, MInit_dialout, strlen(MInit_dialout)); else modem_write_cmd(cs, MInit_dialin, strlen(MInit_dialin)); timeout = 1000; while(timeout-- && cs->hw.elsa.transcnt) udelay(1000); debugl1(cs, "msi tout=%d", timeout); udelay(RCV_DELAY); } static void modem_l2l1(struct PStack *st, int pr, void *arg) { struct BCState *bcs = st->l1.bcs; struct sk_buff *skb = arg; u_long flags; if (pr == (PH_DATA | REQUEST)) { spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { skb_queue_tail(&bcs->squeue, skb); } else { bcs->tx_skb = skb; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->hw.hscx.count = 0; write_modem(bcs); } spin_unlock_irqrestore(&bcs->cs->lock, flags); } else if (pr == (PH_ACTIVATE | REQUEST)) { test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag); st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL); set_arcofi(bcs->cs, st->l1.bc); mstartup(bcs->cs); modem_set_dial(bcs->cs, test_bit(FLG_ORIG, &st->l2.flag)); bcs->cs->hw.elsa.MFlag=2; } else if (pr == (PH_DEACTIVATE | REQUEST)) { test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag); bcs->cs->dc.isac.arcofi_bc = st->l1.bc; arcofi_fsm(bcs->cs, ARCOFI_START, &ARCOFI_XOP_0); interruptible_sleep_on(&bcs->cs->dc.isac.arcofi_wait); bcs->cs->hw.elsa.MFlag=1; } else { printk(KERN_WARNING"ElsaSer: unknown pr %x\n", pr); } } static int setstack_elsa(struct PStack *st, struct BCState *bcs) { bcs->channel = st->l1.bc; switch (st->l1.mode) { case L1_MODE_HDLC: case L1_MODE_TRANS: if (open_hscxstate(st->l1.hardware, bcs)) return (-1); st->l2.l2l1 = hscx_l2l1; break; case L1_MODE_MODEM: bcs->mode = L1_MODE_MODEM; if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) { bcs->hw.hscx.rcvbuf = bcs->cs->hw.elsa.rcvbuf; skb_queue_head_init(&bcs->rqueue); skb_queue_head_init(&bcs->squeue); } bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); bcs->event = 0; bcs->hw.hscx.rcvidx = 0; bcs->tx_cnt = 0; bcs->cs->hw.elsa.bcs = bcs; st->l2.l2l1 = modem_l2l1; break; } st->l1.bcs = bcs; setstack_manager(st); bcs->st = st; setstack_l1_B(st); return (0); } static void init_modem(struct IsdnCardState *cs) { cs->bcs[0].BC_SetStack = setstack_elsa; cs->bcs[1].BC_SetStack = setstack_elsa; cs->bcs[0].BC_Close = close_elsastate; cs->bcs[1].BC_Close = close_elsastate; if (!(cs->hw.elsa.rcvbuf = kmalloc(MAX_MODEM_BUF, GFP_ATOMIC))) { printk(KERN_WARNING "Elsa: No modem mem hw.elsa.rcvbuf\n"); return; } if (!(cs->hw.elsa.transbuf = kmalloc(MAX_MODEM_BUF, GFP_ATOMIC))) { printk(KERN_WARNING "Elsa: No modem mem hw.elsa.transbuf\n"); kfree(cs->hw.elsa.rcvbuf); cs->hw.elsa.rcvbuf = NULL; return; } if (mstartup(cs)) { printk(KERN_WARNING "Elsa: problem startup modem\n"); } modem_set_init(cs); } static void release_modem(struct IsdnCardState *cs) { cs->hw.elsa.MFlag = 0; if (cs->hw.elsa.transbuf) { if (cs->hw.elsa.rcvbuf) { mshutdown(cs); kfree(cs->hw.elsa.rcvbuf); cs->hw.elsa.rcvbuf = NULL; } kfree(cs->hw.elsa.transbuf); cs->hw.elsa.transbuf = NULL; } }