/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "kvm.h" #include "vmx.h" #include "kvm_vmx.h" #include #include #include #include #include #include "segment_descriptor.h" #define MSR_IA32_FEATURE_CONTROL 0x03a MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); static DEFINE_PER_CPU(struct vmcs *, vmxarea); static DEFINE_PER_CPU(struct vmcs *, current_vmcs); #ifdef CONFIG_X86_64 #define HOST_IS_64 1 #else #define HOST_IS_64 0 #endif static struct vmcs_descriptor { int size; int order; u32 revision_id; } vmcs_descriptor; #define VMX_SEGMENT_FIELD(seg) \ [VCPU_SREG_##seg] = { \ .selector = GUEST_##seg##_SELECTOR, \ .base = GUEST_##seg##_BASE, \ .limit = GUEST_##seg##_LIMIT, \ .ar_bytes = GUEST_##seg##_AR_BYTES, \ } static struct kvm_vmx_segment_field { unsigned selector; unsigned base; unsigned limit; unsigned ar_bytes; } kvm_vmx_segment_fields[] = { VMX_SEGMENT_FIELD(CS), VMX_SEGMENT_FIELD(DS), VMX_SEGMENT_FIELD(ES), VMX_SEGMENT_FIELD(FS), VMX_SEGMENT_FIELD(GS), VMX_SEGMENT_FIELD(SS), VMX_SEGMENT_FIELD(TR), VMX_SEGMENT_FIELD(LDTR), }; static const u32 vmx_msr_index[] = { #ifdef CONFIG_X86_64 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE, #endif MSR_EFER, MSR_K6_STAR, }; #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index)) static inline int is_page_fault(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); } static inline int is_external_interrupt(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); } static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr) { int i; for (i = 0; i < vcpu->nmsrs; ++i) if (vcpu->guest_msrs[i].index == msr) return &vcpu->guest_msrs[i]; return 0; } static void vmcs_clear(struct vmcs *vmcs) { u64 phys_addr = __pa(vmcs); u8 error; asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0" : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) : "cc", "memory"); if (error) printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", vmcs, phys_addr); } static void __vcpu_clear(void *arg) { struct kvm_vcpu *vcpu = arg; int cpu = smp_processor_id(); if (vcpu->cpu == cpu) vmcs_clear(vcpu->vmcs); if (per_cpu(current_vmcs, cpu) == vcpu->vmcs) per_cpu(current_vmcs, cpu) = NULL; } static unsigned long vmcs_readl(unsigned long field) { unsigned long value; asm volatile (ASM_VMX_VMREAD_RDX_RAX : "=a"(value) : "d"(field) : "cc"); return value; } static u16 vmcs_read16(unsigned long field) { return vmcs_readl(field); } static u32 vmcs_read32(unsigned long field) { return vmcs_readl(field); } static u64 vmcs_read64(unsigned long field) { #ifdef CONFIG_X86_64 return vmcs_readl(field); #else return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); #endif } static void vmcs_writel(unsigned long field, unsigned long value) { u8 error; asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0" : "=q"(error) : "a"(value), "d"(field) : "cc" ); if (error) printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); } static void vmcs_write16(unsigned long field, u16 value) { vmcs_writel(field, value); } static void vmcs_write32(unsigned long field, u32 value) { vmcs_writel(field, value); } static void vmcs_write64(unsigned long field, u64 value) { #ifdef CONFIG_X86_64 vmcs_writel(field, value); #else vmcs_writel(field, value); asm volatile (""); vmcs_writel(field+1, value >> 32); #endif } /* * Switches to specified vcpu, until a matching vcpu_put(), but assumes * vcpu mutex is already taken. */ static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu) { u64 phys_addr = __pa(vcpu->vmcs); int cpu; cpu = get_cpu(); if (vcpu->cpu != cpu) { smp_call_function(__vcpu_clear, vcpu, 0, 1); vcpu->launched = 0; } if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) { u8 error; per_cpu(current_vmcs, cpu) = vcpu->vmcs; asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0" : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) : "cc"); if (error) printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n", vcpu->vmcs, phys_addr); } if (vcpu->cpu != cpu) { struct descriptor_table dt; unsigned long sysenter_esp; vcpu->cpu = cpu; /* * Linux uses per-cpu TSS and GDT, so set these when switching * processors. */ vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */ get_gdt(&dt); vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */ rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ } return vcpu; } static void vmx_vcpu_put(struct kvm_vcpu *vcpu) { put_cpu(); } static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) { return vmcs_readl(GUEST_RFLAGS); } static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { vmcs_writel(GUEST_RFLAGS, rflags); } static void skip_emulated_instruction(struct kvm_vcpu *vcpu) { unsigned long rip; u32 interruptibility; rip = vmcs_readl(GUEST_RIP); rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); vmcs_writel(GUEST_RIP, rip); /* * We emulated an instruction, so temporary interrupt blocking * should be removed, if set. */ interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); if (interruptibility & 3) vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility & ~3); } static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code) { printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n", vmcs_readl(GUEST_RIP)); vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, GP_VECTOR | INTR_TYPE_EXCEPTION | INTR_INFO_DELIEVER_CODE_MASK | INTR_INFO_VALID_MASK); } /* * reads and returns guest's timestamp counter "register" * guest_tsc = host_tsc + tsc_offset -- 21.3 */ static u64 guest_read_tsc(void) { u64 host_tsc, tsc_offset; rdtscll(host_tsc); tsc_offset = vmcs_read64(TSC_OFFSET); return host_tsc + tsc_offset; } /* * writes 'guest_tsc' into guest's timestamp counter "register" * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc */ static void guest_write_tsc(u64 guest_tsc) { u64 host_tsc; rdtscll(host_tsc); vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc); } static void reload_tss(void) { #ifndef CONFIG_X86_64 /* * VT restores TR but not its size. Useless. */ struct descriptor_table gdt; struct segment_descriptor *descs; get_gdt(&gdt); descs = (void *)gdt.base; descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ load_TR_desc(); #endif } /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) { u64 data; struct vmx_msr_entry *msr; if (!pdata) { printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); return -EINVAL; } switch (msr_index) { #ifdef CONFIG_X86_64 case MSR_FS_BASE: data = vmcs_readl(GUEST_FS_BASE); break; case MSR_GS_BASE: data = vmcs_readl(GUEST_GS_BASE); break; case MSR_EFER: data = vcpu->shadow_efer; break; #endif case MSR_IA32_TIME_STAMP_COUNTER: data = guest_read_tsc(); break; case MSR_IA32_SYSENTER_CS: data = vmcs_read32(GUEST_SYSENTER_CS); break; case MSR_IA32_SYSENTER_EIP: data = vmcs_read32(GUEST_SYSENTER_EIP); break; case MSR_IA32_SYSENTER_ESP: data = vmcs_read32(GUEST_SYSENTER_ESP); break; case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: case MSR_IA32_MC0_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MCG_CAP: case MSR_IA32_MC0_MISC: case MSR_IA32_MC0_MISC+4: case MSR_IA32_MC0_MISC+8: case MSR_IA32_MC0_MISC+12: case MSR_IA32_MC0_MISC+16: case MSR_IA32_UCODE_REV: /* MTRR registers */ case 0xfe: case 0x200 ... 0x2ff: data = 0; break; case MSR_IA32_APICBASE: data = vcpu->apic_base; break; default: msr = find_msr_entry(vcpu, msr_index); if (!msr) { printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index); return 1; } data = msr->data; break; } *pdata = data; return 0; } /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) { struct vmx_msr_entry *msr; switch (msr_index) { #ifdef CONFIG_X86_64 case MSR_FS_BASE: vmcs_writel(GUEST_FS_BASE, data); break; case MSR_GS_BASE: vmcs_writel(GUEST_GS_BASE, data); break; #endif case MSR_IA32_SYSENTER_CS: vmcs_write32(GUEST_SYSENTER_CS, data); break; case MSR_IA32_SYSENTER_EIP: vmcs_write32(GUEST_SYSENTER_EIP, data); break; case MSR_IA32_SYSENTER_ESP: vmcs_write32(GUEST_SYSENTER_ESP, data); break; #ifdef __x86_64 case MSR_EFER: set_efer(vcpu, data); break; case MSR_IA32_MC0_STATUS: printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n" , __FUNCTION__, data); break; #endif case MSR_IA32_TIME_STAMP_COUNTER: { guest_write_tsc(data); break; } case MSR_IA32_UCODE_REV: case MSR_IA32_UCODE_WRITE: case 0x200 ... 0x2ff: /* MTRRs */ break; case MSR_IA32_APICBASE: vcpu->apic_base = data; break; default: msr = find_msr_entry(vcpu, msr_index); if (!msr) { printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index); return 1; } msr->data = data; break; } return 0; } /* * Sync the rsp and rip registers into the vcpu structure. This allows * registers to be accessed by indexing vcpu->regs. */ static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu) { vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); vcpu->rip = vmcs_readl(GUEST_RIP); } /* * Syncs rsp and rip back into the vmcs. Should be called after possible * modification. */ static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu) { vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]); vmcs_writel(GUEST_RIP, vcpu->rip); } static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) { unsigned long dr7 = 0x400; u32 exception_bitmap; int old_singlestep; exception_bitmap = vmcs_read32(EXCEPTION_BITMAP); old_singlestep = vcpu->guest_debug.singlestep; vcpu->guest_debug.enabled = dbg->enabled; if (vcpu->guest_debug.enabled) { int i; dr7 |= 0x200; /* exact */ for (i = 0; i < 4; ++i) { if (!dbg->breakpoints[i].enabled) continue; vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address; dr7 |= 2 << (i*2); /* global enable */ dr7 |= 0 << (i*4+16); /* execution breakpoint */ } exception_bitmap |= (1u << 1); /* Trap debug exceptions */ vcpu->guest_debug.singlestep = dbg->singlestep; } else { exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */ vcpu->guest_debug.singlestep = 0; } if (old_singlestep && !vcpu->guest_debug.singlestep) { unsigned long flags; flags = vmcs_readl(GUEST_RFLAGS); flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); vmcs_writel(GUEST_RFLAGS, flags); } vmcs_write32(EXCEPTION_BITMAP, exception_bitmap); vmcs_writel(GUEST_DR7, dr7); return 0; } static __init int cpu_has_kvm_support(void) { unsigned long ecx = cpuid_ecx(1); return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */ } static __init int vmx_disabled_by_bios(void) { u64 msr; rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); return (msr & 5) == 1; /* locked but not enabled */ } static __init void hardware_enable(void *garbage) { int cpu = raw_smp_processor_id(); u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); u64 old; rdmsrl(MSR_IA32_FEATURE_CONTROL, old); if ((old & 5) != 5) /* enable and lock */ wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5); write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */ asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr) : "memory", "cc"); } static void hardware_disable(void *garbage) { asm volatile (ASM_VMX_VMXOFF : : : "cc"); } static __init void setup_vmcs_descriptor(void) { u32 vmx_msr_low, vmx_msr_high; rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high); vmcs_descriptor.size = vmx_msr_high & 0x1fff; vmcs_descriptor.order = get_order(vmcs_descriptor.size); vmcs_descriptor.revision_id = vmx_msr_low; }; static struct vmcs *alloc_vmcs_cpu(int cpu) { int node = cpu_to_node(cpu); struct page *pages; struct vmcs *vmcs; pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order); if (!pages) return NULL; vmcs = page_address(pages); memset(vmcs, 0, vmcs_descriptor.size); vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */ return vmcs; } static struct vmcs *alloc_vmcs(void) { return alloc_vmcs_cpu(smp_processor_id()); } static void free_vmcs(struct vmcs *vmcs) { free_pages((unsigned long)vmcs, vmcs_descriptor.order); } static __exit void free_kvm_area(void) { int cpu; for_each_online_cpu(cpu) free_vmcs(per_cpu(vmxarea, cpu)); } extern struct vmcs *alloc_vmcs_cpu(int cpu); static __init int alloc_kvm_area(void) { int cpu; for_each_online_cpu(cpu) { struct vmcs *vmcs; vmcs = alloc_vmcs_cpu(cpu); if (!vmcs) { free_kvm_area(); return -ENOMEM; } per_cpu(vmxarea, cpu) = vmcs; } return 0; } static __init int hardware_setup(void) { setup_vmcs_descriptor(); return alloc_kvm_area(); } static __exit void hardware_unsetup(void) { free_kvm_area(); } static void update_exception_bitmap(struct kvm_vcpu *vcpu) { if (vcpu->rmode.active) vmcs_write32(EXCEPTION_BITMAP, ~0); else vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR); } static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save) { struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; if (vmcs_readl(sf->base) == save->base) { vmcs_write16(sf->selector, save->selector); vmcs_writel(sf->base, save->base); vmcs_write32(sf->limit, save->limit); vmcs_write32(sf->ar_bytes, save->ar); } else { u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK) << AR_DPL_SHIFT; vmcs_write32(sf->ar_bytes, 0x93 | dpl); } } static void enter_pmode(struct kvm_vcpu *vcpu) { unsigned long flags; vcpu->rmode.active = 0; vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base); vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit); vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar); flags = vmcs_readl(GUEST_RFLAGS); flags &= ~(IOPL_MASK | X86_EFLAGS_VM); flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT); vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) | (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK)); update_exception_bitmap(vcpu); fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es); fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds); fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs); fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs); vmcs_write16(GUEST_SS_SELECTOR, 0); vmcs_write32(GUEST_SS_AR_BYTES, 0x93); vmcs_write16(GUEST_CS_SELECTOR, vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK); vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); } static int rmode_tss_base(struct kvm* kvm) { gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3; return base_gfn << PAGE_SHIFT; } static void fix_rmode_seg(int seg, struct kvm_save_segment *save) { struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; save->selector = vmcs_read16(sf->selector); save->base = vmcs_readl(sf->base); save->limit = vmcs_read32(sf->limit); save->ar = vmcs_read32(sf->ar_bytes); vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4); vmcs_write32(sf->limit, 0xffff); vmcs_write32(sf->ar_bytes, 0xf3); } static void enter_rmode(struct kvm_vcpu *vcpu) { unsigned long flags; vcpu->rmode.active = 1; vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE); vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm)); vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT); vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); flags = vmcs_readl(GUEST_RFLAGS); vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT; flags |= IOPL_MASK | X86_EFLAGS_VM; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK); update_exception_bitmap(vcpu); vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4); vmcs_write32(GUEST_SS_LIMIT, 0xffff); vmcs_write32(GUEST_SS_AR_BYTES, 0xf3); vmcs_write32(GUEST_CS_AR_BYTES, 0xf3); vmcs_write32(GUEST_CS_LIMIT, 0xffff); vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4); fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es); fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds); fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs); fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs); } #ifdef CONFIG_X86_64 static void enter_lmode(struct kvm_vcpu *vcpu) { u32 guest_tr_ar; guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { printk(KERN_DEBUG "%s: tss fixup for long mode. \n", __FUNCTION__); vmcs_write32(GUEST_TR_AR_BYTES, (guest_tr_ar & ~AR_TYPE_MASK) | AR_TYPE_BUSY_64_TSS); } vcpu->shadow_efer |= EFER_LMA; find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME; vmcs_write32(VM_ENTRY_CONTROLS, vmcs_read32(VM_ENTRY_CONTROLS) | VM_ENTRY_CONTROLS_IA32E_MASK); } static void exit_lmode(struct kvm_vcpu *vcpu) { vcpu->shadow_efer &= ~EFER_LMA; vmcs_write32(VM_ENTRY_CONTROLS, vmcs_read32(VM_ENTRY_CONTROLS) & ~VM_ENTRY_CONTROLS_IA32E_MASK); } #endif static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { if (vcpu->rmode.active && (cr0 & CR0_PE_MASK)) enter_pmode(vcpu); if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK)) enter_rmode(vcpu); #ifdef CONFIG_X86_64 if (vcpu->shadow_efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) enter_lmode(vcpu); if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK)) exit_lmode(vcpu); } #endif vmcs_writel(CR0_READ_SHADOW, cr0); vmcs_writel(GUEST_CR0, (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON); vcpu->cr0 = cr0; } /* * Used when restoring the VM to avoid corrupting segment registers */ static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0) { vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0); update_exception_bitmap(vcpu); vmcs_writel(CR0_READ_SHADOW, cr0); vmcs_writel(GUEST_CR0, (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON); vcpu->cr0 = cr0; } static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { vmcs_writel(GUEST_CR3, cr3); } static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { vmcs_writel(CR4_READ_SHADOW, cr4); vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ? KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON)); vcpu->cr4 = cr4; } #ifdef CONFIG_X86_64 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) { struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER); vcpu->shadow_efer = efer; if (efer & EFER_LMA) { vmcs_write32(VM_ENTRY_CONTROLS, vmcs_read32(VM_ENTRY_CONTROLS) | VM_ENTRY_CONTROLS_IA32E_MASK); msr->data = efer; } else { vmcs_write32(VM_ENTRY_CONTROLS, vmcs_read32(VM_ENTRY_CONTROLS) & ~VM_ENTRY_CONTROLS_IA32E_MASK); msr->data = efer & ~EFER_LME; } } #endif static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; return vmcs_readl(sf->base); } static void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; u32 ar; var->base = vmcs_readl(sf->base); var->limit = vmcs_read32(sf->limit); var->selector = vmcs_read16(sf->selector); ar = vmcs_read32(sf->ar_bytes); if (ar & AR_UNUSABLE_MASK) ar = 0; var->type = ar & 15; var->s = (ar >> 4) & 1; var->dpl = (ar >> 5) & 3; var->present = (ar >> 7) & 1; var->avl = (ar >> 12) & 1; var->l = (ar >> 13) & 1; var->db = (ar >> 14) & 1; var->g = (ar >> 15) & 1; var->unusable = (ar >> 16) & 1; } static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; u32 ar; vmcs_writel(sf->base, var->base); vmcs_write32(sf->limit, var->limit); vmcs_write16(sf->selector, var->selector); if (var->unusable) ar = 1 << 16; else { ar = var->type & 15; ar |= (var->s & 1) << 4; ar |= (var->dpl & 3) << 5; ar |= (var->present & 1) << 7; ar |= (var->avl & 1) << 12; ar |= (var->l & 1) << 13; ar |= (var->db & 1) << 14; ar |= (var->g & 1) << 15; } if (ar == 0) /* a 0 value means unusable */ ar = AR_UNUSABLE_MASK; vmcs_write32(sf->ar_bytes, ar); } static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { u32 ar = vmcs_read32(GUEST_CS_AR_BYTES); *db = (ar >> 14) & 1; *l = (ar >> 13) & 1; } static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { dt->limit = vmcs_read32(GUEST_IDTR_LIMIT); dt->base = vmcs_readl(GUEST_IDTR_BASE); } static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { vmcs_write32(GUEST_IDTR_LIMIT, dt->limit); vmcs_writel(GUEST_IDTR_BASE, dt->base); } static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { dt->limit = vmcs_read32(GUEST_GDTR_LIMIT); dt->base = vmcs_readl(GUEST_GDTR_BASE); } static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { vmcs_write32(GUEST_GDTR_LIMIT, dt->limit); vmcs_writel(GUEST_GDTR_BASE, dt->base); } static int init_rmode_tss(struct kvm* kvm) { struct page *p1, *p2, *p3; gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT; char *page; p1 = _gfn_to_page(kvm, fn++); p2 = _gfn_to_page(kvm, fn++); p3 = _gfn_to_page(kvm, fn); if (!p1 || !p2 || !p3) { kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__); return 0; } page = kmap_atomic(p1, KM_USER0); memset(page, 0, PAGE_SIZE); *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; kunmap_atomic(page, KM_USER0); page = kmap_atomic(p2, KM_USER0); memset(page, 0, PAGE_SIZE); kunmap_atomic(page, KM_USER0); page = kmap_atomic(p3, KM_USER0); memset(page, 0, PAGE_SIZE); *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0; kunmap_atomic(page, KM_USER0); return 1; } static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val) { u32 msr_high, msr_low; rdmsr(msr, msr_low, msr_high); val &= msr_high; val |= msr_low; vmcs_write32(vmcs_field, val); } static void seg_setup(int seg) { struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; vmcs_write16(sf->selector, 0); vmcs_writel(sf->base, 0); vmcs_write32(sf->limit, 0xffff); vmcs_write32(sf->ar_bytes, 0x93); } /* * Sets up the vmcs for emulated real mode. */ static int vmx_vcpu_setup(struct kvm_vcpu *vcpu) { u32 host_sysenter_cs; u32 junk; unsigned long a; struct descriptor_table dt; int i; int ret = 0; int nr_good_msrs; extern asmlinkage void kvm_vmx_return(void); if (!init_rmode_tss(vcpu->kvm)) { ret = -ENOMEM; goto out; } memset(vcpu->regs, 0, sizeof(vcpu->regs)); vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val(); vcpu->cr8 = 0; vcpu->apic_base = 0xfee00000 | /*for vcpu 0*/ MSR_IA32_APICBASE_BSP | MSR_IA32_APICBASE_ENABLE; fx_init(vcpu); /* * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh. */ vmcs_write16(GUEST_CS_SELECTOR, 0xf000); vmcs_writel(GUEST_CS_BASE, 0x000f0000); vmcs_write32(GUEST_CS_LIMIT, 0xffff); vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); seg_setup(VCPU_SREG_DS); seg_setup(VCPU_SREG_ES); seg_setup(VCPU_SREG_FS); seg_setup(VCPU_SREG_GS); seg_setup(VCPU_SREG_SS); vmcs_write16(GUEST_TR_SELECTOR, 0); vmcs_writel(GUEST_TR_BASE, 0); vmcs_write32(GUEST_TR_LIMIT, 0xffff); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); vmcs_write16(GUEST_LDTR_SELECTOR, 0); vmcs_writel(GUEST_LDTR_BASE, 0); vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); vmcs_write32(GUEST_SYSENTER_CS, 0); vmcs_writel(GUEST_SYSENTER_ESP, 0); vmcs_writel(GUEST_SYSENTER_EIP, 0); vmcs_writel(GUEST_RFLAGS, 0x02); vmcs_writel(GUEST_RIP, 0xfff0); vmcs_writel(GUEST_RSP, 0); vmcs_writel(GUEST_CR3, 0); //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 vmcs_writel(GUEST_DR7, 0x400); vmcs_writel(GUEST_GDTR_BASE, 0); vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); vmcs_writel(GUEST_IDTR_BASE, 0); vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); vmcs_write32(GUEST_ACTIVITY_STATE, 0); vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); /* I/O */ vmcs_write64(IO_BITMAP_A, 0); vmcs_write64(IO_BITMAP_B, 0); guest_write_tsc(0); vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ /* Special registers */ vmcs_write64(GUEST_IA32_DEBUGCTL, 0); /* Control */ vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR, PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_EXT_INTR_MASK /* 20.6.1 */ | PIN_BASED_NMI_EXITING /* 20.6.1 */ ); vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR, CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_HLT_EXITING /* 20.6.2 */ | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */ | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */ | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */ | CPU_BASED_INVDPG_EXITING | CPU_BASED_MOV_DR_EXITING | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */ ); vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR); vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */ vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */ vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */ vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */ vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */ vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ #ifdef CONFIG_X86_64 rdmsrl(MSR_FS_BASE, a); vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ rdmsrl(MSR_GS_BASE, a); vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ #else vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ #endif vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ get_idt(&dt); vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */ vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */ rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk); vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs); rdmsrl(MSR_IA32_SYSENTER_ESP, a); vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */ rdmsrl(MSR_IA32_SYSENTER_EIP, a); vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */ ret = -ENOMEM; vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!vcpu->guest_msrs) goto out; vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!vcpu->host_msrs) goto out_free_guest_msrs; for (i = 0; i < NR_VMX_MSR; ++i) { u32 index = vmx_msr_index[i]; u32 data_low, data_high; u64 data; int j = vcpu->nmsrs; if (rdmsr_safe(index, &data_low, &data_high) < 0) continue; data = data_low | ((u64)data_high << 32); vcpu->host_msrs[j].index = index; vcpu->host_msrs[j].reserved = 0; vcpu->host_msrs[j].data = data; vcpu->guest_msrs[j] = vcpu->host_msrs[j]; ++vcpu->nmsrs; } printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs); nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS; vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR, virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS)); vmcs_writel(VM_EXIT_MSR_STORE_ADDR, virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS)); vmcs_writel(VM_EXIT_MSR_LOAD_ADDR, virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS)); vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS, (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */ vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */ /* 22.2.1, 20.8.1 */ vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR, VM_ENTRY_CONTROLS, 0); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ #ifdef CONFIG_X86_64 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0); vmcs_writel(TPR_THRESHOLD, 0); #endif vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK); vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK); vcpu->cr0 = 0x60000010; vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode vmx_set_cr4(vcpu, 0); #ifdef CONFIG_X86_64 vmx_set_efer(vcpu, 0); #endif return 0; out_free_guest_msrs: kfree(vcpu->guest_msrs); out: return ret; } static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq) { u16 ent[2]; u16 cs; u16 ip; unsigned long flags; unsigned long ss_base = vmcs_readl(GUEST_SS_BASE); u16 sp = vmcs_readl(GUEST_RSP); u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT); if (sp > ss_limit || sp - 6 > sp) { vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n", __FUNCTION__, vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_SS_BASE), vmcs_read32(GUEST_SS_LIMIT)); return; } if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) != sizeof(ent)) { vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__); return; } flags = vmcs_readl(GUEST_RFLAGS); cs = vmcs_readl(GUEST_CS_BASE) >> 4; ip = vmcs_readl(GUEST_RIP); if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 || kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 || kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) { vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__); return; } vmcs_writel(GUEST_RFLAGS, flags & ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF)); vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ; vmcs_writel(GUEST_CS_BASE, ent[1] << 4); vmcs_writel(GUEST_RIP, ent[0]); vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6)); } static void kvm_do_inject_irq(struct kvm_vcpu *vcpu) { int word_index = __ffs(vcpu->irq_summary); int bit_index = __ffs(vcpu->irq_pending[word_index]); int irq = word_index * BITS_PER_LONG + bit_index; clear_bit(bit_index, &vcpu->irq_pending[word_index]); if (!vcpu->irq_pending[word_index]) clear_bit(word_index, &vcpu->irq_summary); if (vcpu->rmode.active) { inject_rmode_irq(vcpu, irq); return; } vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); } static void kvm_try_inject_irq(struct kvm_vcpu *vcpu) { if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0) /* * Interrupts enabled, and not blocked by sti or mov ss. Good. */ kvm_do_inject_irq(vcpu); else /* * Interrupts blocked. Wait for unblock. */ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | CPU_BASED_VIRTUAL_INTR_PENDING); } static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu) { struct kvm_guest_debug *dbg = &vcpu->guest_debug; set_debugreg(dbg->bp[0], 0); set_debugreg(dbg->bp[1], 1); set_debugreg(dbg->bp[2], 2); set_debugreg(dbg->bp[3], 3); if (dbg->singlestep) { unsigned long flags; flags = vmcs_readl(GUEST_RFLAGS); flags |= X86_EFLAGS_TF | X86_EFLAGS_RF; vmcs_writel(GUEST_RFLAGS, flags); } } static int handle_rmode_exception(struct kvm_vcpu *vcpu, int vec, u32 err_code) { if (!vcpu->rmode.active) return 0; if (vec == GP_VECTOR && err_code == 0) if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE) return 1; return 0; } static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u32 intr_info, error_code; unsigned long cr2, rip; u32 vect_info; enum emulation_result er; vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); intr_info = vmcs_read32(VM_EXIT_INTR_INFO); if ((vect_info & VECTORING_INFO_VALID_MASK) && !is_page_fault(intr_info)) { printk(KERN_ERR "%s: unexpected, vectoring info 0x%x " "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info); } if (is_external_interrupt(vect_info)) { int irq = vect_info & VECTORING_INFO_VECTOR_MASK; set_bit(irq, vcpu->irq_pending); set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary); } if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */ asm ("int $2"); return 1; } error_code = 0; rip = vmcs_readl(GUEST_RIP); if (intr_info & INTR_INFO_DELIEVER_CODE_MASK) error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); if (is_page_fault(intr_info)) { cr2 = vmcs_readl(EXIT_QUALIFICATION); spin_lock(&vcpu->kvm->lock); if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) { spin_unlock(&vcpu->kvm->lock); return 1; } er = emulate_instruction(vcpu, kvm_run, cr2, error_code); spin_unlock(&vcpu->kvm->lock); switch (er) { case EMULATE_DONE: return 1; case EMULATE_DO_MMIO: ++kvm_stat.mmio_exits; kvm_run->exit_reason = KVM_EXIT_MMIO; return 0; case EMULATE_FAIL: vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__); break; default: BUG(); } } if (vcpu->rmode.active && handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK, error_code)) return 1; if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) { kvm_run->exit_reason = KVM_EXIT_DEBUG; return 0; } kvm_run->exit_reason = KVM_EXIT_EXCEPTION; kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK; kvm_run->ex.error_code = error_code; return 0; } static int handle_external_interrupt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { ++kvm_stat.irq_exits; return 1; } static int get_io_count(struct kvm_vcpu *vcpu, u64 *count) { u64 inst; gva_t rip; int countr_size; int i, n; if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) { countr_size = 2; } else { u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES); countr_size = (cs_ar & AR_L_MASK) ? 8: (cs_ar & AR_DB_MASK) ? 4: 2; } rip = vmcs_readl(GUEST_RIP); if (countr_size != 8) rip += vmcs_readl(GUEST_CS_BASE); n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst); for (i = 0; i < n; i++) { switch (((u8*)&inst)[i]) { case 0xf0: case 0xf2: case 0xf3: case 0x2e: case 0x36: case 0x3e: case 0x26: case 0x64: case 0x65: case 0x66: break; case 0x67: countr_size = (countr_size == 2) ? 4: (countr_size >> 1); default: goto done; } } return 0; done: countr_size *= 8; *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size)); return 1; } static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u64 exit_qualification; ++kvm_stat.io_exits; exit_qualification = vmcs_read64(EXIT_QUALIFICATION); kvm_run->exit_reason = KVM_EXIT_IO; if (exit_qualification & 8) kvm_run->io.direction = KVM_EXIT_IO_IN; else kvm_run->io.direction = KVM_EXIT_IO_OUT; kvm_run->io.size = (exit_qualification & 7) + 1; kvm_run->io.string = (exit_qualification & 16) != 0; kvm_run->io.string_down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0; kvm_run->io.rep = (exit_qualification & 32) != 0; kvm_run->io.port = exit_qualification >> 16; if (kvm_run->io.string) { if (!get_io_count(vcpu, &kvm_run->io.count)) return 1; kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS); } else kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */ return 0; } static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u64 address = vmcs_read64(EXIT_QUALIFICATION); int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); spin_lock(&vcpu->kvm->lock); vcpu->mmu.inval_page(vcpu, address); spin_unlock(&vcpu->kvm->lock); vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length); return 1; } static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u64 exit_qualification; int cr; int reg; exit_qualification = vmcs_read64(EXIT_QUALIFICATION); cr = exit_qualification & 15; reg = (exit_qualification >> 8) & 15; switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ switch (cr) { case 0: vcpu_load_rsp_rip(vcpu); set_cr0(vcpu, vcpu->regs[reg]); skip_emulated_instruction(vcpu); return 1; case 3: vcpu_load_rsp_rip(vcpu); set_cr3(vcpu, vcpu->regs[reg]); skip_emulated_instruction(vcpu); return 1; case 4: vcpu_load_rsp_rip(vcpu); set_cr4(vcpu, vcpu->regs[reg]); skip_emulated_instruction(vcpu); return 1; case 8: vcpu_load_rsp_rip(vcpu); set_cr8(vcpu, vcpu->regs[reg]); skip_emulated_instruction(vcpu); return 1; }; break; case 1: /*mov from cr*/ switch (cr) { case 3: vcpu_load_rsp_rip(vcpu); vcpu->regs[reg] = vcpu->cr3; vcpu_put_rsp_rip(vcpu); skip_emulated_instruction(vcpu); return 1; case 8: printk(KERN_DEBUG "handle_cr: read CR8 " "cpu erratum AA15\n"); vcpu_load_rsp_rip(vcpu); vcpu->regs[reg] = vcpu->cr8; vcpu_put_rsp_rip(vcpu); skip_emulated_instruction(vcpu); return 1; } break; case 3: /* lmsw */ lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f); skip_emulated_instruction(vcpu); return 1; default: break; } kvm_run->exit_reason = 0; printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n", (int)(exit_qualification >> 4) & 3, cr); return 0; } static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u64 exit_qualification; unsigned long val; int dr, reg; /* * FIXME: this code assumes the host is debugging the guest. * need to deal with guest debugging itself too. */ exit_qualification = vmcs_read64(EXIT_QUALIFICATION); dr = exit_qualification & 7; reg = (exit_qualification >> 8) & 15; vcpu_load_rsp_rip(vcpu); if (exit_qualification & 16) { /* mov from dr */ switch (dr) { case 6: val = 0xffff0ff0; break; case 7: val = 0x400; break; default: val = 0; } vcpu->regs[reg] = val; } else { /* mov to dr */ } vcpu_put_rsp_rip(vcpu); skip_emulated_instruction(vcpu); return 1; } static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { kvm_run->exit_reason = KVM_EXIT_CPUID; return 0; } static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u32 ecx = vcpu->regs[VCPU_REGS_RCX]; u64 data; if (vmx_get_msr(vcpu, ecx, &data)) { vmx_inject_gp(vcpu, 0); return 1; } /* FIXME: handling of bits 32:63 of rax, rdx */ vcpu->regs[VCPU_REGS_RAX] = data & -1u; vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u; skip_emulated_instruction(vcpu); return 1; } static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u32 ecx = vcpu->regs[VCPU_REGS_RCX]; u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u) | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32); if (vmx_set_msr(vcpu, ecx, data) != 0) { vmx_inject_gp(vcpu, 0); return 1; } skip_emulated_instruction(vcpu); return 1; } static int handle_interrupt_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { /* Turn off interrupt window reporting. */ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & ~CPU_BASED_VIRTUAL_INTR_PENDING); return 1; } static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { skip_emulated_instruction(vcpu); if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)) return 1; kvm_run->exit_reason = KVM_EXIT_HLT; return 0; } /* * The exit handlers return 1 if the exit was handled fully and guest execution * may resume. Otherwise they set the kvm_run parameter to indicate what needs * to be done to userspace and return 0. */ static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) = { [EXIT_REASON_EXCEPTION_NMI] = handle_exception, [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, [EXIT_REASON_IO_INSTRUCTION] = handle_io, [EXIT_REASON_INVLPG] = handle_invlpg, [EXIT_REASON_CR_ACCESS] = handle_cr, [EXIT_REASON_DR_ACCESS] = handle_dr, [EXIT_REASON_CPUID] = handle_cpuid, [EXIT_REASON_MSR_READ] = handle_rdmsr, [EXIT_REASON_MSR_WRITE] = handle_wrmsr, [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, [EXIT_REASON_HLT] = handle_halt, }; static const int kvm_vmx_max_exit_handlers = sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers); /* * The guest has exited. See if we can fix it or if we need userspace * assistance. */ static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); u32 exit_reason = vmcs_read32(VM_EXIT_REASON); if ( (vectoring_info & VECTORING_INFO_VALID_MASK) && exit_reason != EXIT_REASON_EXCEPTION_NMI ) printk(KERN_WARNING "%s: unexpected, valid vectoring info and " "exit reason is 0x%x\n", __FUNCTION__, exit_reason); kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); if (exit_reason < kvm_vmx_max_exit_handlers && kvm_vmx_exit_handlers[exit_reason]) return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run); else { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; kvm_run->hw.hardware_exit_reason = exit_reason; } return 0; } static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u8 fail; u16 fs_sel, gs_sel, ldt_sel; int fs_gs_ldt_reload_needed; again: /* * Set host fs and gs selectors. Unfortunately, 22.2.3 does not * allow segment selectors with cpl > 0 or ti == 1. */ fs_sel = read_fs(); gs_sel = read_gs(); ldt_sel = read_ldt(); fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel; if (!fs_gs_ldt_reload_needed) { vmcs_write16(HOST_FS_SELECTOR, fs_sel); vmcs_write16(HOST_GS_SELECTOR, gs_sel); } else { vmcs_write16(HOST_FS_SELECTOR, 0); vmcs_write16(HOST_GS_SELECTOR, 0); } #ifdef CONFIG_X86_64 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); #else vmcs_writel(HOST_FS_BASE, segment_base(fs_sel)); vmcs_writel(HOST_GS_BASE, segment_base(gs_sel)); #endif if (vcpu->irq_summary && !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK)) kvm_try_inject_irq(vcpu); if (vcpu->guest_debug.enabled) kvm_guest_debug_pre(vcpu); fx_save(vcpu->host_fx_image); fx_restore(vcpu->guest_fx_image); save_msrs(vcpu->host_msrs, vcpu->nmsrs); load_msrs(vcpu->guest_msrs, NR_BAD_MSRS); asm ( /* Store host registers */ "pushf \n\t" #ifdef CONFIG_X86_64 "push %%rax; push %%rbx; push %%rdx;" "push %%rsi; push %%rdi; push %%rbp;" "push %%r8; push %%r9; push %%r10; push %%r11;" "push %%r12; push %%r13; push %%r14; push %%r15;" "push %%rcx \n\t" ASM_VMX_VMWRITE_RSP_RDX "\n\t" #else "pusha; push %%ecx \n\t" ASM_VMX_VMWRITE_RSP_RDX "\n\t" #endif /* Check if vmlaunch of vmresume is needed */ "cmp $0, %1 \n\t" /* Load guest registers. Don't clobber flags. */ #ifdef CONFIG_X86_64 "mov %c[cr2](%3), %%rax \n\t" "mov %%rax, %%cr2 \n\t" "mov %c[rax](%3), %%rax \n\t" "mov %c[rbx](%3), %%rbx \n\t" "mov %c[rdx](%3), %%rdx \n\t" "mov %c[rsi](%3), %%rsi \n\t" "mov %c[rdi](%3), %%rdi \n\t" "mov %c[rbp](%3), %%rbp \n\t" "mov %c[r8](%3), %%r8 \n\t" "mov %c[r9](%3), %%r9 \n\t" "mov %c[r10](%3), %%r10 \n\t" "mov %c[r11](%3), %%r11 \n\t" "mov %c[r12](%3), %%r12 \n\t" "mov %c[r13](%3), %%r13 \n\t" "mov %c[r14](%3), %%r14 \n\t" "mov %c[r15](%3), %%r15 \n\t" "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */ #else "mov %c[cr2](%3), %%eax \n\t" "mov %%eax, %%cr2 \n\t" "mov %c[rax](%3), %%eax \n\t" "mov %c[rbx](%3), %%ebx \n\t" "mov %c[rdx](%3), %%edx \n\t" "mov %c[rsi](%3), %%esi \n\t" "mov %c[rdi](%3), %%edi \n\t" "mov %c[rbp](%3), %%ebp \n\t" "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */ #endif /* Enter guest mode */ "jne launched \n\t" ASM_VMX_VMLAUNCH "\n\t" "jmp kvm_vmx_return \n\t" "launched: " ASM_VMX_VMRESUME "\n\t" ".globl kvm_vmx_return \n\t" "kvm_vmx_return: " /* Save guest registers, load host registers, keep flags */ #ifdef CONFIG_X86_64 "xchg %3, 0(%%rsp) \n\t" "mov %%rax, %c[rax](%3) \n\t" "mov %%rbx, %c[rbx](%3) \n\t" "pushq 0(%%rsp); popq %c[rcx](%3) \n\t" "mov %%rdx, %c[rdx](%3) \n\t" "mov %%rsi, %c[rsi](%3) \n\t" "mov %%rdi, %c[rdi](%3) \n\t" "mov %%rbp, %c[rbp](%3) \n\t" "mov %%r8, %c[r8](%3) \n\t" "mov %%r9, %c[r9](%3) \n\t" "mov %%r10, %c[r10](%3) \n\t" "mov %%r11, %c[r11](%3) \n\t" "mov %%r12, %c[r12](%3) \n\t" "mov %%r13, %c[r13](%3) \n\t" "mov %%r14, %c[r14](%3) \n\t" "mov %%r15, %c[r15](%3) \n\t" "mov %%cr2, %%rax \n\t" "mov %%rax, %c[cr2](%3) \n\t" "mov 0(%%rsp), %3 \n\t" "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;" "pop %%r11; pop %%r10; pop %%r9; pop %%r8;" "pop %%rbp; pop %%rdi; pop %%rsi;" "pop %%rdx; pop %%rbx; pop %%rax \n\t" #else "xchg %3, 0(%%esp) \n\t" "mov %%eax, %c[rax](%3) \n\t" "mov %%ebx, %c[rbx](%3) \n\t" "pushl 0(%%esp); popl %c[rcx](%3) \n\t" "mov %%edx, %c[rdx](%3) \n\t" "mov %%esi, %c[rsi](%3) \n\t" "mov %%edi, %c[rdi](%3) \n\t" "mov %%ebp, %c[rbp](%3) \n\t" "mov %%cr2, %%eax \n\t" "mov %%eax, %c[cr2](%3) \n\t" "mov 0(%%esp), %3 \n\t" "pop %%ecx; popa \n\t" #endif "setbe %0 \n\t" "popf \n\t" : "=g" (fail) : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP), "c"(vcpu), [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])), [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])), #ifdef CONFIG_X86_64 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])), [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])), [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])), #endif [cr2]"i"(offsetof(struct kvm_vcpu, cr2)) : "cc", "memory" ); ++kvm_stat.exits; save_msrs(vcpu->guest_msrs, NR_BAD_MSRS); load_msrs(vcpu->host_msrs, NR_BAD_MSRS); fx_save(vcpu->guest_fx_image); fx_restore(vcpu->host_fx_image); #ifndef CONFIG_X86_64 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); #endif kvm_run->exit_type = 0; if (fail) { kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY; kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR); } else { if (fs_gs_ldt_reload_needed) { load_ldt(ldt_sel); load_fs(fs_sel); /* * If we have to reload gs, we must take care to * preserve our gs base. */ local_irq_disable(); load_gs(gs_sel); #ifdef CONFIG_X86_64 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE)); #endif local_irq_enable(); reload_tss(); } vcpu->launched = 1; kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT; if (kvm_handle_exit(kvm_run, vcpu)) { /* Give scheduler a change to reschedule. */ if (signal_pending(current)) { ++kvm_stat.signal_exits; return -EINTR; } kvm_resched(vcpu); goto again; } } return 0; } static void vmx_flush_tlb(struct kvm_vcpu *vcpu) { vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3)); } static void vmx_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, u32 err_code) { u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); ++kvm_stat.pf_guest; if (is_page_fault(vect_info)) { printk(KERN_DEBUG "inject_page_fault: " "double fault 0x%lx @ 0x%lx\n", addr, vmcs_readl(GUEST_RIP)); vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, DF_VECTOR | INTR_TYPE_EXCEPTION | INTR_INFO_DELIEVER_CODE_MASK | INTR_INFO_VALID_MASK); return; } vcpu->cr2 = addr; vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, PF_VECTOR | INTR_TYPE_EXCEPTION | INTR_INFO_DELIEVER_CODE_MASK | INTR_INFO_VALID_MASK); } static void vmx_free_vmcs(struct kvm_vcpu *vcpu) { if (vcpu->vmcs) { on_each_cpu(__vcpu_clear, vcpu, 0, 1); free_vmcs(vcpu->vmcs); vcpu->vmcs = NULL; } } static void vmx_free_vcpu(struct kvm_vcpu *vcpu) { vmx_free_vmcs(vcpu); } static int vmx_create_vcpu(struct kvm_vcpu *vcpu) { struct vmcs *vmcs; vmcs = alloc_vmcs(); if (!vmcs) return -ENOMEM; vmcs_clear(vmcs); vcpu->vmcs = vmcs; vcpu->launched = 0; return 0; } static struct kvm_arch_ops vmx_arch_ops = { .cpu_has_kvm_support = cpu_has_kvm_support, .disabled_by_bios = vmx_disabled_by_bios, .hardware_setup = hardware_setup, .hardware_unsetup = hardware_unsetup, .hardware_enable = hardware_enable, .hardware_disable = hardware_disable, .vcpu_create = vmx_create_vcpu, .vcpu_free = vmx_free_vcpu, .vcpu_load = vmx_vcpu_load, .vcpu_put = vmx_vcpu_put, .set_guest_debug = set_guest_debug, .get_msr = vmx_get_msr, .set_msr = vmx_set_msr, .get_segment_base = vmx_get_segment_base, .get_segment = vmx_get_segment, .set_segment = vmx_set_segment, .get_cs_db_l_bits = vmx_get_cs_db_l_bits, .set_cr0 = vmx_set_cr0, .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch, .set_cr3 = vmx_set_cr3, .set_cr4 = vmx_set_cr4, #ifdef CONFIG_X86_64 .set_efer = vmx_set_efer, #endif .get_idt = vmx_get_idt, .set_idt = vmx_set_idt, .get_gdt = vmx_get_gdt, .set_gdt = vmx_set_gdt, .cache_regs = vcpu_load_rsp_rip, .decache_regs = vcpu_put_rsp_rip, .get_rflags = vmx_get_rflags, .set_rflags = vmx_set_rflags, .tlb_flush = vmx_flush_tlb, .inject_page_fault = vmx_inject_page_fault, .inject_gp = vmx_inject_gp, .run = vmx_vcpu_run, .skip_emulated_instruction = skip_emulated_instruction, .vcpu_setup = vmx_vcpu_setup, }; static int __init vmx_init(void) { return kvm_init_arch(&vmx_arch_ops, THIS_MODULE); } static void __exit vmx_exit(void) { kvm_exit_arch(); } module_init(vmx_init) module_exit(vmx_exit)