/* Shadow page table operations. * Copyright (C) Rusty Russell IBM Corporation 2006. * GPL v2 and any later version */ #include #include #include #include #include #include #include "lg.h" #define PTES_PER_PAGE_SHIFT 10 #define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT) #define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1) static DEFINE_PER_CPU(spte_t *, switcher_pte_pages); #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) static unsigned vaddr_to_pgd_index(unsigned long vaddr) { return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); } /* These access the shadow versions (ie. the ones used by the CPU). */ static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr) { unsigned int index = vaddr_to_pgd_index(vaddr); if (index >= SWITCHER_PGD_INDEX) { kill_guest(lg, "attempt to access switcher pages"); index = 0; } return &lg->pgdirs[i].pgdir[index]; } static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr) { spte_t *page = __va(spgd.pfn << PAGE_SHIFT); BUG_ON(!(spgd.flags & _PAGE_PRESENT)); return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE]; } /* These access the guest versions. */ static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr) { unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t); } static unsigned long gpte_addr(struct lguest *lg, gpgd_t gpgd, unsigned long vaddr) { unsigned long gpage = gpgd.pfn << PAGE_SHIFT; BUG_ON(!(gpgd.flags & _PAGE_PRESENT)); return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t); } /* Do a virtual -> physical mapping on a user page. */ static unsigned long get_pfn(unsigned long virtpfn, int write) { struct page *page; unsigned long ret = -1UL; down_read(¤t->mm->mmap_sem); if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT, 1, write, 1, &page, NULL) == 1) ret = page_to_pfn(page); up_read(¤t->mm->mmap_sem); return ret; } static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write) { spte_t spte; unsigned long pfn; /* We ignore the global flag. */ spte.flags = (gpte.flags & ~_PAGE_GLOBAL); pfn = get_pfn(gpte.pfn, write); if (pfn == -1UL) { kill_guest(lg, "failed to get page %u", gpte.pfn); /* Must not put_page() bogus page on cleanup. */ spte.flags = 0; } spte.pfn = pfn; return spte; } static void release_pte(spte_t pte) { if (pte.flags & _PAGE_PRESENT) put_page(pfn_to_page(pte.pfn)); } static void check_gpte(struct lguest *lg, gpte_t gpte) { if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit) kill_guest(lg, "bad page table entry"); } static void check_gpgd(struct lguest *lg, gpgd_t gpgd) { if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit) kill_guest(lg, "bad page directory entry"); } /* FIXME: We hold reference to pages, which prevents them from being swapped. It'd be nice to have a callback when Linux wants to swap out. */ /* We fault pages in, which allows us to update accessed/dirty bits. * Return true if we got page. */ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) { gpgd_t gpgd; spgd_t *spgd; unsigned long gpte_ptr; gpte_t gpte; spte_t *spte; gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr))); if (!(gpgd.flags & _PAGE_PRESENT)) return 0; spgd = spgd_addr(lg, lg->pgdidx, vaddr); if (!(spgd->flags & _PAGE_PRESENT)) { /* Get a page of PTEs for them. */ unsigned long ptepage = get_zeroed_page(GFP_KERNEL); /* FIXME: Steal from self in this case? */ if (!ptepage) { kill_guest(lg, "out of memory allocating pte page"); return 0; } check_gpgd(lg, gpgd); spgd->raw.val = (__pa(ptepage) | gpgd.flags); } gpte_ptr = gpte_addr(lg, gpgd, vaddr); gpte = mkgpte(lgread_u32(lg, gpte_ptr)); /* No page? */ if (!(gpte.flags & _PAGE_PRESENT)) return 0; /* Write to read-only page? */ if ((errcode & 2) && !(gpte.flags & _PAGE_RW)) return 0; /* User access to a non-user page? */ if ((errcode & 4) && !(gpte.flags & _PAGE_USER)) return 0; check_gpte(lg, gpte); gpte.flags |= _PAGE_ACCESSED; if (errcode & 2) gpte.flags |= _PAGE_DIRTY; /* We're done with the old pte. */ spte = spte_addr(lg, *spgd, vaddr); release_pte(*spte); /* We don't make it writable if this isn't a write: later * write will fault so we can set dirty bit in guest. */ if (gpte.flags & _PAGE_DIRTY) *spte = gpte_to_spte(lg, gpte, 1); else { gpte_t ro_gpte = gpte; ro_gpte.flags &= ~_PAGE_RW; *spte = gpte_to_spte(lg, ro_gpte, 0); } /* Now we update dirty/accessed on guest. */ lgwrite_u32(lg, gpte_ptr, gpte.raw.val); return 1; } /* This is much faster than the full demand_page logic. */ static int page_writable(struct lguest *lg, unsigned long vaddr) { spgd_t *spgd; unsigned long flags; spgd = spgd_addr(lg, lg->pgdidx, vaddr); if (!(spgd->flags & _PAGE_PRESENT)) return 0; flags = spte_addr(lg, *spgd, vaddr)->flags; return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); } void pin_page(struct lguest *lg, unsigned long vaddr) { if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2)) kill_guest(lg, "bad stack page %#lx", vaddr); } static void release_pgd(struct lguest *lg, spgd_t *spgd) { if (spgd->flags & _PAGE_PRESENT) { unsigned int i; spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT); for (i = 0; i < PTES_PER_PAGE; i++) release_pte(ptepage[i]); free_page((long)ptepage); spgd->raw.val = 0; } } static void flush_user_mappings(struct lguest *lg, int idx) { unsigned int i; for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++) release_pgd(lg, lg->pgdirs[idx].pgdir + i); } void guest_pagetable_flush_user(struct lguest *lg) { flush_user_mappings(lg, lg->pgdidx); } static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) { unsigned int i; for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) if (lg->pgdirs[i].cr3 == pgtable) break; return i; } static unsigned int new_pgdir(struct lguest *lg, unsigned long cr3, int *blank_pgdir) { unsigned int next; next = random32() % ARRAY_SIZE(lg->pgdirs); if (!lg->pgdirs[next].pgdir) { lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL); if (!lg->pgdirs[next].pgdir) next = lg->pgdidx; else /* There are no mappings: you'll need to re-pin */ *blank_pgdir = 1; } lg->pgdirs[next].cr3 = cr3; /* Release all the non-kernel mappings. */ flush_user_mappings(lg, next); return next; } void guest_new_pagetable(struct lguest *lg, unsigned long pgtable) { int newpgdir, repin = 0; newpgdir = find_pgdir(lg, pgtable); if (newpgdir == ARRAY_SIZE(lg->pgdirs)) newpgdir = new_pgdir(lg, pgtable, &repin); lg->pgdidx = newpgdir; if (repin) pin_stack_pages(lg); } static void release_all_pagetables(struct lguest *lg) { unsigned int i, j; for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) if (lg->pgdirs[i].pgdir) for (j = 0; j < SWITCHER_PGD_INDEX; j++) release_pgd(lg, lg->pgdirs[i].pgdir + j); } void guest_pagetable_clear_all(struct lguest *lg) { release_all_pagetables(lg); pin_stack_pages(lg); } static void do_set_pte(struct lguest *lg, int idx, unsigned long vaddr, gpte_t gpte) { spgd_t *spgd = spgd_addr(lg, idx, vaddr); if (spgd->flags & _PAGE_PRESENT) { spte_t *spte = spte_addr(lg, *spgd, vaddr); release_pte(*spte); if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) { check_gpte(lg, gpte); *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY); } else spte->raw.val = 0; } } void guest_set_pte(struct lguest *lg, unsigned long cr3, unsigned long vaddr, gpte_t gpte) { /* Kernel mappings must be changed on all top levels. */ if (vaddr >= lg->page_offset) { unsigned int i; for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) if (lg->pgdirs[i].pgdir) do_set_pte(lg, i, vaddr, gpte); } else { int pgdir = find_pgdir(lg, cr3); if (pgdir != ARRAY_SIZE(lg->pgdirs)) do_set_pte(lg, pgdir, vaddr, gpte); } } void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx) { int pgdir; if (idx >= SWITCHER_PGD_INDEX) return; pgdir = find_pgdir(lg, cr3); if (pgdir < ARRAY_SIZE(lg->pgdirs)) release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); } int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) { /* We assume this in flush_user_mappings, so check now */ if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX) return -EINVAL; lg->pgdidx = 0; lg->pgdirs[lg->pgdidx].cr3 = pgtable; lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL); if (!lg->pgdirs[lg->pgdidx].pgdir) return -ENOMEM; return 0; } void free_guest_pagetable(struct lguest *lg) { unsigned int i; release_all_pagetables(lg); for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) free_page((long)lg->pgdirs[i].pgdir); } /* Caller must be preempt-safe */ void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages) { spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); spgd_t switcher_pgd; spte_t regs_pte; /* Since switcher less that 4MB, we simply mug top pte page. */ switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT; switcher_pgd.flags = _PAGE_KERNEL; lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; /* Map our regs page over stack page. */ regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT; regs_pte.flags = _PAGE_KERNEL; switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE] = regs_pte; } static void free_switcher_pte_pages(void) { unsigned int i; for_each_possible_cpu(i) free_page((long)switcher_pte_page(i)); } static __init void populate_switcher_pte_page(unsigned int cpu, struct page *switcher_page[], unsigned int pages) { unsigned int i; spte_t *pte = switcher_pte_page(cpu); for (i = 0; i < pages; i++) { pte[i].pfn = page_to_pfn(switcher_page[i]); pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED; } /* We only map this CPU's pages, so guest can't see others. */ i = pages + cpu*2; /* First page (regs) is rw, second (state) is ro. */ pte[i].pfn = page_to_pfn(switcher_page[i]); pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW; pte[i+1].pfn = page_to_pfn(switcher_page[i+1]); pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED; } __init int init_pagetables(struct page **switcher_page, unsigned int pages) { unsigned int i; for_each_possible_cpu(i) { switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL); if (!switcher_pte_page(i)) { free_switcher_pte_pages(); return -ENOMEM; } populate_switcher_pte_page(i, switcher_page, pages); } return 0; } void free_pagetables(void) { free_switcher_pte_pages(); }