/* Driver for Zarlink VP310/MT312 Satellite Channel Decoder Copyright (C) 2003 Andreas Oberritter <obi@linuxtv.org> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. References: http://products.zarlink.com/product_profiles/MT312.htm http://products.zarlink.com/product_profiles/SL1935.htm */ #include <linux/delay.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include <linux/slab.h> #include "dvb_frontend.h" #include "mt312_priv.h" #include "mt312.h" struct mt312_state { struct i2c_adapter *i2c; /* configuration settings */ const struct mt312_config *config; struct dvb_frontend frontend; u8 id; u8 frequency; }; static int debug; #define dprintk(args...) \ do { \ if (debug) \ printk(KERN_DEBUG "mt312: " args); \ } while (0) #define MT312_SYS_CLK 90000000UL /* 90 MHz */ #define MT312_LPOWER_SYS_CLK 60000000UL /* 60 MHz */ #define MT312_PLL_CLK 10000000UL /* 10 MHz */ static int mt312_read(struct mt312_state *state, const enum mt312_reg_addr reg, void *buf, const size_t count) { int ret; struct i2c_msg msg[2]; u8 regbuf[1] = { reg }; msg[0].addr = state->config->demod_address; msg[0].flags = 0; msg[0].buf = regbuf; msg[0].len = 1; msg[1].addr = state->config->demod_address; msg[1].flags = I2C_M_RD; msg[1].buf = buf; msg[1].len = count; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { printk(KERN_ERR "%s: ret == %d\n", __FUNCTION__, ret); return -EREMOTEIO; } if (debug) { int i; dprintk("R(%d):", reg & 0x7f); for (i = 0; i < count; i++) printk(" %02x", ((const u8 *) buf)[i]); printk("\n"); } return 0; } static int mt312_write(struct mt312_state *state, const enum mt312_reg_addr reg, const void *src, const size_t count) { int ret; u8 buf[count + 1]; struct i2c_msg msg; if (debug) { int i; dprintk("W(%d):", reg & 0x7f); for (i = 0; i < count; i++) printk(" %02x", ((const u8 *) src)[i]); printk("\n"); } buf[0] = reg; memcpy(&buf[1], src, count); msg.addr = state->config->demod_address; msg.flags = 0; msg.buf = buf; msg.len = count + 1; ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) { dprintk("%s: ret == %d\n", __FUNCTION__, ret); return -EREMOTEIO; } return 0; } static inline int mt312_readreg(struct mt312_state *state, const enum mt312_reg_addr reg, u8 *val) { return mt312_read(state, reg, val, 1); } static inline int mt312_writereg(struct mt312_state *state, const enum mt312_reg_addr reg, const u8 val) { return mt312_write(state, reg, &val, 1); } static inline u32 mt312_div(u32 a, u32 b) { return (a + (b / 2)) / b; } static int mt312_reset(struct mt312_state *state, const u8 full) { return mt312_writereg(state, RESET, full ? 0x80 : 0x40); } static int mt312_get_inversion(struct mt312_state *state, fe_spectral_inversion_t *i) { int ret; u8 vit_mode; ret = mt312_readreg(state, VIT_MODE, &vit_mode); if (ret < 0) return ret; if (vit_mode & 0x80) /* auto inversion was used */ *i = (vit_mode & 0x40) ? INVERSION_ON : INVERSION_OFF; return 0; } static int mt312_get_symbol_rate(struct mt312_state *state, u32 *sr) { int ret; u8 sym_rate_h; u8 dec_ratio; u16 sym_rat_op; u16 monitor; u8 buf[2]; ret = mt312_readreg(state, SYM_RATE_H, &sym_rate_h); if (ret < 0) return ret; if (sym_rate_h & 0x80) { /* symbol rate search was used */ ret = mt312_writereg(state, MON_CTRL, 0x03); if (ret < 0) return ret; ret = mt312_read(state, MONITOR_H, buf, sizeof(buf)); if (ret < 0) return ret; monitor = (buf[0] << 8) | buf[1]; dprintk("sr(auto) = %u\n", mt312_div(monitor * 15625, 4)); } else { ret = mt312_writereg(state, MON_CTRL, 0x05); if (ret < 0) return ret; ret = mt312_read(state, MONITOR_H, buf, sizeof(buf)); if (ret < 0) return ret; dec_ratio = ((buf[0] >> 5) & 0x07) * 32; ret = mt312_read(state, SYM_RAT_OP_H, buf, sizeof(buf)); if (ret < 0) return ret; sym_rat_op = (buf[0] << 8) | buf[1]; dprintk("sym_rat_op=%d dec_ratio=%d\n", sym_rat_op, dec_ratio); dprintk("*sr(manual) = %lu\n", (((MT312_PLL_CLK * 8192) / (sym_rat_op + 8192)) * 2) - dec_ratio); } return 0; } static int mt312_get_code_rate(struct mt312_state *state, fe_code_rate_t *cr) { const fe_code_rate_t fec_tab[8] = { FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_6_7, FEC_7_8, FEC_AUTO, FEC_AUTO }; int ret; u8 fec_status; ret = mt312_readreg(state, FEC_STATUS, &fec_status); if (ret < 0) return ret; *cr = fec_tab[(fec_status >> 4) & 0x07]; return 0; } static int mt312_initfe(struct dvb_frontend *fe) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 buf[2]; /* wake up */ ret = mt312_writereg(state, CONFIG, (state->frequency == 60 ? 0x88 : 0x8c)); if (ret < 0) return ret; /* wait at least 150 usec */ udelay(150); /* full reset */ ret = mt312_reset(state, 1); if (ret < 0) return ret; /* Per datasheet, write correct values. 09/28/03 ACCJr. * If we don't do this, we won't get FE_HAS_VITERBI in the VP310. */ { u8 buf_def[8] = { 0x14, 0x12, 0x03, 0x02, 0x01, 0x00, 0x00, 0x00 }; ret = mt312_write(state, VIT_SETUP, buf_def, sizeof(buf_def)); if (ret < 0) return ret; } /* SYS_CLK */ buf[0] = mt312_div((state->frequency == 60 ? MT312_LPOWER_SYS_CLK : MT312_SYS_CLK) * 2, 1000000); /* DISEQC_RATIO */ buf[1] = mt312_div(MT312_PLL_CLK, 15000 * 4); ret = mt312_write(state, SYS_CLK, buf, sizeof(buf)); if (ret < 0) return ret; ret = mt312_writereg(state, SNR_THS_HIGH, 0x32); if (ret < 0) return ret; ret = mt312_writereg(state, OP_CTRL, 0x53); if (ret < 0) return ret; /* TS_SW_LIM */ buf[0] = 0x8c; buf[1] = 0x98; ret = mt312_write(state, TS_SW_LIM_L, buf, sizeof(buf)); if (ret < 0) return ret; ret = mt312_writereg(state, CS_SW_LIM, 0x69); if (ret < 0) return ret; return 0; } static int mt312_send_master_cmd(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *c) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 diseqc_mode; if ((c->msg_len == 0) || (c->msg_len > sizeof(c->msg))) return -EINVAL; ret = mt312_readreg(state, DISEQC_MODE, &diseqc_mode); if (ret < 0) return ret; ret = mt312_write(state, (0x80 | DISEQC_INSTR), c->msg, c->msg_len); if (ret < 0) return ret; ret = mt312_writereg(state, DISEQC_MODE, (diseqc_mode & 0x40) | ((c->msg_len - 1) << 3) | 0x04); if (ret < 0) return ret; /* set DISEQC_MODE[2:0] to zero if a return message is expected */ if (c->msg[0] & 0x02) { ret = mt312_writereg(state, DISEQC_MODE, (diseqc_mode & 0x40)); if (ret < 0) return ret; } return 0; } static int mt312_send_burst(struct dvb_frontend *fe, const fe_sec_mini_cmd_t c) { struct mt312_state *state = fe->demodulator_priv; const u8 mini_tab[2] = { 0x02, 0x03 }; int ret; u8 diseqc_mode; if (c > SEC_MINI_B) return -EINVAL; ret = mt312_readreg(state, DISEQC_MODE, &diseqc_mode); if (ret < 0) return ret; ret = mt312_writereg(state, DISEQC_MODE, (diseqc_mode & 0x40) | mini_tab[c]); if (ret < 0) return ret; return 0; } static int mt312_set_tone(struct dvb_frontend *fe, const fe_sec_tone_mode_t t) { struct mt312_state *state = fe->demodulator_priv; const u8 tone_tab[2] = { 0x01, 0x00 }; int ret; u8 diseqc_mode; if (t > SEC_TONE_OFF) return -EINVAL; ret = mt312_readreg(state, DISEQC_MODE, &diseqc_mode); if (ret < 0) return ret; ret = mt312_writereg(state, DISEQC_MODE, (diseqc_mode & 0x40) | tone_tab[t]); if (ret < 0) return ret; return 0; } static int mt312_set_voltage(struct dvb_frontend *fe, const fe_sec_voltage_t v) { struct mt312_state *state = fe->demodulator_priv; const u8 volt_tab[3] = { 0x00, 0x40, 0x00 }; if (v > SEC_VOLTAGE_OFF) return -EINVAL; return mt312_writereg(state, DISEQC_MODE, volt_tab[v]); } static int mt312_read_status(struct dvb_frontend *fe, fe_status_t *s) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 status[3]; *s = 0; ret = mt312_read(state, QPSK_STAT_H, status, sizeof(status)); if (ret < 0) return ret; dprintk("QPSK_STAT_H: 0x%02x, QPSK_STAT_L: 0x%02x," " FEC_STATUS: 0x%02x\n", status[0], status[1], status[2]); if (status[0] & 0xc0) *s |= FE_HAS_SIGNAL; /* signal noise ratio */ if (status[0] & 0x04) *s |= FE_HAS_CARRIER; /* qpsk carrier lock */ if (status[2] & 0x02) *s |= FE_HAS_VITERBI; /* viterbi lock */ if (status[2] & 0x04) *s |= FE_HAS_SYNC; /* byte align lock */ if (status[0] & 0x01) *s |= FE_HAS_LOCK; /* qpsk lock */ return 0; } static int mt312_read_ber(struct dvb_frontend *fe, u32 *ber) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 buf[3]; ret = mt312_read(state, RS_BERCNT_H, buf, 3); if (ret < 0) return ret; *ber = ((buf[0] << 16) | (buf[1] << 8) | buf[2]) * 64; return 0; } static int mt312_read_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 buf[3]; u16 agc; s16 err_db; ret = mt312_read(state, AGC_H, buf, sizeof(buf)); if (ret < 0) return ret; agc = (buf[0] << 6) | (buf[1] >> 2); err_db = (s16) (((buf[1] & 0x03) << 14) | buf[2] << 6) >> 6; *signal_strength = agc; dprintk("agc=%08x err_db=%hd\n", agc, err_db); return 0; } static int mt312_read_snr(struct dvb_frontend *fe, u16 *snr) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 buf[2]; ret = mt312_read(state, M_SNR_H, &buf, sizeof(buf)); if (ret < 0) return ret; *snr = 0xFFFF - ((((buf[0] & 0x7f) << 8) | buf[1]) << 1); return 0; } static int mt312_read_ucblocks(struct dvb_frontend *fe, u32 *ubc) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 buf[2]; ret = mt312_read(state, RS_UBC_H, &buf, sizeof(buf)); if (ret < 0) return ret; *ubc = (buf[0] << 8) | buf[1]; return 0; } static int mt312_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 buf[5], config_val; u16 sr; const u8 fec_tab[10] = { 0x00, 0x01, 0x02, 0x04, 0x3f, 0x08, 0x10, 0x20, 0x3f, 0x3f }; const u8 inv_tab[3] = { 0x00, 0x40, 0x80 }; dprintk("%s: Freq %d\n", __FUNCTION__, p->frequency); if ((p->frequency < fe->ops.info.frequency_min) || (p->frequency > fe->ops.info.frequency_max)) return -EINVAL; if ((p->inversion < INVERSION_OFF) || (p->inversion > INVERSION_ON)) return -EINVAL; if ((p->u.qpsk.symbol_rate < fe->ops.info.symbol_rate_min) || (p->u.qpsk.symbol_rate > fe->ops.info.symbol_rate_max)) return -EINVAL; if ((p->u.qpsk.fec_inner < FEC_NONE) || (p->u.qpsk.fec_inner > FEC_AUTO)) return -EINVAL; if ((p->u.qpsk.fec_inner == FEC_4_5) || (p->u.qpsk.fec_inner == FEC_8_9)) return -EINVAL; switch (state->id) { case ID_VP310: /* For now we will do this only for the VP310. * It should be better for the mt312 as well, * but tuning will be slower. ACCJr 09/29/03 */ ret = mt312_readreg(state, CONFIG, &config_val); if (ret < 0) return ret; if (p->u.qpsk.symbol_rate >= 30000000) { /* Note that 30MS/s should use 90MHz */ if ((config_val & 0x0c) == 0x08) { /* We are running 60MHz */ state->frequency = 90; ret = mt312_initfe(fe); if (ret < 0) return ret; } } else { if ((config_val & 0x0c) == 0x0C) { /* We are running 90MHz */ state->frequency = 60; ret = mt312_initfe(fe); if (ret < 0) return ret; } } break; case ID_MT312: break; default: return -EINVAL; } if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe, p); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } /* sr = (u16)(sr * 256.0 / 1000000.0) */ sr = mt312_div(p->u.qpsk.symbol_rate * 4, 15625); /* SYM_RATE */ buf[0] = (sr >> 8) & 0x3f; buf[1] = (sr >> 0) & 0xff; /* VIT_MODE */ buf[2] = inv_tab[p->inversion] | fec_tab[p->u.qpsk.fec_inner]; /* QPSK_CTRL */ buf[3] = 0x40; /* swap I and Q before QPSK demodulation */ if (p->u.qpsk.symbol_rate < 10000000) buf[3] |= 0x04; /* use afc mode */ /* GO */ buf[4] = 0x01; ret = mt312_write(state, SYM_RATE_H, buf, sizeof(buf)); if (ret < 0) return ret; mt312_reset(state, 0); return 0; } static int mt312_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct mt312_state *state = fe->demodulator_priv; int ret; ret = mt312_get_inversion(state, &p->inversion); if (ret < 0) return ret; ret = mt312_get_symbol_rate(state, &p->u.qpsk.symbol_rate); if (ret < 0) return ret; ret = mt312_get_code_rate(state, &p->u.qpsk.fec_inner); if (ret < 0) return ret; return 0; } static int mt312_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct mt312_state *state = fe->demodulator_priv; if (enable) { return mt312_writereg(state, GPP_CTRL, 0x40); } else { return mt312_writereg(state, GPP_CTRL, 0x00); } } static int mt312_sleep(struct dvb_frontend *fe) { struct mt312_state *state = fe->demodulator_priv; int ret; u8 config; /* reset all registers to defaults */ ret = mt312_reset(state, 1); if (ret < 0) return ret; ret = mt312_readreg(state, CONFIG, &config); if (ret < 0) return ret; /* enter standby */ ret = mt312_writereg(state, CONFIG, config & 0x7f); if (ret < 0) return ret; return 0; } static int mt312_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *fesettings) { fesettings->min_delay_ms = 50; fesettings->step_size = 0; fesettings->max_drift = 0; return 0; } static void mt312_release(struct dvb_frontend *fe) { struct mt312_state *state = fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops vp310_mt312_ops = { .info = { .name = "Zarlink ???? DVB-S", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = (MT312_PLL_CLK / 1000) / 128, .symbol_rate_min = MT312_SYS_CLK / 128, .symbol_rate_max = MT312_SYS_CLK / 2, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_MUTE_TS | FE_CAN_RECOVER }, .release = mt312_release, .init = mt312_initfe, .sleep = mt312_sleep, .i2c_gate_ctrl = mt312_i2c_gate_ctrl, .set_frontend = mt312_set_frontend, .get_frontend = mt312_get_frontend, .get_tune_settings = mt312_get_tune_settings, .read_status = mt312_read_status, .read_ber = mt312_read_ber, .read_signal_strength = mt312_read_signal_strength, .read_snr = mt312_read_snr, .read_ucblocks = mt312_read_ucblocks, .diseqc_send_master_cmd = mt312_send_master_cmd, .diseqc_send_burst = mt312_send_burst, .set_tone = mt312_set_tone, .set_voltage = mt312_set_voltage, }; struct dvb_frontend *vp310_mt312_attach(const struct mt312_config *config, struct i2c_adapter *i2c) { struct mt312_state *state = NULL; /* allocate memory for the internal state */ state = kmalloc(sizeof(struct mt312_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; /* check if the demod is there */ if (mt312_readreg(state, ID, &state->id) < 0) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &vp310_mt312_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; switch (state->id) { case ID_VP310: strcpy(state->frontend.ops.info.name, "Zarlink VP310 DVB-S"); state->frequency = 90; break; case ID_MT312: strcpy(state->frontend.ops.info.name, "Zarlink MT312 DVB-S"); state->frequency = 60; break; default: printk(KERN_WARNING "Only Zarlink VP310/MT312" " are supported chips.\n"); goto error; } return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(vp310_mt312_attach); module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("Zarlink VP310/MT312 DVB-S Demodulator driver"); MODULE_AUTHOR("Andreas Oberritter <obi@linuxtv.org>"); MODULE_LICENSE("GPL");