/* Driver for the Spase sp887x demodulator */ /* * This driver needs external firmware. Please use the command * "<kerneldir>/Documentation/dvb/get_dvb_firmware sp887x" to * download/extract it, and then copy it to /usr/lib/hotplug/firmware. */ #define SP887X_DEFAULT_FIRMWARE "dvb-fe-sp887x.fw" #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/device.h> #include <linux/firmware.h> #include "dvb_frontend.h" #include "sp887x.h" struct sp887x_state { struct i2c_adapter* i2c; struct dvb_frontend_ops ops; const struct sp887x_config* config; struct dvb_frontend frontend; /* demodulator private data */ u8 initialised:1; }; static int debug; #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG "sp887x: " args); \ } while (0) static int i2c_writebytes (struct sp887x_state* state, u8 *buf, u8 len) { struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = len }; int err; if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) { printk ("%s: i2c write error (addr %02x, err == %i)\n", __FUNCTION__, state->config->demod_address, err); return -EREMOTEIO; } return 0; } static int sp887x_writereg (struct sp887x_state* state, u16 reg, u16 data) { u8 b0 [] = { reg >> 8 , reg & 0xff, data >> 8, data & 0xff }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 4 }; int ret; if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1) { /** * in case of soft reset we ignore ACK errors... */ if (!(reg == 0xf1a && data == 0x000 && (ret == -EREMOTEIO || ret == -EFAULT))) { printk("%s: writereg error " "(reg %03x, data %03x, ret == %i)\n", __FUNCTION__, reg & 0xffff, data & 0xffff, ret); return ret; } } return 0; } static int sp887x_readreg (struct sp887x_state* state, u16 reg) { u8 b0 [] = { reg >> 8 , reg & 0xff }; u8 b1 [2]; int ret; struct i2c_msg msg[] = {{ .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 2 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 2 }}; if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) { printk("%s: readreg error (ret == %i)\n", __FUNCTION__, ret); return -1; } return (((b1[0] << 8) | b1[1]) & 0xfff); } static void sp887x_microcontroller_stop (struct sp887x_state* state) { dprintk("%s\n", __FUNCTION__); sp887x_writereg(state, 0xf08, 0x000); sp887x_writereg(state, 0xf09, 0x000); /* microcontroller STOP */ sp887x_writereg(state, 0xf00, 0x000); } static void sp887x_microcontroller_start (struct sp887x_state* state) { dprintk("%s\n", __FUNCTION__); sp887x_writereg(state, 0xf08, 0x000); sp887x_writereg(state, 0xf09, 0x000); /* microcontroller START */ sp887x_writereg(state, 0xf00, 0x001); } static void sp887x_setup_agc (struct sp887x_state* state) { /* setup AGC parameters */ dprintk("%s\n", __FUNCTION__); sp887x_writereg(state, 0x33c, 0x054); sp887x_writereg(state, 0x33b, 0x04c); sp887x_writereg(state, 0x328, 0x000); sp887x_writereg(state, 0x327, 0x005); sp887x_writereg(state, 0x326, 0x001); sp887x_writereg(state, 0x325, 0x001); sp887x_writereg(state, 0x324, 0x001); sp887x_writereg(state, 0x318, 0x050); sp887x_writereg(state, 0x317, 0x3fe); sp887x_writereg(state, 0x316, 0x001); sp887x_writereg(state, 0x313, 0x005); sp887x_writereg(state, 0x312, 0x002); sp887x_writereg(state, 0x306, 0x000); sp887x_writereg(state, 0x303, 0x000); } #define BLOCKSIZE 30 #define FW_SIZE 0x4000 /** * load firmware and setup MPEG interface... */ static int sp887x_initial_setup (struct dvb_frontend* fe, const struct firmware *fw) { struct sp887x_state* state = fe->demodulator_priv; u8 buf [BLOCKSIZE+2]; int i; int fw_size = fw->size; unsigned char *mem = fw->data; dprintk("%s\n", __FUNCTION__); /* ignore the first 10 bytes, then we expect 0x4000 bytes of firmware */ if (fw_size < FW_SIZE+10) return -ENODEV; mem = fw->data + 10; /* soft reset */ sp887x_writereg(state, 0xf1a, 0x000); sp887x_microcontroller_stop (state); printk ("%s: firmware upload... ", __FUNCTION__); /* setup write pointer to -1 (end of memory) */ /* bit 0x8000 in address is set to enable 13bit mode */ sp887x_writereg(state, 0x8f08, 0x1fff); /* dummy write (wrap around to start of memory) */ sp887x_writereg(state, 0x8f0a, 0x0000); for (i = 0; i < FW_SIZE; i += BLOCKSIZE) { int c = BLOCKSIZE; int err; if (i+c > FW_SIZE) c = FW_SIZE - i; /* bit 0x8000 in address is set to enable 13bit mode */ /* bit 0x4000 enables multibyte read/write transfers */ /* write register is 0xf0a */ buf[0] = 0xcf; buf[1] = 0x0a; memcpy(&buf[2], mem + i, c); if ((err = i2c_writebytes (state, buf, c+2)) < 0) { printk ("failed.\n"); printk ("%s: i2c error (err == %i)\n", __FUNCTION__, err); return err; } } /* don't write RS bytes between packets */ sp887x_writereg(state, 0xc13, 0x001); /* suppress clock if (!data_valid) */ sp887x_writereg(state, 0xc14, 0x000); /* setup MPEG interface... */ sp887x_writereg(state, 0xc1a, 0x872); sp887x_writereg(state, 0xc1b, 0x001); sp887x_writereg(state, 0xc1c, 0x000); /* parallel mode (serial mode == 1) */ sp887x_writereg(state, 0xc1a, 0x871); /* ADC mode, 2 for MT8872, 3 for SP8870/SP8871 */ sp887x_writereg(state, 0x301, 0x002); sp887x_setup_agc(state); /* bit 0x010: enable data valid signal */ sp887x_writereg(state, 0xd00, 0x010); sp887x_writereg(state, 0x0d1, 0x000); /* setup the PLL */ if (state->config->pll_init) { sp887x_writereg(state, 0x206, 0x001); state->config->pll_init(fe); sp887x_writereg(state, 0x206, 0x000); } printk ("done.\n"); return 0; }; static int configure_reg0xc05 (struct dvb_frontend_parameters *p, u16 *reg0xc05) { int known_parameters = 1; *reg0xc05 = 0x000; switch (p->u.ofdm.constellation) { case QPSK: break; case QAM_16: *reg0xc05 |= (1 << 10); break; case QAM_64: *reg0xc05 |= (2 << 10); break; case QAM_AUTO: known_parameters = 0; break; default: return -EINVAL; }; switch (p->u.ofdm.hierarchy_information) { case HIERARCHY_NONE: break; case HIERARCHY_1: *reg0xc05 |= (1 << 7); break; case HIERARCHY_2: *reg0xc05 |= (2 << 7); break; case HIERARCHY_4: *reg0xc05 |= (3 << 7); break; case HIERARCHY_AUTO: known_parameters = 0; break; default: return -EINVAL; }; switch (p->u.ofdm.code_rate_HP) { case FEC_1_2: break; case FEC_2_3: *reg0xc05 |= (1 << 3); break; case FEC_3_4: *reg0xc05 |= (2 << 3); break; case FEC_5_6: *reg0xc05 |= (3 << 3); break; case FEC_7_8: *reg0xc05 |= (4 << 3); break; case FEC_AUTO: known_parameters = 0; break; default: return -EINVAL; }; if (known_parameters) *reg0xc05 |= (2 << 1); /* use specified parameters */ else *reg0xc05 |= (1 << 1); /* enable autoprobing */ return 0; } /** * estimates division of two 24bit numbers, * derived from the ves1820/stv0299 driver code */ static void divide (int n, int d, int *quotient_i, int *quotient_f) { unsigned int q, r; r = (n % d) << 8; q = (r / d); if (quotient_i) *quotient_i = q; if (quotient_f) { r = (r % d) << 8; q = (q << 8) | (r / d); r = (r % d) << 8; *quotient_f = (q << 8) | (r / d); } } static void sp887x_correct_offsets (struct sp887x_state* state, struct dvb_frontend_parameters *p, int actual_freq) { static const u32 srate_correction [] = { 1879617, 4544878, 8098561 }; int bw_index = p->u.ofdm.bandwidth - BANDWIDTH_8_MHZ; int freq_offset = actual_freq - p->frequency; int sysclock = 61003; //[kHz] int ifreq = 36000000; int freq; int frequency_shift; if (p->inversion == INVERSION_ON) freq = ifreq - freq_offset; else freq = ifreq + freq_offset; divide(freq / 333, sysclock, NULL, &frequency_shift); if (p->inversion == INVERSION_ON) frequency_shift = -frequency_shift; /* sample rate correction */ sp887x_writereg(state, 0x319, srate_correction[bw_index] >> 12); sp887x_writereg(state, 0x31a, srate_correction[bw_index] & 0xfff); /* carrier offset correction */ sp887x_writereg(state, 0x309, frequency_shift >> 12); sp887x_writereg(state, 0x30a, frequency_shift & 0xfff); } static int sp887x_setup_frontend_parameters (struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct sp887x_state* state = fe->demodulator_priv; int actual_freq, err; u16 val, reg0xc05; if (p->u.ofdm.bandwidth != BANDWIDTH_8_MHZ && p->u.ofdm.bandwidth != BANDWIDTH_7_MHZ && p->u.ofdm.bandwidth != BANDWIDTH_6_MHZ) return -EINVAL; if ((err = configure_reg0xc05(p, ®0xc05))) return err; sp887x_microcontroller_stop(state); /* setup the PLL */ sp887x_writereg(state, 0x206, 0x001); actual_freq = state->config->pll_set(fe, p); sp887x_writereg(state, 0x206, 0x000); /* read status reg in order to clear <pending irqs */ sp887x_readreg(state, 0x200); sp887x_correct_offsets(state, p, actual_freq); /* filter for 6/7/8 Mhz channel */ if (p->u.ofdm.bandwidth == BANDWIDTH_6_MHZ) val = 2; else if (p->u.ofdm.bandwidth == BANDWIDTH_7_MHZ) val = 1; else val = 0; sp887x_writereg(state, 0x311, val); /* scan order: 2k first = 0, 8k first = 1 */ if (p->u.ofdm.transmission_mode == TRANSMISSION_MODE_2K) sp887x_writereg(state, 0x338, 0x000); else sp887x_writereg(state, 0x338, 0x001); sp887x_writereg(state, 0xc05, reg0xc05); if (p->u.ofdm.bandwidth == BANDWIDTH_6_MHZ) val = 2 << 3; else if (p->u.ofdm.bandwidth == BANDWIDTH_7_MHZ) val = 3 << 3; else val = 0 << 3; /* enable OFDM and SAW bits as lock indicators in sync register 0xf17, * optimize algorithm for given bandwidth... */ sp887x_writereg(state, 0xf14, 0x160 | val); sp887x_writereg(state, 0xf15, 0x000); sp887x_microcontroller_start(state); return 0; } static int sp887x_read_status(struct dvb_frontend* fe, fe_status_t* status) { struct sp887x_state* state = fe->demodulator_priv; u16 snr12 = sp887x_readreg(state, 0xf16); u16 sync0x200 = sp887x_readreg(state, 0x200); u16 sync0xf17 = sp887x_readreg(state, 0xf17); *status = 0; if (snr12 > 0x00f) *status |= FE_HAS_SIGNAL; //if (sync0x200 & 0x004) // *status |= FE_HAS_SYNC | FE_HAS_CARRIER; //if (sync0x200 & 0x008) // *status |= FE_HAS_VITERBI; if ((sync0xf17 & 0x00f) == 0x002) { *status |= FE_HAS_LOCK; *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_CARRIER; } if (sync0x200 & 0x001) { /* tuner adjustment requested...*/ int steps = (sync0x200 >> 4) & 0x00f; if (steps & 0x008) steps = -steps; dprintk("sp887x: implement tuner adjustment (%+i steps)!!\n", steps); } return 0; } static int sp887x_read_ber(struct dvb_frontend* fe, u32* ber) { struct sp887x_state* state = fe->demodulator_priv; *ber = (sp887x_readreg(state, 0xc08) & 0x3f) | (sp887x_readreg(state, 0xc07) << 6); sp887x_writereg(state, 0xc08, 0x000); sp887x_writereg(state, 0xc07, 0x000); if (*ber >= 0x3fff0) *ber = ~0; return 0; } static int sp887x_read_signal_strength(struct dvb_frontend* fe, u16* strength) { struct sp887x_state* state = fe->demodulator_priv; u16 snr12 = sp887x_readreg(state, 0xf16); u32 signal = 3 * (snr12 << 4); *strength = (signal < 0xffff) ? signal : 0xffff; return 0; } static int sp887x_read_snr(struct dvb_frontend* fe, u16* snr) { struct sp887x_state* state = fe->demodulator_priv; u16 snr12 = sp887x_readreg(state, 0xf16); *snr = (snr12 << 4) | (snr12 >> 8); return 0; } static int sp887x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct sp887x_state* state = fe->demodulator_priv; *ucblocks = sp887x_readreg(state, 0xc0c); if (*ucblocks == 0xfff) *ucblocks = ~0; return 0; } static int sp887x_sleep(struct dvb_frontend* fe) { struct sp887x_state* state = fe->demodulator_priv; /* tristate TS output and disable interface pins */ sp887x_writereg(state, 0xc18, 0x000); return 0; } static int sp887x_init(struct dvb_frontend* fe) { struct sp887x_state* state = fe->demodulator_priv; const struct firmware *fw = NULL; int ret; if (!state->initialised) { /* request the firmware, this will block until someone uploads it */ printk("sp887x: waiting for firmware upload (%s)...\n", SP887X_DEFAULT_FIRMWARE); ret = state->config->request_firmware(fe, &fw, SP887X_DEFAULT_FIRMWARE); if (ret) { printk("sp887x: no firmware upload (timeout or file not found?)\n"); return ret; } ret = sp887x_initial_setup(fe, fw); if (ret) { printk("sp887x: writing firmware to device failed\n"); release_firmware(fw); return ret; } printk("sp887x: firmware upload complete\n"); state->initialised = 1; } /* enable TS output and interface pins */ sp887x_writereg(state, 0xc18, 0x00d); return 0; } static int sp887x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings) { fesettings->min_delay_ms = 350; fesettings->step_size = 166666*2; fesettings->max_drift = (166666*2)+1; return 0; } static void sp887x_release(struct dvb_frontend* fe) { struct sp887x_state* state = fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops sp887x_ops; struct dvb_frontend* sp887x_attach(const struct sp887x_config* config, struct i2c_adapter* i2c) { struct sp887x_state* state = NULL; /* allocate memory for the internal state */ state = kmalloc(sizeof(struct sp887x_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; memcpy(&state->ops, &sp887x_ops, sizeof(struct dvb_frontend_ops)); state->initialised = 0; /* check if the demod is there */ if (sp887x_readreg(state, 0x0200) < 0) goto error; /* create dvb_frontend */ state->frontend.ops = &state->ops; state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } static struct dvb_frontend_ops sp887x_ops = { .info = { .name = "Spase SP887x DVB-T", .type = FE_OFDM, .frequency_min = 50500000, .frequency_max = 858000000, .frequency_stepsize = 166666, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_RECOVER }, .release = sp887x_release, .init = sp887x_init, .sleep = sp887x_sleep, .set_frontend = sp887x_setup_frontend_parameters, .get_tune_settings = sp887x_get_tune_settings, .read_status = sp887x_read_status, .read_ber = sp887x_read_ber, .read_signal_strength = sp887x_read_signal_strength, .read_snr = sp887x_read_snr, .read_ucblocks = sp887x_read_ucblocks, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("Spase sp887x DVB-T demodulator driver"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(sp887x_attach);