/* tda18271-fe.c - driver for the Philips / NXP TDA18271 silicon tuner Copyright (C) 2007 Michael Krufky (mkrufky@linuxtv.org) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "tuner-driver.h" #include "tda18271.h" #include "tda18271-priv.h" static int tda18271_debug; module_param_named(debug, tda18271_debug, int, 0644); MODULE_PARM_DESC(debug, "set debug level (info=1, map=2, reg=4 (or-able))"); #define dprintk(level, fmt, arg...) do {\ if (tda18271_debug & level) \ printk(KERN_DEBUG "%s: " fmt, __FUNCTION__, ##arg); } while (0) #define DBG_INFO 1 #define DBG_MAP 2 #define DBG_REG 4 #define dbg_info(fmt, arg...) dprintk(DBG_INFO, fmt, ##arg) #define dbg_map(fmt, arg...) dprintk(DBG_MAP, fmt, ##arg) #define dbg_reg(fmt, arg...) dprintk(DBG_REG, fmt, ##arg) /*---------------------------------------------------------------------*/ #define TDA18271_ANALOG 0 #define TDA18271_DIGITAL 1 struct tda18271_priv { u8 i2c_addr; struct i2c_adapter *i2c_adap; unsigned char tda18271_regs[TDA18271_NUM_REGS]; int mode; u32 frequency; u32 bandwidth; }; static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct tda18271_priv *priv = fe->tuner_priv; struct analog_tuner_ops *ops = fe->ops.analog_demod_ops; int ret = 0; switch (priv->mode) { case TDA18271_ANALOG: if (ops && ops->i2c_gate_ctrl) ret = ops->i2c_gate_ctrl(fe, enable); break; case TDA18271_DIGITAL: if (fe->ops.i2c_gate_ctrl) ret = fe->ops.i2c_gate_ctrl(fe, enable); break; } return ret; }; /*---------------------------------------------------------------------*/ static void tda18271_dump_regs(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; dbg_reg("=== TDA18271 REG DUMP ===\n"); dbg_reg("ID_BYTE = 0x%x\n", 0xff & regs[R_ID]); dbg_reg("THERMO_BYTE = 0x%x\n", 0xff & regs[R_TM]); dbg_reg("POWER_LEVEL_BYTE = 0x%x\n", 0xff & regs[R_PL]); dbg_reg("EASY_PROG_BYTE_1 = 0x%x\n", 0xff & regs[R_EP1]); dbg_reg("EASY_PROG_BYTE_2 = 0x%x\n", 0xff & regs[R_EP2]); dbg_reg("EASY_PROG_BYTE_3 = 0x%x\n", 0xff & regs[R_EP3]); dbg_reg("EASY_PROG_BYTE_4 = 0x%x\n", 0xff & regs[R_EP4]); dbg_reg("EASY_PROG_BYTE_5 = 0x%x\n", 0xff & regs[R_EP5]); dbg_reg("CAL_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_CPD]); dbg_reg("CAL_DIV_BYTE_1 = 0x%x\n", 0xff & regs[R_CD1]); dbg_reg("CAL_DIV_BYTE_2 = 0x%x\n", 0xff & regs[R_CD2]); dbg_reg("CAL_DIV_BYTE_3 = 0x%x\n", 0xff & regs[R_CD3]); dbg_reg("MAIN_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_MPD]); dbg_reg("MAIN_DIV_BYTE_1 = 0x%x\n", 0xff & regs[R_MD1]); dbg_reg("MAIN_DIV_BYTE_2 = 0x%x\n", 0xff & regs[R_MD2]); dbg_reg("MAIN_DIV_BYTE_3 = 0x%x\n", 0xff & regs[R_MD3]); } static void tda18271_read_regs(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; unsigned char buf = 0x00; int ret; struct i2c_msg msg[] = { { .addr = priv->i2c_addr, .flags = 0, .buf = &buf, .len = 1 }, { .addr = priv->i2c_addr, .flags = I2C_M_RD, .buf = regs, .len = 16 } }; tda18271_i2c_gate_ctrl(fe, 1); /* read all registers */ ret = i2c_transfer(priv->i2c_adap, msg, 2); tda18271_i2c_gate_ctrl(fe, 0); if (ret != 2) printk("ERROR: %s: i2c_transfer returned: %d\n", __FUNCTION__, ret); if (tda18271_debug & DBG_REG) tda18271_dump_regs(fe); } static void tda18271_write_regs(struct dvb_frontend *fe, int idx, int len) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; unsigned char buf[TDA18271_NUM_REGS+1]; struct i2c_msg msg = { .addr = priv->i2c_addr, .flags = 0, .buf = buf, .len = len+1 }; int i, ret; BUG_ON((len == 0) || (idx+len > sizeof(buf))); buf[0] = idx; for (i = 1; i <= len; i++) { buf[i] = regs[idx-1+i]; } tda18271_i2c_gate_ctrl(fe, 1); /* write registers */ ret = i2c_transfer(priv->i2c_adap, &msg, 1); tda18271_i2c_gate_ctrl(fe, 0); if (ret != 1) printk(KERN_WARNING "ERROR: %s: i2c_transfer returned: %d\n", __FUNCTION__, ret); } /*---------------------------------------------------------------------*/ static int tda18271_init_regs(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; printk(KERN_INFO "tda18271: initializing registers\n"); /* initialize registers */ regs[R_ID] = 0x83; regs[R_TM] = 0x08; regs[R_PL] = 0x80; regs[R_EP1] = 0xc6; regs[R_EP2] = 0xdf; regs[R_EP3] = 0x16; regs[R_EP4] = 0x60; regs[R_EP5] = 0x80; regs[R_CPD] = 0x80; regs[R_CD1] = 0x00; regs[R_CD2] = 0x00; regs[R_CD3] = 0x00; regs[R_MPD] = 0x00; regs[R_MD1] = 0x00; regs[R_MD2] = 0x00; regs[R_MD3] = 0x00; regs[R_EB1] = 0xff; regs[R_EB2] = 0x01; regs[R_EB3] = 0x84; regs[R_EB4] = 0x41; regs[R_EB5] = 0x01; regs[R_EB6] = 0x84; regs[R_EB7] = 0x40; regs[R_EB8] = 0x07; regs[R_EB9] = 0x00; regs[R_EB10] = 0x00; regs[R_EB11] = 0x96; regs[R_EB12] = 0x0f; regs[R_EB13] = 0xc1; regs[R_EB14] = 0x00; regs[R_EB15] = 0x8f; regs[R_EB16] = 0x00; regs[R_EB17] = 0x00; regs[R_EB18] = 0x00; regs[R_EB19] = 0x00; regs[R_EB20] = 0x20; regs[R_EB21] = 0x33; regs[R_EB22] = 0x48; regs[R_EB23] = 0xb0; tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS); /* setup AGC1 & AGC2 */ regs[R_EB17] = 0x00; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x03; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x43; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x4c; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB20] = 0xa0; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xa7; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xe7; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xec; tda18271_write_regs(fe, R_EB20, 1); /* image rejection calibration */ /* low-band */ regs[R_EP3] = 0x1f; regs[R_EP4] = 0x66; regs[R_EP5] = 0x81; regs[R_CPD] = 0xcc; regs[R_CD1] = 0x6c; regs[R_CD2] = 0x00; regs[R_CD3] = 0x00; regs[R_MPD] = 0xcd; regs[R_MD1] = 0x77; regs[R_MD2] = 0x08; regs[R_MD3] = 0x00; tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* pll locking */ regs[R_EP1] = 0xc6; tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted low measurement */ regs[R_EP3] = 0x1f; regs[R_EP4] = 0x66; regs[R_EP5] = 0x85; regs[R_CPD] = 0xcb; regs[R_CD1] = 0x66; regs[R_CD2] = 0x70; regs[R_CD3] = 0x00; tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ regs[R_EP2] = 0xdf; tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image low optimization completion */ /* mid-band */ regs[R_EP3] = 0x1f; regs[R_EP4] = 0x66; regs[R_EP5] = 0x82; regs[R_CPD] = 0xa8; regs[R_CD1] = 0x66; regs[R_CD2] = 0x00; regs[R_CD3] = 0x00; regs[R_MPD] = 0xa9; regs[R_MD1] = 0x73; regs[R_MD2] = 0x1a; regs[R_MD3] = 0x00; tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* pll locking */ regs[R_EP1] = 0xc6; tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted mid measurement */ regs[R_EP3] = 0x1f; regs[R_EP4] = 0x66; regs[R_EP5] = 0x86; regs[R_CPD] = 0xa8; regs[R_CD1] = 0x66; regs[R_CD2] = 0xa0; regs[R_CD3] = 0x00; tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ regs[R_EP2] = 0xdf; tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image mid optimization completion */ /* high-band */ regs[R_EP3] = 0x1f; regs[R_EP4] = 0x66; regs[R_EP5] = 0x83; regs[R_CPD] = 0x98; regs[R_CD1] = 0x65; regs[R_CD2] = 0x00; regs[R_CD3] = 0x00; regs[R_MPD] = 0x99; regs[R_MD1] = 0x71; regs[R_MD2] = 0xcd; regs[R_MD3] = 0x00; tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* pll locking */ regs[R_EP1] = 0xc6; tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted high measurement */ regs[R_EP3] = 0x1f; regs[R_EP4] = 0x66; regs[R_EP5] = 0x87; regs[R_CPD] = 0x98; regs[R_CD1] = 0x65; regs[R_CD2] = 0x50; regs[R_CD3] = 0x00; tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ regs[R_EP2] = 0xdf; tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image high optimization completion */ regs[R_EP4] = 0x64; tda18271_write_regs(fe, R_EP4, 1); regs[R_EP1] = 0xc6; tda18271_write_regs(fe, R_EP1, 1); return 0; } static int tda18271_init(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; tda18271_read_regs(fe); /* test IR_CAL_OK to see if we need init */ if ((regs[R_EP1] & 0x08) == 0) tda18271_init_regs(fe); return 0; } static int tda18271_tune(struct dvb_frontend *fe, u32 ifc, u32 freq, u32 bw, u8 std) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u32 div, N = 0; int i; tda18271_init(fe); dbg_info("freq = %d, ifc = %d\n", freq, ifc); /* RF tracking filter calibration */ /* calculate BP_Filter */ i = 0; while ((tda18271_bp_filter[i].rfmax * 1000) < freq) { if (tda18271_bp_filter[i + 1].rfmax == 0) break; i++; } dbg_map("bp filter = 0x%x, i = %d\n", tda18271_bp_filter[i].val, i); regs[R_EP1] &= ~0x07; /* clear bp filter bits */ regs[R_EP1] |= tda18271_bp_filter[i].val; tda18271_write_regs(fe, R_EP1, 1); regs[R_EB4] &= 0x07; regs[R_EB4] |= 0x60; tda18271_write_regs(fe, R_EB4, 1); regs[R_EB7] = 0x60; tda18271_write_regs(fe, R_EB7, 1); regs[R_EB14] = 0x00; tda18271_write_regs(fe, R_EB14, 1); regs[R_EB20] = 0xcc; tda18271_write_regs(fe, R_EB20, 1); /* set CAL mode to RF tracking filter calibration */ regs[R_EB4] |= 0x03; /* calculate CAL PLL */ switch (priv->mode) { case TDA18271_ANALOG: N = freq - 1250000; break; case TDA18271_DIGITAL: N = freq + bw / 2; break; } i = 0; while ((tda18271_cal_pll[i].lomax * 1000) < N) { if (tda18271_cal_pll[i + 1].lomax == 0) break; i++; } dbg_map("cal pll, pd = 0x%x, d = 0x%x, i = %d\n", tda18271_cal_pll[i].pd, tda18271_cal_pll[i].d, i); regs[R_CPD] = tda18271_cal_pll[i].pd; div = ((tda18271_cal_pll[i].d * (N / 1000)) << 7) / 125; regs[R_CD1] = 0xff & (div >> 16); regs[R_CD2] = 0xff & (div >> 8); regs[R_CD3] = 0xff & div; /* calculate MAIN PLL */ switch (priv->mode) { case TDA18271_ANALOG: N = freq - 250000; break; case TDA18271_DIGITAL: N = freq + bw / 2 + 1000000; break; } i = 0; while ((tda18271_main_pll[i].lomax * 1000) < N) { if (tda18271_main_pll[i + 1].lomax == 0) break; i++; } dbg_map("main pll, pd = 0x%x, d = 0x%x, i = %d\n", tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i); regs[R_MPD] = (0x7f & tda18271_main_pll[i].pd); switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x08; break; case TDA18271_DIGITAL: regs[R_MPD] |= 0x08; break; } div = ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125; regs[R_MD1] = 0xff & (div >> 16); regs[R_MD2] = 0xff & (div >> 8); regs[R_MD3] = 0xff & div; tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* RF tracking filter calibration initialization */ /* search for K,M,CO for RF Calibration */ i = 0; while ((tda18271_km[i].rfmax * 1000) < freq) { if (tda18271_km[i + 1].rfmax == 0) break; i++; } dbg_map("km = 0x%x, i = %d\n", tda18271_km[i].val, i); regs[R_EB13] &= 0x83; regs[R_EB13] |= tda18271_km[i].val; tda18271_write_regs(fe, R_EB13, 1); /* search for RF_BAND */ i = 0; while ((tda18271_rf_band[i].rfmax * 1000) < freq) { if (tda18271_rf_band[i + 1].rfmax == 0) break; i++; } dbg_map("rf band = 0x%x, i = %d\n", tda18271_rf_band[i].val, i); regs[R_EP2] &= ~0xe0; /* clear rf band bits */ regs[R_EP2] |= (tda18271_rf_band[i].val << 5); /* search for Gain_Taper */ i = 0; while ((tda18271_gain_taper[i].rfmax * 1000) < freq) { if (tda18271_gain_taper[i + 1].rfmax == 0) break; i++; } dbg_map("gain taper = 0x%x, i = %d\n", tda18271_gain_taper[i].val, i); regs[R_EP2] &= ~0x1f; /* clear gain taper bits */ regs[R_EP2] |= tda18271_gain_taper[i].val; tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); regs[R_EB4] &= 0x07; regs[R_EB4] |= 0x40; tda18271_write_regs(fe, R_EB4, 1); regs[R_EB7] = 0x40; tda18271_write_regs(fe, R_EB7, 1); msleep(10); regs[R_EB20] = 0xec; tda18271_write_regs(fe, R_EB20, 1); msleep(60); /* RF tracking filter calibration completion */ regs[R_EP4] &= ~0x03; /* set cal mode to normal */ tda18271_write_regs(fe, R_EP4, 1); tda18271_write_regs(fe, R_EP1, 1); /* RF tracking filer correction for VHF_Low band */ i = 0; while ((tda18271_rf_cal[i].rfmax * 1000) < freq) { if (tda18271_rf_cal[i].rfmax == 0) break; i++; } dbg_map("rf cal = 0x%x, i = %d\n", tda18271_rf_cal[i].val, i); /* VHF_Low band only */ if (tda18271_rf_cal[i].rfmax != 0) { regs[R_EB14] = tda18271_rf_cal[i].val; tda18271_write_regs(fe, R_EB14, 1); } /* Channel Configuration */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_EB22] = 0x2c; break; case TDA18271_DIGITAL: regs[R_EB22] = 0x37; break; } tda18271_write_regs(fe, R_EB22, 1); regs[R_EP1] |= 0x40; /* set dis power level on */ /* set standard */ regs[R_EP3] &= ~0x1f; /* clear std bits */ /* see table 22 */ regs[R_EP3] |= std; regs[R_EP4] &= ~0x03; /* set cal mode to normal */ regs[R_EP4] &= ~0x1c; /* clear if level bits */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x80; /* IF notch = 0 */ break; case TDA18271_DIGITAL: regs[R_EP4] |= 0x04; regs[R_MPD] |= 0x80; break; } regs[R_EP4] &= ~0x80; /* turn this bit on only for fm */ /* FIXME: image rejection validity EP5[2:0] */ /* calculate MAIN PLL */ N = freq + ifc; i = 0; while ((tda18271_main_pll[i].lomax * 1000) < N) { if (tda18271_main_pll[i + 1].lomax == 0) break; i++; } dbg_map("main pll, pd = 0x%x, d = 0x%x, i = %d\n", tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i); regs[R_MPD] = (0x7f & tda18271_main_pll[i].pd); switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x08; break; case TDA18271_DIGITAL: regs[R_MPD] |= 0x08; break; } div = ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125; regs[R_MD1] = 0xff & (div >> 16); regs[R_MD2] = 0xff & (div >> 8); regs[R_MD3] = 0xff & div; tda18271_write_regs(fe, R_TM, 15); msleep(5); return 0; } /* ------------------------------------------------------------------ */ static int tda18271_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) { struct tda18271_priv *priv = fe->tuner_priv; u8 std; u32 bw, sgIF = 0; u32 freq = params->frequency; priv->mode = TDA18271_DIGITAL; /* see table 22 */ if (fe->ops.info.type == FE_ATSC) { switch (params->u.vsb.modulation) { case VSB_8: case VSB_16: std = 0x1b; /* device-specific (spec says 0x1c) */ sgIF = 5380000; break; case QAM_64: case QAM_256: std = 0x18; /* device-specific (spec says 0x1d) */ sgIF = 4000000; break; default: printk(KERN_WARNING "%s: modulation not set!\n", __FUNCTION__); return -EINVAL; } freq += 1750000; /* Adjust to center (+1.75MHZ) */ bw = 6000000; } else if (fe->ops.info.type == FE_OFDM) { switch (params->u.ofdm.bandwidth) { case BANDWIDTH_6_MHZ: std = 0x1b; /* device-specific (spec says 0x1c) */ bw = 6000000; sgIF = 3300000; break; case BANDWIDTH_7_MHZ: std = 0x19; /* device-specific (spec says 0x1d) */ bw = 7000000; sgIF = 3800000; break; case BANDWIDTH_8_MHZ: std = 0x1a; /* device-specific (spec says 0x1e) */ bw = 8000000; sgIF = 4300000; break; default: printk(KERN_WARNING "%s: bandwidth not set!\n", __FUNCTION__); return -EINVAL; } } else { printk(KERN_WARNING "%s: modulation type not supported!\n", __FUNCTION__); return -EINVAL; } return tda18271_tune(fe, sgIF, freq, bw, std); } static int tda18271_set_analog_params(struct dvb_frontend *fe, struct analog_parameters *params) { struct tda18271_priv *priv = fe->tuner_priv; u8 std; unsigned int sgIF; char *mode; priv->mode = TDA18271_ANALOG; /* see table 22 */ if (params->std & V4L2_STD_MN) { std = 0x0d; sgIF = 92; mode = "MN"; } else if (params->std & V4L2_STD_B) { std = 0x0e; sgIF = 108; mode = "B"; } else if (params->std & V4L2_STD_GH) { std = 0x0f; sgIF = 124; mode = "GH"; } else if (params->std & V4L2_STD_PAL_I) { std = 0x0f; sgIF = 124; mode = "I"; } else if (params->std & V4L2_STD_DK) { std = 0x0f; sgIF = 124; mode = "DK"; } else if (params->std & V4L2_STD_SECAM_L) { std = 0x0f; sgIF = 124; mode = "L"; } else if (params->std & V4L2_STD_SECAM_LC) { std = 0x0f; sgIF = 20; mode = "LC"; } else { std = 0x0f; sgIF = 124; mode = "xx"; } if (params->mode == V4L2_TUNER_RADIO) sgIF = 88; /* if frequency is 5.5 MHz */ dbg_info("setting tda18271 to system %s\n", mode); return tda18271_tune(fe, sgIF * 62500, params->frequency * 62500, 0, std); } static int tda18271_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct tda18271_priv *priv = fe->tuner_priv; *frequency = priv->frequency; return 0; } static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { struct tda18271_priv *priv = fe->tuner_priv; *bandwidth = priv->bandwidth; return 0; } static struct dvb_tuner_ops tda18271_tuner_ops = { .info = { .name = "NXP TDA18271HD", .frequency_min = 45000000, .frequency_max = 864000000, .frequency_step = 62500 }, .init = tda18271_init, .set_params = tda18271_set_params, .set_analog_params = tda18271_set_analog_params, .release = tda18271_release, .get_frequency = tda18271_get_frequency, .get_bandwidth = tda18271_get_bandwidth, }; struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr, struct i2c_adapter *i2c) { struct tda18271_priv *priv = NULL; dbg_info("@ %d-%04x\n", i2c_adapter_id(i2c), addr); priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->i2c_addr = addr; priv->i2c_adap = i2c; memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops, sizeof(struct dvb_tuner_ops)); fe->tuner_priv = priv; tda18271_init_regs(fe); return fe; } EXPORT_SYMBOL_GPL(tda18271_attach); MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver"); MODULE_AUTHOR("Michael Krufky "); MODULE_LICENSE("GPL"); /* * Overrides for Emacs so that we follow Linus's tabbing style. * --------------------------------------------------------------------------- * Local variables: * c-basic-offset: 8 * End: */