/* * twl4030-irq.c - TWL4030/TPS659x0 irq support * * Copyright (C) 2005-2006 Texas Instruments, Inc. * * Modifications to defer interrupt handling to a kernel thread: * Copyright (C) 2006 MontaVista Software, Inc. * * Based on tlv320aic23.c: * Copyright (c) by Kai Svahn <kai.svahn@nokia.com> * * Code cleanup and modifications to IRQ handler. * by syed khasim <x0khasim@ti.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kthread.h> #include <linux/i2c/twl4030.h> /* * TWL4030 IRQ handling has two stages in hardware, and thus in software. * The Primary Interrupt Handler (PIH) stage exposes status bits saying * which Secondary Interrupt Handler (SIH) stage is raising an interrupt. * SIH modules are more traditional IRQ components, which support per-IRQ * enable/disable and trigger controls; they do most of the work. * * These chips are designed to support IRQ handling from two different * I2C masters. Each has a dedicated IRQ line, and dedicated IRQ status * and mask registers in the PIH and SIH modules. * * We set up IRQs starting at a platform-specified base, always starting * with PIH and the SIH for PWR_INT and then usually adding GPIO: * base + 0 .. base + 7 PIH * base + 8 .. base + 15 SIH for PWR_INT * base + 16 .. base + 33 SIH for GPIO */ /* PIH register offsets */ #define REG_PIH_ISR_P1 0x01 #define REG_PIH_ISR_P2 0x02 #define REG_PIH_SIR 0x03 /* for testing */ /* Linux could (eventually) use either IRQ line */ static int irq_line; struct sih { char name[8]; u8 module; /* module id */ u8 control_offset; /* for SIH_CTRL */ bool set_cor; u8 bits; /* valid in isr/imr */ u8 bytes_ixr; /* bytelen of ISR/IMR/SIR */ u8 edr_offset; u8 bytes_edr; /* bytelen of EDR */ /* SIR ignored -- set interrupt, for testing only */ struct irq_data { u8 isr_offset; u8 imr_offset; } mask[2]; /* + 2 bytes padding */ }; #define SIH_INITIALIZER(modname, nbits) \ .module = TWL4030_MODULE_ ## modname, \ .control_offset = TWL4030_ ## modname ## _SIH_CTRL, \ .bits = nbits, \ .bytes_ixr = DIV_ROUND_UP(nbits, 8), \ .edr_offset = TWL4030_ ## modname ## _EDR, \ .bytes_edr = DIV_ROUND_UP((2*(nbits)), 8), \ .mask = { { \ .isr_offset = TWL4030_ ## modname ## _ISR1, \ .imr_offset = TWL4030_ ## modname ## _IMR1, \ }, \ { \ .isr_offset = TWL4030_ ## modname ## _ISR2, \ .imr_offset = TWL4030_ ## modname ## _IMR2, \ }, }, /* register naming policies are inconsistent ... */ #define TWL4030_INT_PWR_EDR TWL4030_INT_PWR_EDR1 #define TWL4030_MODULE_KEYPAD_KEYP TWL4030_MODULE_KEYPAD #define TWL4030_MODULE_INT_PWR TWL4030_MODULE_INT /* Order in this table matches order in PIH_ISR. That is, * BIT(n) in PIH_ISR is sih_modules[n]. */ static const struct sih sih_modules[6] = { [0] = { .name = "gpio", .module = TWL4030_MODULE_GPIO, .control_offset = REG_GPIO_SIH_CTRL, .set_cor = true, .bits = TWL4030_GPIO_MAX, .bytes_ixr = 3, /* Note: *all* of these IRQs default to no-trigger */ .edr_offset = REG_GPIO_EDR1, .bytes_edr = 5, .mask = { { .isr_offset = REG_GPIO_ISR1A, .imr_offset = REG_GPIO_IMR1A, }, { .isr_offset = REG_GPIO_ISR1B, .imr_offset = REG_GPIO_IMR1B, }, }, }, [1] = { .name = "keypad", .set_cor = true, SIH_INITIALIZER(KEYPAD_KEYP, 4) }, [2] = { .name = "bci", .module = TWL4030_MODULE_INTERRUPTS, .control_offset = TWL4030_INTERRUPTS_BCISIHCTRL, .bits = 12, .bytes_ixr = 2, .edr_offset = TWL4030_INTERRUPTS_BCIEDR1, /* Note: most of these IRQs default to no-trigger */ .bytes_edr = 3, .mask = { { .isr_offset = TWL4030_INTERRUPTS_BCIISR1A, .imr_offset = TWL4030_INTERRUPTS_BCIIMR1A, }, { .isr_offset = TWL4030_INTERRUPTS_BCIISR1B, .imr_offset = TWL4030_INTERRUPTS_BCIIMR1B, }, }, }, [3] = { .name = "madc", SIH_INITIALIZER(MADC, 4) }, [4] = { /* USB doesn't use the same SIH organization */ .name = "usb", }, [5] = { .name = "power", .set_cor = true, SIH_INITIALIZER(INT_PWR, 8) }, /* there are no SIH modules #6 or #7 ... */ }; #undef TWL4030_MODULE_KEYPAD_KEYP #undef TWL4030_MODULE_INT_PWR #undef TWL4030_INT_PWR_EDR /*----------------------------------------------------------------------*/ static unsigned twl4030_irq_base; static struct completion irq_event; /* * This thread processes interrupts reported by the Primary Interrupt Handler. */ static int twl4030_irq_thread(void *data) { long irq = (long)data; irq_desc_t *desc = irq_desc + irq; static unsigned i2c_errors; const static unsigned max_i2c_errors = 100; current->flags |= PF_NOFREEZE; while (!kthread_should_stop()) { int ret; int module_irq; u8 pih_isr; /* Wait for IRQ, then read PIH irq status (also blocking) */ wait_for_completion_interruptible(&irq_event); ret = twl4030_i2c_read_u8(TWL4030_MODULE_PIH, &pih_isr, REG_PIH_ISR_P1); if (ret) { pr_warning("twl4030: I2C error %d reading PIH ISR\n", ret); if (++i2c_errors >= max_i2c_errors) { printk(KERN_ERR "Maximum I2C error count" " exceeded. Terminating %s.\n", __func__); break; } complete(&irq_event); continue; } /* these handlers deal with the relevant SIH irq status */ local_irq_disable(); for (module_irq = twl4030_irq_base; pih_isr; pih_isr >>= 1, module_irq++) { if (pih_isr & 0x1) { irq_desc_t *d = irq_desc + module_irq; /* These can't be masked ... always warn * if we get any surprises. */ if (d->status & IRQ_DISABLED) note_interrupt(module_irq, d, IRQ_NONE); else d->handle_irq(module_irq, d); } } local_irq_enable(); desc->chip->unmask(irq); } return 0; } /* * handle_twl4030_pih() is the desc->handle method for the twl4030 interrupt. * This is a chained interrupt, so there is no desc->action method for it. * Now we need to query the interrupt controller in the twl4030 to determine * which module is generating the interrupt request. However, we can't do i2c * transactions in interrupt context, so we must defer that work to a kernel * thread. All we do here is acknowledge and mask the interrupt and wakeup * the kernel thread. */ static void handle_twl4030_pih(unsigned int irq, irq_desc_t *desc) { /* Acknowledge, clear *AND* mask the interrupt... */ desc->chip->ack(irq); complete(&irq_event); } static struct task_struct *start_twl4030_irq_thread(long irq) { struct task_struct *thread; init_completion(&irq_event); thread = kthread_run(twl4030_irq_thread, (void *)irq, "twl4030-irq"); if (!thread) pr_err("twl4030: could not create irq %ld thread!\n", irq); return thread; } /*----------------------------------------------------------------------*/ /* * twl4030_init_sih_modules() ... start from a known state where no * IRQs will be coming in, and where we can quickly enable them then * handle them as they arrive. Mask all IRQs: maybe init SIH_CTRL. * * NOTE: we don't touch EDR registers here; they stay with hardware * defaults or whatever the last value was. Note that when both EDR * bits for an IRQ are clear, that's as if its IMR bit is set... */ static int twl4030_init_sih_modules(unsigned line) { const struct sih *sih; u8 buf[4]; int i; int status; /* line 0 == int1_n signal; line 1 == int2_n signal */ if (line > 1) return -EINVAL; irq_line = line; /* disable all interrupts on our line */ memset(buf, 0xff, sizeof buf); sih = sih_modules; for (i = 0; i < ARRAY_SIZE(sih_modules); i++, sih++) { /* skip USB -- it's funky */ if (!sih->bytes_ixr) continue; status = twl4030_i2c_write(sih->module, buf, sih->mask[line].imr_offset, sih->bytes_ixr); if (status < 0) pr_err("twl4030: err %d initializing %s %s\n", status, sih->name, "IMR"); /* Maybe disable "exclusive" mode; buffer second pending irq; * set Clear-On-Read (COR) bit. * * NOTE that sometimes COR polarity is documented as being * inverted: for MADC and BCI, COR=1 means "clear on write". * And for PWR_INT it's not documented... */ if (sih->set_cor) { status = twl4030_i2c_write_u8(sih->module, TWL4030_SIH_CTRL_COR_MASK, sih->control_offset); if (status < 0) pr_err("twl4030: err %d initializing %s %s\n", status, sih->name, "SIH_CTRL"); } } sih = sih_modules; for (i = 0; i < ARRAY_SIZE(sih_modules); i++, sih++) { u8 rxbuf[4]; int j; /* skip USB */ if (!sih->bytes_ixr) continue; /* Clear pending interrupt status. Either the read was * enough, or we need to write those bits. Repeat, in * case an IRQ is pending (PENDDIS=0) ... that's not * uncommon with PWR_INT.PWRON. */ for (j = 0; j < 2; j++) { status = twl4030_i2c_read(sih->module, rxbuf, sih->mask[line].isr_offset, sih->bytes_ixr); if (status < 0) pr_err("twl4030: err %d initializing %s %s\n", status, sih->name, "ISR"); if (!sih->set_cor) status = twl4030_i2c_write(sih->module, buf, sih->mask[line].isr_offset, sih->bytes_ixr); /* else COR=1 means read sufficed. * (for most SIH modules...) */ } } return 0; } static inline void activate_irq(int irq) { #ifdef CONFIG_ARM /* ARM requires an extra step to clear IRQ_NOREQUEST, which it * sets on behalf of every irq_chip. Also sets IRQ_NOPROBE. */ set_irq_flags(irq, IRQF_VALID); #else /* same effect on other architectures */ set_irq_noprobe(irq); #endif } /*----------------------------------------------------------------------*/ static DEFINE_SPINLOCK(sih_agent_lock); static struct workqueue_struct *wq; struct sih_agent { int irq_base; const struct sih *sih; u32 imr; bool imr_change_pending; struct work_struct mask_work; u32 edge_change; struct work_struct edge_work; }; static void twl4030_sih_do_mask(struct work_struct *work) { struct sih_agent *agent; const struct sih *sih; union { u8 bytes[4]; u32 word; } imr; int status; agent = container_of(work, struct sih_agent, mask_work); /* see what work we have */ spin_lock_irq(&sih_agent_lock); if (agent->imr_change_pending) { sih = agent->sih; /* byte[0] gets overwritten as we write ... */ imr.word = cpu_to_le32(agent->imr << 8); agent->imr_change_pending = false; } else sih = NULL; spin_unlock_irq(&sih_agent_lock); if (!sih) return; /* write the whole mask ... simpler than subsetting it */ status = twl4030_i2c_write(sih->module, imr.bytes, sih->mask[irq_line].imr_offset, sih->bytes_ixr); if (status) pr_err("twl4030: %s, %s --> %d\n", __func__, "write", status); } static void twl4030_sih_do_edge(struct work_struct *work) { struct sih_agent *agent; const struct sih *sih; u8 bytes[6]; u32 edge_change; int status; agent = container_of(work, struct sih_agent, edge_work); /* see what work we have */ spin_lock_irq(&sih_agent_lock); edge_change = agent->edge_change; agent->edge_change = 0;; sih = edge_change ? agent->sih : NULL; spin_unlock_irq(&sih_agent_lock); if (!sih) return; /* Read, reserving first byte for write scratch. Yes, this * could be cached for some speedup ... but be careful about * any processor on the other IRQ line, EDR registers are * shared. */ status = twl4030_i2c_read(sih->module, bytes + 1, sih->edr_offset, sih->bytes_edr); if (status) { pr_err("twl4030: %s, %s --> %d\n", __func__, "read", status); return; } /* Modify only the bits we know must change */ while (edge_change) { int i = fls(edge_change) - 1; struct irq_desc *d = irq_desc + i + agent->irq_base; int byte = 1 + (i >> 2); int off = (i & 0x3) * 2; bytes[byte] &= ~(0x03 << off); spin_lock_irq(&d->lock); if (d->status & IRQ_TYPE_EDGE_RISING) bytes[byte] |= BIT(off + 1); if (d->status & IRQ_TYPE_EDGE_FALLING) bytes[byte] |= BIT(off + 0); spin_unlock_irq(&d->lock); edge_change &= ~BIT(i); } /* Write */ status = twl4030_i2c_write(sih->module, bytes, sih->edr_offset, sih->bytes_edr); if (status) pr_err("twl4030: %s, %s --> %d\n", __func__, "write", status); } /*----------------------------------------------------------------------*/ /* * All irq_chip methods get issued from code holding irq_desc[irq].lock, * which can't perform the underlying I2C operations (because they sleep). * So we must hand them off to a thread (workqueue) and cope with asynch * completion, potentially including some re-ordering, of these requests. */ static void twl4030_sih_mask(unsigned irq) { struct sih_agent *sih = get_irq_chip_data(irq); unsigned long flags; spin_lock_irqsave(&sih_agent_lock, flags); sih->imr |= BIT(irq - sih->irq_base); sih->imr_change_pending = true; queue_work(wq, &sih->mask_work); spin_unlock_irqrestore(&sih_agent_lock, flags); } static void twl4030_sih_unmask(unsigned irq) { struct sih_agent *sih = get_irq_chip_data(irq); unsigned long flags; spin_lock_irqsave(&sih_agent_lock, flags); sih->imr &= ~BIT(irq - sih->irq_base); sih->imr_change_pending = true; queue_work(wq, &sih->mask_work); spin_unlock_irqrestore(&sih_agent_lock, flags); } static int twl4030_sih_set_type(unsigned irq, unsigned trigger) { struct sih_agent *sih = get_irq_chip_data(irq); struct irq_desc *desc = irq_desc + irq; unsigned long flags; if (trigger & ~(IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING)) return -EINVAL; spin_lock_irqsave(&sih_agent_lock, flags); if ((desc->status & IRQ_TYPE_SENSE_MASK) != trigger) { desc->status &= ~IRQ_TYPE_SENSE_MASK; desc->status |= trigger; sih->edge_change |= BIT(irq - sih->irq_base); queue_work(wq, &sih->edge_work); } spin_unlock_irqrestore(&sih_agent_lock, flags); return 0; } static struct irq_chip twl4030_sih_irq_chip = { .name = "twl4030", .mask = twl4030_sih_mask, .unmask = twl4030_sih_unmask, .set_type = twl4030_sih_set_type, }; /*----------------------------------------------------------------------*/ static inline int sih_read_isr(const struct sih *sih) { int status; union { u8 bytes[4]; u32 word; } isr; /* FIXME need retry-on-error ... */ isr.word = 0; status = twl4030_i2c_read(sih->module, isr.bytes, sih->mask[irq_line].isr_offset, sih->bytes_ixr); return (status < 0) ? status : le32_to_cpu(isr.word); } /* * Generic handler for SIH interrupts ... we "know" this is called * in task context, with IRQs enabled. */ static void handle_twl4030_sih(unsigned irq, struct irq_desc *desc) { struct sih_agent *agent = get_irq_data(irq); const struct sih *sih = agent->sih; int isr; /* reading ISR acks the IRQs, using clear-on-read mode */ local_irq_enable(); isr = sih_read_isr(sih); local_irq_disable(); if (isr < 0) { pr_err("twl4030: %s SIH, read ISR error %d\n", sih->name, isr); /* REVISIT: recover; eventually mask it all, etc */ return; } while (isr) { irq = fls(isr); irq--; isr &= ~BIT(irq); if (irq < sih->bits) generic_handle_irq(agent->irq_base + irq); else pr_err("twl4030: %s SIH, invalid ISR bit %d\n", sih->name, irq); } } static unsigned twl4030_irq_next; /* returns the first IRQ used by this SIH bank, * or negative errno */ int twl4030_sih_setup(int module) { int sih_mod; const struct sih *sih = NULL; struct sih_agent *agent; int i, irq; int status = -EINVAL; unsigned irq_base = twl4030_irq_next; /* only support modules with standard clear-on-read for now */ for (sih_mod = 0, sih = sih_modules; sih_mod < ARRAY_SIZE(sih_modules); sih_mod++, sih++) { if (sih->module == module && sih->set_cor) { if (!WARN((irq_base + sih->bits) > NR_IRQS, "irq %d for %s too big\n", irq_base + sih->bits, sih->name)) status = 0; break; } } if (status < 0) return status; agent = kzalloc(sizeof *agent, GFP_KERNEL); if (!agent) return -ENOMEM; status = 0; agent->irq_base = irq_base; agent->sih = sih; agent->imr = ~0; INIT_WORK(&agent->mask_work, twl4030_sih_do_mask); INIT_WORK(&agent->edge_work, twl4030_sih_do_edge); for (i = 0; i < sih->bits; i++) { irq = irq_base + i; set_irq_chip_and_handler(irq, &twl4030_sih_irq_chip, handle_edge_irq); set_irq_chip_data(irq, agent); activate_irq(irq); } status = irq_base; twl4030_irq_next += i; /* replace generic PIH handler (handle_simple_irq) */ irq = sih_mod + twl4030_irq_base; set_irq_data(irq, agent); set_irq_chained_handler(irq, handle_twl4030_sih); pr_info("twl4030: %s (irq %d) chaining IRQs %d..%d\n", sih->name, irq, irq_base, twl4030_irq_next - 1); return status; } /* FIXME need a call to reverse twl4030_sih_setup() ... */ /*----------------------------------------------------------------------*/ /* FIXME pass in which interrupt line we'll use ... */ #define twl_irq_line 0 int twl_init_irq(int irq_num, unsigned irq_base, unsigned irq_end) { static struct irq_chip twl4030_irq_chip; int status; int i; struct task_struct *task; /* * Mask and clear all TWL4030 interrupts since initially we do * not have any TWL4030 module interrupt handlers present */ status = twl4030_init_sih_modules(twl_irq_line); if (status < 0) return status; wq = create_singlethread_workqueue("twl4030-irqchip"); if (!wq) { pr_err("twl4030: workqueue FAIL\n"); return -ESRCH; } twl4030_irq_base = irq_base; /* install an irq handler for each of the SIH modules; * clone dummy irq_chip since PIH can't *do* anything */ twl4030_irq_chip = dummy_irq_chip; twl4030_irq_chip.name = "twl4030"; twl4030_sih_irq_chip.ack = dummy_irq_chip.ack; for (i = irq_base; i < irq_end; i++) { set_irq_chip_and_handler(i, &twl4030_irq_chip, handle_simple_irq); activate_irq(i); } twl4030_irq_next = i; pr_info("twl4030: %s (irq %d) chaining IRQs %d..%d\n", "PIH", irq_num, irq_base, twl4030_irq_next - 1); /* ... and the PWR_INT module ... */ status = twl4030_sih_setup(TWL4030_MODULE_INT); if (status < 0) { pr_err("twl4030: sih_setup PWR INT --> %d\n", status); goto fail; } /* install an irq handler to demultiplex the TWL4030 interrupt */ task = start_twl4030_irq_thread(irq_num); if (!task) { pr_err("twl4030: irq thread FAIL\n"); status = -ESRCH; goto fail; } set_irq_data(irq_num, task); set_irq_chained_handler(irq_num, handle_twl4030_pih); return status; fail: for (i = irq_base; i < irq_end; i++) set_irq_chip_and_handler(i, NULL, NULL); destroy_workqueue(wq); wq = NULL; return status; } int twl_exit_irq(void) { /* FIXME undo twl_init_irq() */ if (twl4030_irq_base) { pr_err("twl4030: can't yet clean up IRQs?\n"); return -ENOSYS; } return 0; }