/* * Linux driver for Disk-On-Chip 2000 and Millennium * (c) 1999 Machine Vision Holdings, Inc. * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> * * $Id: doc2000.c,v 1.67 2005/11/07 11:14:24 gleixner Exp $ */ #include <linux/kernel.h> #include <linux/module.h> #include <asm/errno.h> #include <asm/io.h> #include <asm/uaccess.h> #include <linux/miscdevice.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/types.h> #include <linux/bitops.h> #include <linux/mutex.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/doc2000.h> #define DOC_SUPPORT_2000 #define DOC_SUPPORT_2000TSOP #define DOC_SUPPORT_MILLENNIUM #ifdef DOC_SUPPORT_2000 #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) #else #define DoC_is_2000(doc) (0) #endif #if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM) #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) #else #define DoC_is_Millennium(doc) (0) #endif /* #define ECC_DEBUG */ /* I have no idea why some DoC chips can not use memcpy_from|to_io(). * This may be due to the different revisions of the ASIC controller built-in or * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment * this: #undef USE_MEMCPY */ static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops); static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops); static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, size_t *retlen, const u_char *buf); static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); static struct mtd_info *doc2klist = NULL; /* Perform the required delay cycles by reading from the appropriate register */ static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) { volatile char dummy; int i; for (i = 0; i < cycles; i++) { if (DoC_is_Millennium(doc)) dummy = ReadDOC(doc->virtadr, NOP); else dummy = ReadDOC(doc->virtadr, DOCStatus); } } /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ static int _DoC_WaitReady(struct DiskOnChip *doc) { void __iomem *docptr = doc->virtadr; unsigned long timeo = jiffies + (HZ * 10); DEBUG(MTD_DEBUG_LEVEL3, "_DoC_WaitReady called for out-of-line wait\n"); /* Out-of-line routine to wait for chip response */ while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { /* issue 2 read from NOP register after reading from CDSNControl register see Software Requirement 11.4 item 2. */ DoC_Delay(doc, 2); if (time_after(jiffies, timeo)) { DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); return -EIO; } udelay(1); cond_resched(); } return 0; } static inline int DoC_WaitReady(struct DiskOnChip *doc) { void __iomem *docptr = doc->virtadr; /* This is inline, to optimise the common case, where it's ready instantly */ int ret = 0; /* 4 read form NOP register should be issued in prior to the read from CDSNControl see Software Requirement 11.4 item 2. */ DoC_Delay(doc, 4); if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) /* Call the out-of-line routine to wait */ ret = _DoC_WaitReady(doc); /* issue 2 read from NOP register after reading from CDSNControl register see Software Requirement 11.4 item 2. */ DoC_Delay(doc, 2); return ret; } /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ static int DoC_Command(struct DiskOnChip *doc, unsigned char command, unsigned char xtraflags) { void __iomem *docptr = doc->virtadr; if (DoC_is_2000(doc)) xtraflags |= CDSN_CTRL_FLASH_IO; /* Assert the CLE (Command Latch Enable) line to the flash chip */ WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ if (DoC_is_Millennium(doc)) WriteDOC(command, docptr, CDSNSlowIO); /* Send the command */ WriteDOC_(command, docptr, doc->ioreg); if (DoC_is_Millennium(doc)) WriteDOC(command, docptr, WritePipeTerm); /* Lower the CLE line */ WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ return DoC_WaitReady(doc); } /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, unsigned char xtraflags1, unsigned char xtraflags2) { int i; void __iomem *docptr = doc->virtadr; if (DoC_is_2000(doc)) xtraflags1 |= CDSN_CTRL_FLASH_IO; /* Assert the ALE (Address Latch Enable) line to the flash chip */ WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ /* Send the address */ /* Devices with 256-byte page are addressed as: Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) * there is no device on the market with page256 and more than 24 bits. Devices with 512-byte page are addressed as: Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) * 25-31 is sent only if the chip support it. * bit 8 changes the read command to be sent (NAND_CMD_READ0 or NAND_CMD_READ1). */ if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { if (DoC_is_Millennium(doc)) WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); WriteDOC_(ofs & 0xff, docptr, doc->ioreg); } if (doc->page256) { ofs = ofs >> 8; } else { ofs = ofs >> 9; } if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { if (DoC_is_Millennium(doc)) WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); WriteDOC_(ofs & 0xff, docptr, doc->ioreg); } } if (DoC_is_Millennium(doc)) WriteDOC(ofs & 0xff, docptr, WritePipeTerm); DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ /* FIXME: The SlowIO's for millennium could be replaced by a single WritePipeTerm here. mf. */ /* Lower the ALE line */ WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl); DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ /* Wait for the chip to respond - Software requirement 11.4.1 */ return DoC_WaitReady(doc); } /* Read a buffer from DoC, taking care of Millennium odditys */ static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) { volatile int dummy; int modulus = 0xffff; void __iomem *docptr = doc->virtadr; int i; if (len <= 0) return; if (DoC_is_Millennium(doc)) { /* Read the data via the internal pipeline through CDSN IO register, see Pipelined Read Operations 11.3 */ dummy = ReadDOC(docptr, ReadPipeInit); /* Millennium should use the LastDataRead register - Pipeline Reads */ len--; /* This is needed for correctly ECC calculation */ modulus = 0xff; } for (i = 0; i < len; i++) buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); if (DoC_is_Millennium(doc)) { buf[i] = ReadDOC(docptr, LastDataRead); } } /* Write a buffer to DoC, taking care of Millennium odditys */ static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) { void __iomem *docptr = doc->virtadr; int i; if (len <= 0) return; for (i = 0; i < len; i++) WriteDOC_(buf[i], docptr, doc->ioreg + i); if (DoC_is_Millennium(doc)) { WriteDOC(0x00, docptr, WritePipeTerm); } } /* DoC_SelectChip: Select a given flash chip within the current floor */ static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) { void __iomem *docptr = doc->virtadr; /* Software requirement 11.4.4 before writing DeviceSelect */ /* Deassert the CE line to eliminate glitches on the FCE# outputs */ WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ /* Select the individual flash chip requested */ WriteDOC(chip, docptr, CDSNDeviceSelect); DoC_Delay(doc, 4); /* Reassert the CE line */ WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, CDSNControl); DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ /* Wait for it to be ready */ return DoC_WaitReady(doc); } /* DoC_SelectFloor: Select a given floor (bank of flash chips) */ static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) { void __iomem *docptr = doc->virtadr; /* Select the floor (bank) of chips required */ WriteDOC(floor, docptr, FloorSelect); /* Wait for the chip to be ready */ return DoC_WaitReady(doc); } /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) { int mfr, id, i, j; volatile char dummy; /* Page in the required floor/chip */ DoC_SelectFloor(doc, floor); DoC_SelectChip(doc, chip); /* Reset the chip */ if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { DEBUG(MTD_DEBUG_LEVEL2, "DoC_Command (reset) for %d,%d returned true\n", floor, chip); return 0; } /* Read the NAND chip ID: 1. Send ReadID command */ if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { DEBUG(MTD_DEBUG_LEVEL2, "DoC_Command (ReadID) for %d,%d returned true\n", floor, chip); return 0; } /* Read the NAND chip ID: 2. Send address byte zero */ DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); /* Read the manufacturer and device id codes from the device */ if (DoC_is_Millennium(doc)) { DoC_Delay(doc, 2); dummy = ReadDOC(doc->virtadr, ReadPipeInit); mfr = ReadDOC(doc->virtadr, LastDataRead); DoC_Delay(doc, 2); dummy = ReadDOC(doc->virtadr, ReadPipeInit); id = ReadDOC(doc->virtadr, LastDataRead); } else { /* CDSN Slow IO register see Software Req 11.4 item 5. */ dummy = ReadDOC(doc->virtadr, CDSNSlowIO); DoC_Delay(doc, 2); mfr = ReadDOC_(doc->virtadr, doc->ioreg); /* CDSN Slow IO register see Software Req 11.4 item 5. */ dummy = ReadDOC(doc->virtadr, CDSNSlowIO); DoC_Delay(doc, 2); id = ReadDOC_(doc->virtadr, doc->ioreg); } /* No response - return failure */ if (mfr == 0xff || mfr == 0) return 0; /* Check it's the same as the first chip we identified. * M-Systems say that any given DiskOnChip device should only * contain _one_ type of flash part, although that's not a * hardware restriction. */ if (doc->mfr) { if (doc->mfr == mfr && doc->id == id) return 1; /* This is another the same the first */ else printk(KERN_WARNING "Flash chip at floor %d, chip %d is different:\n", floor, chip); } /* Print and store the manufacturer and ID codes. */ for (i = 0; nand_flash_ids[i].name != NULL; i++) { if (id == nand_flash_ids[i].id) { /* Try to identify manufacturer */ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { if (nand_manuf_ids[j].id == mfr) break; } printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, " "Chip ID: %2.2X (%s:%s)\n", mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name); if (!doc->mfr) { doc->mfr = mfr; doc->id = id; doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1; doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0; doc->pageadrlen = doc->chipshift > 25 ? 3 : 2; doc->erasesize = nand_flash_ids[i].erasesize; return 1; } return 0; } } /* We haven't fully identified the chip. Print as much as we know. */ printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n", id, mfr); printk(KERN_WARNING "Please report to dwmw2@infradead.org\n"); return 0; } /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ static void DoC_ScanChips(struct DiskOnChip *this, int maxchips) { int floor, chip; int numchips[MAX_FLOORS]; int ret = 1; this->numchips = 0; this->mfr = 0; this->id = 0; /* For each floor, find the number of valid chips it contains */ for (floor = 0; floor < MAX_FLOORS; floor++) { ret = 1; numchips[floor] = 0; for (chip = 0; chip < maxchips && ret != 0; chip++) { ret = DoC_IdentChip(this, floor, chip); if (ret) { numchips[floor]++; this->numchips++; } } } /* If there are none at all that we recognise, bail */ if (!this->numchips) { printk(KERN_NOTICE "No flash chips recognised.\n"); return; } /* Allocate an array to hold the information for each chip */ this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); if (!this->chips) { printk(KERN_NOTICE "No memory for allocating chip info structures\n"); return; } ret = 0; /* Fill out the chip array with {floor, chipno} for each * detected chip in the device. */ for (floor = 0; floor < MAX_FLOORS; floor++) { for (chip = 0; chip < numchips[floor]; chip++) { this->chips[ret].floor = floor; this->chips[ret].chip = chip; this->chips[ret].curadr = 0; this->chips[ret].curmode = 0x50; ret++; } } /* Calculate and print the total size of the device */ this->totlen = this->numchips * (1 << this->chipshift); printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", this->numchips, this->totlen >> 20); } static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) { int tmp1, tmp2, retval; if (doc1->physadr == doc2->physadr) return 1; /* Use the alias resolution register which was set aside for this * purpose. If it's value is the same on both chips, they might * be the same chip, and we write to one and check for a change in * the other. It's unclear if this register is usuable in the * DoC 2000 (it's in the Millennium docs), but it seems to work. */ tmp1 = ReadDOC(doc1->virtadr, AliasResolution); tmp2 = ReadDOC(doc2->virtadr, AliasResolution); if (tmp1 != tmp2) return 0; WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution); tmp2 = ReadDOC(doc2->virtadr, AliasResolution); if (tmp2 == (tmp1 + 1) % 0xff) retval = 1; else retval = 0; /* Restore register contents. May not be necessary, but do it just to * be safe. */ WriteDOC(tmp1, doc1->virtadr, AliasResolution); return retval; } /* This routine is found from the docprobe code by symbol_get(), * which will bump the use count of this module. */ void DoC2k_init(struct mtd_info *mtd) { struct DiskOnChip *this = mtd->priv; struct DiskOnChip *old = NULL; int maxchips; /* We must avoid being called twice for the same device. */ if (doc2klist) old = doc2klist->priv; while (old) { if (DoC2k_is_alias(old, this)) { printk(KERN_NOTICE "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n", this->physadr); iounmap(this->virtadr); kfree(mtd); return; } if (old->nextdoc) old = old->nextdoc->priv; else old = NULL; } switch (this->ChipID) { case DOC_ChipID_Doc2kTSOP: mtd->name = "DiskOnChip 2000 TSOP"; this->ioreg = DoC_Mil_CDSN_IO; /* Pretend it's a Millennium */ this->ChipID = DOC_ChipID_DocMil; maxchips = MAX_CHIPS; break; case DOC_ChipID_Doc2k: mtd->name = "DiskOnChip 2000"; this->ioreg = DoC_2k_CDSN_IO; maxchips = MAX_CHIPS; break; case DOC_ChipID_DocMil: mtd->name = "DiskOnChip Millennium"; this->ioreg = DoC_Mil_CDSN_IO; maxchips = MAX_CHIPS_MIL; break; default: printk("Unknown ChipID 0x%02x\n", this->ChipID); kfree(mtd); iounmap(this->virtadr); return; } printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name, this->physadr); mtd->type = MTD_NANDFLASH; mtd->flags = MTD_CAP_NANDFLASH; mtd->size = 0; mtd->erasesize = 0; mtd->writesize = 512; mtd->oobsize = 16; mtd->owner = THIS_MODULE; mtd->erase = doc_erase; mtd->point = NULL; mtd->unpoint = NULL; mtd->read = doc_read; mtd->write = doc_write; mtd->read_oob = doc_read_oob; mtd->write_oob = doc_write_oob; mtd->sync = NULL; this->totlen = 0; this->numchips = 0; this->curfloor = -1; this->curchip = -1; mutex_init(&this->lock); /* Ident all the chips present. */ DoC_ScanChips(this, maxchips); if (!this->totlen) { kfree(mtd); iounmap(this->virtadr); } else { this->nextdoc = doc2klist; doc2klist = mtd; mtd->size = this->totlen; mtd->erasesize = this->erasesize; add_mtd_device(mtd); return; } } EXPORT_SYMBOL_GPL(DoC2k_init); static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) { struct DiskOnChip *this = mtd->priv; void __iomem *docptr = this->virtadr; struct Nand *mychip; unsigned char syndrome[6], eccbuf[6]; volatile char dummy; int i, len256 = 0, ret=0; size_t left = len; /* Don't allow read past end of device */ if (from >= this->totlen) return -EINVAL; mutex_lock(&this->lock); *retlen = 0; while (left) { len = left; /* Don't allow a single read to cross a 512-byte block boundary */ if (from + len > ((from | 0x1ff) + 1)) len = ((from | 0x1ff) + 1) - from; /* The ECC will not be calculated correctly if less than 512 is read */ if (len != 0x200 && eccbuf) printk(KERN_WARNING "ECC needs a full sector read (adr: %lx size %lx)\n", (long) from, (long) len); /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */ /* Find the chip which is to be used and select it */ mychip = &this->chips[from >> (this->chipshift)]; if (this->curfloor != mychip->floor) { DoC_SelectFloor(this, mychip->floor); DoC_SelectChip(this, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(this, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; DoC_Command(this, (!this->page256 && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, CDSN_CTRL_WP); DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); /* Prime the ECC engine */ WriteDOC(DOC_ECC_RESET, docptr, ECCConf); WriteDOC(DOC_ECC_EN, docptr, ECCConf); /* treat crossing 256-byte sector for 2M x 8bits devices */ if (this->page256 && from + len > (from | 0xff) + 1) { len256 = (from | 0xff) + 1 - from; DoC_ReadBuf(this, buf, len256); DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); } DoC_ReadBuf(this, &buf[len256], len - len256); /* Let the caller know we completed it */ *retlen += len; /* Read the ECC data through the DiskOnChip ECC logic */ /* Note: this will work even with 2M x 8bit devices as */ /* they have 8 bytes of OOB per 256 page. mf. */ DoC_ReadBuf(this, eccbuf, 6); /* Flush the pipeline */ if (DoC_is_Millennium(this)) { dummy = ReadDOC(docptr, ECCConf); dummy = ReadDOC(docptr, ECCConf); i = ReadDOC(docptr, ECCConf); } else { dummy = ReadDOC(docptr, 2k_ECCStatus); dummy = ReadDOC(docptr, 2k_ECCStatus); i = ReadDOC(docptr, 2k_ECCStatus); } /* Check the ECC Status */ if (i & 0x80) { int nb_errors; /* There was an ECC error */ #ifdef ECC_DEBUG printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from); #endif /* Read the ECC syndrom through the DiskOnChip ECC logic. These syndrome will be all ZERO when there is no error */ for (i = 0; i < 6; i++) { syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i); } nb_errors = doc_decode_ecc(buf, syndrome); #ifdef ECC_DEBUG printk(KERN_ERR "Errors corrected: %x\n", nb_errors); #endif if (nb_errors < 0) { /* We return error, but have actually done the read. Not that this can be told to user-space, via sys_read(), but at least MTD-aware stuff can know about it by checking *retlen */ ret = -EIO; } } #ifdef PSYCHO_DEBUG printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], eccbuf[4], eccbuf[5]); #endif /* disable the ECC engine */ WriteDOC(DOC_ECC_DIS, docptr , ECCConf); /* according to 11.4.1, we need to wait for the busy line * drop if we read to the end of the page. */ if(0 == ((from + len) & 0x1ff)) { DoC_WaitReady(this); } from += len; left -= len; buf += len; } mutex_unlock(&this->lock); return ret; } static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) { struct DiskOnChip *this = mtd->priv; int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ void __iomem *docptr = this->virtadr; unsigned char eccbuf[6]; volatile char dummy; int len256 = 0; struct Nand *mychip; size_t left = len; int status; /* Don't allow write past end of device */ if (to >= this->totlen) return -EINVAL; mutex_lock(&this->lock); *retlen = 0; while (left) { len = left; /* Don't allow a single write to cross a 512-byte block boundary */ if (to + len > ((to | 0x1ff) + 1)) len = ((to | 0x1ff) + 1) - to; /* The ECC will not be calculated correctly if less than 512 is written */ /* DBB- if (len != 0x200 && eccbuf) printk(KERN_WARNING "ECC needs a full sector write (adr: %lx size %lx)\n", (long) to, (long) len); -DBB */ /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ /* Find the chip which is to be used and select it */ mychip = &this->chips[to >> (this->chipshift)]; if (this->curfloor != mychip->floor) { DoC_SelectFloor(this, mychip->floor); DoC_SelectChip(this, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(this, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; /* Set device to main plane of flash */ DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); DoC_Command(this, (!this->page256 && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, CDSN_CTRL_WP); DoC_Command(this, NAND_CMD_SEQIN, 0); DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); /* Prime the ECC engine */ WriteDOC(DOC_ECC_RESET, docptr, ECCConf); WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); /* treat crossing 256-byte sector for 2M x 8bits devices */ if (this->page256 && to + len > (to | 0xff) + 1) { len256 = (to | 0xff) + 1 - to; DoC_WriteBuf(this, buf, len256); DoC_Command(this, NAND_CMD_PAGEPROG, 0); DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); /* There's an implicit DoC_WaitReady() in DoC_Command */ dummy = ReadDOC(docptr, CDSNSlowIO); DoC_Delay(this, 2); if (ReadDOC_(docptr, this->ioreg) & 1) { printk(KERN_ERR "Error programming flash\n"); /* Error in programming */ *retlen = 0; mutex_unlock(&this->lock); return -EIO; } DoC_Command(this, NAND_CMD_SEQIN, 0); DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, CDSN_CTRL_ECC_IO); } DoC_WriteBuf(this, &buf[len256], len - len256); WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl); if (DoC_is_Millennium(this)) { WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); } else { WriteDOC_(0, docptr, this->ioreg); WriteDOC_(0, docptr, this->ioreg); WriteDOC_(0, docptr, this->ioreg); } WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr, CDSNControl); /* Read the ECC data through the DiskOnChip ECC logic */ for (di = 0; di < 6; di++) { eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); } /* Reset the ECC engine */ WriteDOC(DOC_ECC_DIS, docptr, ECCConf); #ifdef PSYCHO_DEBUG printk ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], eccbuf[4], eccbuf[5]); #endif DoC_Command(this, NAND_CMD_PAGEPROG, 0); DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); /* There's an implicit DoC_WaitReady() in DoC_Command */ if (DoC_is_Millennium(this)) { ReadDOC(docptr, ReadPipeInit); status = ReadDOC(docptr, LastDataRead); } else { dummy = ReadDOC(docptr, CDSNSlowIO); DoC_Delay(this, 2); status = ReadDOC_(docptr, this->ioreg); } if (status & 1) { printk(KERN_ERR "Error programming flash\n"); /* Error in programming */ *retlen = 0; mutex_unlock(&this->lock); return -EIO; } /* Let the caller know we completed it */ *retlen += len; if (eccbuf) { unsigned char x[8]; size_t dummy; int ret; /* Write the ECC data to flash */ for (di=0; di<6; di++) x[di] = eccbuf[di]; x[6]=0x55; x[7]=0x55; ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x); if (ret) { mutex_unlock(&this->lock); return ret; } } to += len; left -= len; buf += len; } mutex_unlock(&this->lock); return 0; } static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops) { struct DiskOnChip *this = mtd->priv; int len256 = 0, ret; struct Nand *mychip; uint8_t *buf = ops->oobbuf; size_t len = ops->len; BUG_ON(ops->mode != MTD_OOB_PLACE); ofs += ops->ooboffs; mutex_lock(&this->lock); mychip = &this->chips[ofs >> this->chipshift]; if (this->curfloor != mychip->floor) { DoC_SelectFloor(this, mychip->floor); DoC_SelectChip(this, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(this, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; /* update address for 2M x 8bit devices. OOB starts on the second */ /* page to maintain compatibility with doc_read_ecc. */ if (this->page256) { if (!(ofs & 0x8)) ofs += 0x100; else ofs -= 0x8; } DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); /* treat crossing 8-byte OOB data for 2M x 8bit devices */ /* Note: datasheet says it should automaticaly wrap to the */ /* next OOB block, but it didn't work here. mf. */ if (this->page256 && ofs + len > (ofs | 0x7) + 1) { len256 = (ofs | 0x7) + 1 - ofs; DoC_ReadBuf(this, buf, len256); DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), CDSN_CTRL_WP, 0); } DoC_ReadBuf(this, &buf[len256], len - len256); ops->retlen = len; /* Reading the full OOB data drops us off of the end of the page, * causing the flash device to go into busy mode, so we need * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ ret = DoC_WaitReady(this); mutex_unlock(&this->lock); return ret; } static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, size_t * retlen, const u_char * buf) { struct DiskOnChip *this = mtd->priv; int len256 = 0; void __iomem *docptr = this->virtadr; struct Nand *mychip = &this->chips[ofs >> this->chipshift]; volatile int dummy; int status; // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len, // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]); /* Find the chip which is to be used and select it */ if (this->curfloor != mychip->floor) { DoC_SelectFloor(this, mychip->floor); DoC_SelectChip(this, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(this, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; /* disable the ECC engine */ WriteDOC (DOC_ECC_RESET, docptr, ECCConf); WriteDOC (DOC_ECC_DIS, docptr, ECCConf); /* Reset the chip, see Software Requirement 11.4 item 1. */ DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); /* issue the Read2 command to set the pointer to the Spare Data Area. */ DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); /* update address for 2M x 8bit devices. OOB starts on the second */ /* page to maintain compatibility with doc_read_ecc. */ if (this->page256) { if (!(ofs & 0x8)) ofs += 0x100; else ofs -= 0x8; } /* issue the Serial Data In command to initial the Page Program process */ DoC_Command(this, NAND_CMD_SEQIN, 0); DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); /* treat crossing 8-byte OOB data for 2M x 8bit devices */ /* Note: datasheet says it should automaticaly wrap to the */ /* next OOB block, but it didn't work here. mf. */ if (this->page256 && ofs + len > (ofs | 0x7) + 1) { len256 = (ofs | 0x7) + 1 - ofs; DoC_WriteBuf(this, buf, len256); DoC_Command(this, NAND_CMD_PAGEPROG, 0); DoC_Command(this, NAND_CMD_STATUS, 0); /* DoC_WaitReady() is implicit in DoC_Command */ if (DoC_is_Millennium(this)) { ReadDOC(docptr, ReadPipeInit); status = ReadDOC(docptr, LastDataRead); } else { dummy = ReadDOC(docptr, CDSNSlowIO); DoC_Delay(this, 2); status = ReadDOC_(docptr, this->ioreg); } if (status & 1) { printk(KERN_ERR "Error programming oob data\n"); /* There was an error */ *retlen = 0; return -EIO; } DoC_Command(this, NAND_CMD_SEQIN, 0); DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); } DoC_WriteBuf(this, &buf[len256], len - len256); DoC_Command(this, NAND_CMD_PAGEPROG, 0); DoC_Command(this, NAND_CMD_STATUS, 0); /* DoC_WaitReady() is implicit in DoC_Command */ if (DoC_is_Millennium(this)) { ReadDOC(docptr, ReadPipeInit); status = ReadDOC(docptr, LastDataRead); } else { dummy = ReadDOC(docptr, CDSNSlowIO); DoC_Delay(this, 2); status = ReadDOC_(docptr, this->ioreg); } if (status & 1) { printk(KERN_ERR "Error programming oob data\n"); /* There was an error */ *retlen = 0; return -EIO; } *retlen = len; return 0; } static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops) { struct DiskOnChip *this = mtd->priv; int ret; BUG_ON(ops->mode != MTD_OOB_PLACE); mutex_lock(&this->lock); ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len, &ops->retlen, ops->oobbuf); mutex_unlock(&this->lock); return ret; } static int doc_erase(struct mtd_info *mtd, struct erase_info *instr) { struct DiskOnChip *this = mtd->priv; __u32 ofs = instr->addr; __u32 len = instr->len; volatile int dummy; void __iomem *docptr = this->virtadr; struct Nand *mychip; int status; mutex_lock(&this->lock); if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) { mutex_unlock(&this->lock); return -EINVAL; } instr->state = MTD_ERASING; /* FIXME: Do this in the background. Use timers or schedule_task() */ while(len) { mychip = &this->chips[ofs >> this->chipshift]; if (this->curfloor != mychip->floor) { DoC_SelectFloor(this, mychip->floor); DoC_SelectChip(this, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(this, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; DoC_Command(this, NAND_CMD_ERASE1, 0); DoC_Address(this, ADDR_PAGE, ofs, 0, 0); DoC_Command(this, NAND_CMD_ERASE2, 0); DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); if (DoC_is_Millennium(this)) { ReadDOC(docptr, ReadPipeInit); status = ReadDOC(docptr, LastDataRead); } else { dummy = ReadDOC(docptr, CDSNSlowIO); DoC_Delay(this, 2); status = ReadDOC_(docptr, this->ioreg); } if (status & 1) { printk(KERN_ERR "Error erasing at 0x%x\n", ofs); /* There was an error */ instr->state = MTD_ERASE_FAILED; goto callback; } ofs += mtd->erasesize; len -= mtd->erasesize; } instr->state = MTD_ERASE_DONE; callback: mtd_erase_callback(instr); mutex_unlock(&this->lock); return 0; } /**************************************************************************** * * Module stuff * ****************************************************************************/ static void __exit cleanup_doc2000(void) { struct mtd_info *mtd; struct DiskOnChip *this; while ((mtd = doc2klist)) { this = mtd->priv; doc2klist = this->nextdoc; del_mtd_device(mtd); iounmap(this->virtadr); kfree(this->chips); kfree(mtd); } } module_exit(cleanup_doc2000); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");