/* * drivers/mtd/nand/au1550nd.c * * Copyright (C) 2004 Embedded Edge, LLC * * $Id: au1550nd.c,v 1.13 2005/11/07 11:14:30 gleixner Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/slab.h> #include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <linux/version.h> #include <asm/io.h> #include <asm/mach-au1x00/au1xxx.h> /* * MTD structure for NAND controller */ static struct mtd_info *au1550_mtd = NULL; static void __iomem *p_nand; static int nand_width = 1; /* default x8 */ static void (*au1550_write_byte)(struct mtd_info *, u_char); /* * Define partitions for flash device */ static const struct mtd_partition partition_info[] = { { .name = "NAND FS 0", .offset = 0, .size = 8 * 1024 * 1024}, { .name = "NAND FS 1", .offset = MTDPART_OFS_APPEND, .size = MTDPART_SIZ_FULL} }; /** * au_read_byte - read one byte from the chip * @mtd: MTD device structure * * read function for 8bit buswith */ static u_char au_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; u_char ret = readb(this->IO_ADDR_R); au_sync(); return ret; } /** * au_write_byte - write one byte to the chip * @mtd: MTD device structure * @byte: pointer to data byte to write * * write function for 8it buswith */ static void au_write_byte(struct mtd_info *mtd, u_char byte) { struct nand_chip *this = mtd->priv; writeb(byte, this->IO_ADDR_W); au_sync(); } /** * au_read_byte16 - read one byte endianess aware from the chip * @mtd: MTD device structure * * read function for 16bit buswith with * endianess conversion */ static u_char au_read_byte16(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); au_sync(); return ret; } /** * au_write_byte16 - write one byte endianess aware to the chip * @mtd: MTD device structure * @byte: pointer to data byte to write * * write function for 16bit buswith with * endianess conversion */ static void au_write_byte16(struct mtd_info *mtd, u_char byte) { struct nand_chip *this = mtd->priv; writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); au_sync(); } /** * au_read_word - read one word from the chip * @mtd: MTD device structure * * read function for 16bit buswith without * endianess conversion */ static u16 au_read_word(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; u16 ret = readw(this->IO_ADDR_R); au_sync(); return ret; } /** * au_write_buf - write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * * write function for 8bit buswith */ static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; for (i = 0; i < len; i++) { writeb(buf[i], this->IO_ADDR_W); au_sync(); } } /** * au_read_buf - read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * * read function for 8bit buswith */ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; for (i = 0; i < len; i++) { buf[i] = readb(this->IO_ADDR_R); au_sync(); } } /** * au_verify_buf - Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare * * verify function for 8bit buswith */ static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; for (i = 0; i < len; i++) { if (buf[i] != readb(this->IO_ADDR_R)) return -EFAULT; au_sync(); } return 0; } /** * au_write_buf16 - write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * * write function for 16bit buswith */ static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) { writew(p[i], this->IO_ADDR_W); au_sync(); } } /** * au_read_buf16 - read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * * read function for 16bit buswith */ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) { p[i] = readw(this->IO_ADDR_R); au_sync(); } } /** * au_verify_buf16 - Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare * * verify function for 16bit buswith */ static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) { if (p[i] != readw(this->IO_ADDR_R)) return -EFAULT; au_sync(); } return 0; } /* Select the chip by setting nCE to low */ #define NAND_CTL_SETNCE 1 /* Deselect the chip by setting nCE to high */ #define NAND_CTL_CLRNCE 2 /* Select the command latch by setting CLE to high */ #define NAND_CTL_SETCLE 3 /* Deselect the command latch by setting CLE to low */ #define NAND_CTL_CLRCLE 4 /* Select the address latch by setting ALE to high */ #define NAND_CTL_SETALE 5 /* Deselect the address latch by setting ALE to low */ #define NAND_CTL_CLRALE 6 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd) { register struct nand_chip *this = mtd->priv; switch (cmd) { case NAND_CTL_SETCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_CMD; break; case NAND_CTL_CLRCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; break; case NAND_CTL_SETALE: this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR; break; case NAND_CTL_CLRALE: this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; /* FIXME: Nobody knows why this is necessary, * but it works only that way */ udelay(1); break; case NAND_CTL_SETNCE: /* assert (force assert) chip enable */ au_writel((1 << (4 + NAND_CS)), MEM_STNDCTL); break; case NAND_CTL_CLRNCE: /* deassert chip enable */ au_writel(0, MEM_STNDCTL); break; } this->IO_ADDR_R = this->IO_ADDR_W; /* Drain the writebuffer */ au_sync(); } int au1550_device_ready(struct mtd_info *mtd) { int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0; au_sync(); return ret; } /** * au1550_select_chip - control -CE line * Forbid driving -CE manually permitting the NAND controller to do this. * Keeping -CE asserted during the whole sector reads interferes with the * NOR flash and PCMCIA drivers as it causes contention on the static bus. * We only have to hold -CE low for the NAND read commands since the flash * chip needs it to be asserted during chip not ready time but the NAND * controller keeps it released. * * @mtd: MTD device structure * @chip: chipnumber to select, -1 for deselect */ static void au1550_select_chip(struct mtd_info *mtd, int chip) { } /** * au1550_command - Send command to NAND device * @mtd: MTD device structure * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none */ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) { register struct nand_chip *this = mtd->priv; int ce_override = 0, i; ulong flags; /* Begin command latch cycle */ au1550_hwcontrol(mtd, NAND_CTL_SETCLE); /* * Write out the command to the device. */ if (command == NAND_CMD_SEQIN) { int readcmd; if (column >= mtd->writesize) { /* OOB area */ column -= mtd->writesize; readcmd = NAND_CMD_READOOB; } else if (column < 256) { /* First 256 bytes --> READ0 */ readcmd = NAND_CMD_READ0; } else { column -= 256; readcmd = NAND_CMD_READ1; } au1550_write_byte(mtd, readcmd); } au1550_write_byte(mtd, command); /* Set ALE and clear CLE to start address cycle */ au1550_hwcontrol(mtd, NAND_CTL_CLRCLE); if (column != -1 || page_addr != -1) { au1550_hwcontrol(mtd, NAND_CTL_SETALE); /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (this->options & NAND_BUSWIDTH_16) column >>= 1; au1550_write_byte(mtd, column); } if (page_addr != -1) { au1550_write_byte(mtd, (u8)(page_addr & 0xff)); if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB) { /* * NAND controller will release -CE after * the last address byte is written, so we'll * have to forcibly assert it. No interrupts * are allowed while we do this as we don't * want the NOR flash or PCMCIA drivers to * steal our precious bytes of data... */ ce_override = 1; local_irq_save(flags); au1550_hwcontrol(mtd, NAND_CTL_SETNCE); } au1550_write_byte(mtd, (u8)(page_addr >> 8)); /* One more address cycle for devices > 32MiB */ if (this->chipsize > (32 << 20)) au1550_write_byte(mtd, (u8)((page_addr >> 16) & 0x0f)); } /* Latch in address */ au1550_hwcontrol(mtd, NAND_CTL_CLRALE); } /* * Program and erase have their own busy handlers. * Status and sequential in need no delay. */ switch (command) { case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: return; case NAND_CMD_RESET: break; case NAND_CMD_READ0: case NAND_CMD_READ1: case NAND_CMD_READOOB: /* Check if we're really driving -CE low (just in case) */ if (unlikely(!ce_override)) break; /* Apply a short delay always to ensure that we do wait tWB. */ ndelay(100); /* Wait for a chip to become ready... */ for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i) udelay(1); /* Release -CE and re-enable interrupts. */ au1550_hwcontrol(mtd, NAND_CTL_CLRNCE); local_irq_restore(flags); return; } /* Apply this short delay always to ensure that we do wait tWB. */ ndelay(100); while(!this->dev_ready(mtd)); } /* * Main initialization routine */ static int __init au1xxx_nand_init(void) { struct nand_chip *this; u16 boot_swapboot = 0; /* default value */ int retval; u32 mem_staddr; u32 nand_phys; /* Allocate memory for MTD device structure and private data */ au1550_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); if (!au1550_mtd) { printk("Unable to allocate NAND MTD dev structure.\n"); return -ENOMEM; } /* Get pointer to private data */ this = (struct nand_chip *)(&au1550_mtd[1]); /* Initialize structures */ memset(au1550_mtd, 0, sizeof(struct mtd_info)); memset(this, 0, sizeof(struct nand_chip)); /* Link the private data with the MTD structure */ au1550_mtd->priv = this; au1550_mtd->owner = THIS_MODULE; /* MEM_STNDCTL: disable ints, disable nand boot */ au_writel(0, MEM_STNDCTL); #ifdef CONFIG_MIPS_PB1550 /* set gpio206 high */ au_writel(au_readl(GPIO2_DIR) & ~(1 << 6), GPIO2_DIR); boot_swapboot = (au_readl(MEM_STSTAT) & (0x7 << 1)) | ((bcsr->status >> 6) & 0x1); switch (boot_swapboot) { case 0: case 2: case 8: case 0xC: case 0xD: /* x16 NAND Flash */ nand_width = 0; break; case 1: case 9: case 3: case 0xE: case 0xF: /* x8 NAND Flash */ nand_width = 1; break; default: printk("Pb1550 NAND: bad boot:swap\n"); retval = -EINVAL; goto outmem; } #endif /* Configure chip-select; normally done by boot code, e.g. YAMON */ #ifdef NAND_STCFG if (NAND_CS == 0) { au_writel(NAND_STCFG, MEM_STCFG0); au_writel(NAND_STTIME, MEM_STTIME0); au_writel(NAND_STADDR, MEM_STADDR0); } if (NAND_CS == 1) { au_writel(NAND_STCFG, MEM_STCFG1); au_writel(NAND_STTIME, MEM_STTIME1); au_writel(NAND_STADDR, MEM_STADDR1); } if (NAND_CS == 2) { au_writel(NAND_STCFG, MEM_STCFG2); au_writel(NAND_STTIME, MEM_STTIME2); au_writel(NAND_STADDR, MEM_STADDR2); } if (NAND_CS == 3) { au_writel(NAND_STCFG, MEM_STCFG3); au_writel(NAND_STTIME, MEM_STTIME3); au_writel(NAND_STADDR, MEM_STADDR3); } #endif /* Locate NAND chip-select in order to determine NAND phys address */ mem_staddr = 0x00000000; if (((au_readl(MEM_STCFG0) & 0x7) == 0x5) && (NAND_CS == 0)) mem_staddr = au_readl(MEM_STADDR0); else if (((au_readl(MEM_STCFG1) & 0x7) == 0x5) && (NAND_CS == 1)) mem_staddr = au_readl(MEM_STADDR1); else if (((au_readl(MEM_STCFG2) & 0x7) == 0x5) && (NAND_CS == 2)) mem_staddr = au_readl(MEM_STADDR2); else if (((au_readl(MEM_STCFG3) & 0x7) == 0x5) && (NAND_CS == 3)) mem_staddr = au_readl(MEM_STADDR3); if (mem_staddr == 0x00000000) { printk("Au1xxx NAND: ERROR WITH NAND CHIP-SELECT\n"); kfree(au1550_mtd); return 1; } nand_phys = (mem_staddr << 4) & 0xFFFC0000; p_nand = (void __iomem *)ioremap(nand_phys, 0x1000); /* make controller and MTD agree */ if (NAND_CS == 0) nand_width = au_readl(MEM_STCFG0) & (1 << 22); if (NAND_CS == 1) nand_width = au_readl(MEM_STCFG1) & (1 << 22); if (NAND_CS == 2) nand_width = au_readl(MEM_STCFG2) & (1 << 22); if (NAND_CS == 3) nand_width = au_readl(MEM_STCFG3) & (1 << 22); /* Set address of hardware control function */ this->dev_ready = au1550_device_ready; this->select_chip = au1550_select_chip; this->cmdfunc = au1550_command; /* 30 us command delay time */ this->chip_delay = 30; this->ecc.mode = NAND_ECC_SOFT; this->options = NAND_NO_AUTOINCR; if (!nand_width) this->options |= NAND_BUSWIDTH_16; this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte; au1550_write_byte = (!nand_width) ? au_write_byte16 : au_write_byte; this->read_word = au_read_word; this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf; this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf; this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf; /* Scan to find existence of the device */ if (nand_scan(au1550_mtd, 1)) { retval = -ENXIO; goto outio; } /* Register the partitions */ add_mtd_partitions(au1550_mtd, partition_info, ARRAY_SIZE(partition_info)); return 0; outio: iounmap((void *)p_nand); outmem: kfree(au1550_mtd); return retval; } module_init(au1xxx_nand_init); /* * Clean up routine */ static void __exit au1550_cleanup(void) { struct nand_chip *this = (struct nand_chip *)&au1550_mtd[1]; /* Release resources, unregister device */ nand_release(au1550_mtd); /* Free the MTD device structure */ kfree(au1550_mtd); /* Unmap */ iounmap((void *)p_nand); } module_exit(au1550_cleanup); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Embedded Edge, LLC"); MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");