/* * Copyright (c) International Business Machines Corp., 2006 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner */ /* * UBI wear-leveling unit. * * This unit is responsible for wear-leveling. It works in terms of physical * eraseblocks and erase counters and knows nothing about logical eraseblocks, * volumes, etc. From this unit's perspective all physical eraseblocks are of * two types - used and free. Used physical eraseblocks are those that were * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are * those that were put by the 'ubi_wl_put_peb()' function. * * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter * header. The rest of the physical eraseblock contains only 0xFF bytes. * * When physical eraseblocks are returned to the WL unit by means of the * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is * done asynchronously in context of the per-UBI device background thread, * which is also managed by the WL unit. * * The wear-leveling is ensured by means of moving the contents of used * physical eraseblocks with low erase counter to free physical eraseblocks * with high erase counter. * * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick * an "optimal" physical eraseblock. For example, when it is known that the * physical eraseblock will be "put" soon because it contains short-term data, * the WL unit may pick a free physical eraseblock with low erase counter, and * so forth. * * If the WL unit fails to erase a physical eraseblock, it marks it as bad. * * This unit is also responsible for scrubbing. If a bit-flip is detected in a * physical eraseblock, it has to be moved. Technically this is the same as * moving it for wear-leveling reasons. * * As it was said, for the UBI unit all physical eraseblocks are either "free" * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used * eraseblocks are kept in a set of different RB-trees: @wl->used, * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub. * * Note, in this implementation, we keep a small in-RAM object for each physical * eraseblock. This is surely not a scalable solution. But it appears to be good * enough for moderately large flashes and it is simple. In future, one may * re-work this unit and make it more scalable. * * At the moment this unit does not utilize the sequence number, which was * introduced relatively recently. But it would be wise to do this because the * sequence number of a logical eraseblock characterizes how old is it. For * example, when we move a PEB with low erase counter, and we need to pick the * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we * pick target PEB with an average EC if our PEB is not very "old". This is a * room for future re-works of the WL unit. * * FIXME: looks too complex, should be simplified (later). */ #include <linux/slab.h> #include <linux/crc32.h> #include <linux/freezer.h> #include <linux/kthread.h> #include "ubi.h" /* Number of physical eraseblocks reserved for wear-leveling purposes */ #define WL_RESERVED_PEBS 1 /* * How many erase cycles are short term, unknown, and long term physical * eraseblocks protected. */ #define ST_PROTECTION 16 #define U_PROTECTION 10 #define LT_PROTECTION 4 /* * Maximum difference between two erase counters. If this threshold is * exceeded, the WL unit starts moving data from used physical eraseblocks with * low erase counter to free physical eraseblocks with high erase counter. */ #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD /* * When a physical eraseblock is moved, the WL unit has to pick the target * physical eraseblock to move to. The simplest way would be just to pick the * one with the highest erase counter. But in certain workloads this could lead * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a * situation when the picked physical eraseblock is constantly erased after the * data is written to it. So, we have a constant which limits the highest erase * counter of the free physical eraseblock to pick. Namely, the WL unit does * not pick eraseblocks with erase counter greater then the lowest erase * counter plus %WL_FREE_MAX_DIFF. */ #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) /* * Maximum number of consecutive background thread failures which is enough to * switch to read-only mode. */ #define WL_MAX_FAILURES 32 /** * struct ubi_wl_entry - wear-leveling entry. * @rb: link in the corresponding RB-tree * @ec: erase counter * @pnum: physical eraseblock number * * Each physical eraseblock has a corresponding &struct wl_entry object which * may be kept in different RB-trees. */ struct ubi_wl_entry { struct rb_node rb; int ec; int pnum; }; /** * struct ubi_wl_prot_entry - PEB protection entry. * @rb_pnum: link in the @wl->prot.pnum RB-tree * @rb_aec: link in the @wl->prot.aec RB-tree * @abs_ec: the absolute erase counter value when the protection ends * @e: the wear-leveling entry of the physical eraseblock under protection * * When the WL unit returns a physical eraseblock, the physical eraseblock is * protected from being moved for some "time". For this reason, the physical * eraseblock is not directly moved from the @wl->free tree to the @wl->used * tree. There is one more tree in between where this physical eraseblock is * temporarily stored (@wl->prot). * * All this protection stuff is needed because: * o we don't want to move physical eraseblocks just after we have given them * to the user; instead, we first want to let users fill them up with data; * * o there is a chance that the user will put the physical eraseblock very * soon, so it makes sense not to move it for some time, but wait; this is * especially important in case of "short term" physical eraseblocks. * * Physical eraseblocks stay protected only for limited time. But the "time" is * measured in erase cycles in this case. This is implemented with help of the * absolute erase counter (@wl->abs_ec). When it reaches certain value, the * physical eraseblocks are moved from the protection trees (@wl->prot.*) to * the @wl->used tree. * * Protected physical eraseblocks are searched by physical eraseblock number * (when they are put) and by the absolute erase counter (to check if it is * time to move them to the @wl->used tree). So there are actually 2 RB-trees * storing the protected physical eraseblocks: @wl->prot.pnum and * @wl->prot.aec. They are referred to as the "protection" trees. The * first one is indexed by the physical eraseblock number. The second one is * indexed by the absolute erase counter. Both trees store * &struct ubi_wl_prot_entry objects. * * Each physical eraseblock has 2 main states: free and used. The former state * corresponds to the @wl->free tree. The latter state is split up on several * sub-states: * o the WL movement is allowed (@wl->used tree); * o the WL movement is temporarily prohibited (@wl->prot.pnum and * @wl->prot.aec trees); * o scrubbing is needed (@wl->scrub tree). * * Depending on the sub-state, wear-leveling entries of the used physical * eraseblocks may be kept in one of those trees. */ struct ubi_wl_prot_entry { struct rb_node rb_pnum; struct rb_node rb_aec; unsigned long long abs_ec; struct ubi_wl_entry *e; }; /** * struct ubi_work - UBI work description data structure. * @list: a link in the list of pending works * @func: worker function * @priv: private data of the worker function * * @e: physical eraseblock to erase * @torture: if the physical eraseblock has to be tortured * * The @func pointer points to the worker function. If the @cancel argument is * not zero, the worker has to free the resources and exit immediately. The * worker has to return zero in case of success and a negative error code in * case of failure. */ struct ubi_work { struct list_head list; int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); /* The below fields are only relevant to erasure works */ struct ubi_wl_entry *e; int torture; }; #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec); static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root); #else #define paranoid_check_ec(ubi, pnum, ec) 0 #define paranoid_check_in_wl_tree(e, root) #endif /* Slab cache for wear-leveling entries */ static struct kmem_cache *wl_entries_slab; /** * tree_empty - a helper function to check if an RB-tree is empty. * @root: the root of the tree * * This function returns non-zero if the RB-tree is empty and zero if not. */ static inline int tree_empty(struct rb_root *root) { return root->rb_node == NULL; } /** * wl_tree_add - add a wear-leveling entry to a WL RB-tree. * @e: the wear-leveling entry to add * @root: the root of the tree * * Note, we use (erase counter, physical eraseblock number) pairs as keys in * the @ubi->used and @ubi->free RB-trees. */ static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) { struct rb_node **p, *parent = NULL; p = &root->rb_node; while (*p) { struct ubi_wl_entry *e1; parent = *p; e1 = rb_entry(parent, struct ubi_wl_entry, rb); if (e->ec < e1->ec) p = &(*p)->rb_left; else if (e->ec > e1->ec) p = &(*p)->rb_right; else { ubi_assert(e->pnum != e1->pnum); if (e->pnum < e1->pnum) p = &(*p)->rb_left; else p = &(*p)->rb_right; } } rb_link_node(&e->rb, parent, p); rb_insert_color(&e->rb, root); } /* * Helper functions to add and delete wear-leveling entries from different * trees. */ static void free_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e) { wl_tree_add(e, &ubi->free); } static inline void used_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e) { wl_tree_add(e, &ubi->used); } static inline void scrub_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e) { wl_tree_add(e, &ubi->scrub); } static inline void free_tree_del(struct ubi_device *ubi, struct ubi_wl_entry *e) { paranoid_check_in_wl_tree(e, &ubi->free); rb_erase(&e->rb, &ubi->free); } static inline void used_tree_del(struct ubi_device *ubi, struct ubi_wl_entry *e) { paranoid_check_in_wl_tree(e, &ubi->used); rb_erase(&e->rb, &ubi->used); } static inline void scrub_tree_del(struct ubi_device *ubi, struct ubi_wl_entry *e) { paranoid_check_in_wl_tree(e, &ubi->scrub); rb_erase(&e->rb, &ubi->scrub); } /** * do_work - do one pending work. * @ubi: UBI device description object * * This function returns zero in case of success and a negative error code in * case of failure. */ static int do_work(struct ubi_device *ubi) { int err; struct ubi_work *wrk; spin_lock(&ubi->wl_lock); if (list_empty(&ubi->works)) { spin_unlock(&ubi->wl_lock); return 0; } wrk = list_entry(ubi->works.next, struct ubi_work, list); list_del(&wrk->list); spin_unlock(&ubi->wl_lock); /* * Call the worker function. Do not touch the work structure * after this call as it will have been freed or reused by that * time by the worker function. */ err = wrk->func(ubi, wrk, 0); if (err) ubi_err("work failed with error code %d", err); spin_lock(&ubi->wl_lock); ubi->works_count -= 1; ubi_assert(ubi->works_count >= 0); spin_unlock(&ubi->wl_lock); return err; } /** * produce_free_peb - produce a free physical eraseblock. * @ubi: UBI device description object * * This function tries to make a free PEB by means of synchronous execution of * pending works. This may be needed if, for example the background thread is * disabled. Returns zero in case of success and a negative error code in case * of failure. */ static int produce_free_peb(struct ubi_device *ubi) { int err; spin_lock(&ubi->wl_lock); while (tree_empty(&ubi->free)) { spin_unlock(&ubi->wl_lock); dbg_wl("do one work synchronously"); err = do_work(ubi); if (err) return err; spin_lock(&ubi->wl_lock); } spin_unlock(&ubi->wl_lock); return 0; } /** * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. * @e: the wear-leveling entry to check * @root: the root of the tree * * This function returns non-zero if @e is in the @root RB-tree and zero if it * is not. */ static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) { struct rb_node *p; p = root->rb_node; while (p) { struct ubi_wl_entry *e1; e1 = rb_entry(p, struct ubi_wl_entry, rb); if (e->pnum == e1->pnum) { ubi_assert(e == e1); return 1; } if (e->ec < e1->ec) p = p->rb_left; else if (e->ec > e1->ec) p = p->rb_right; else { ubi_assert(e->pnum != e1->pnum); if (e->pnum < e1->pnum) p = p->rb_left; else p = p->rb_right; } } return 0; } /** * prot_tree_add - add physical eraseblock to protection trees. * @ubi: UBI device description object * @e: the physical eraseblock to add * @pe: protection entry object to use * @abs_ec: absolute erase counter value when this physical eraseblock has * to be removed from the protection trees. * * @wl->lock has to be locked. */ static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e, struct ubi_wl_prot_entry *pe, int abs_ec) { struct rb_node **p, *parent = NULL; struct ubi_wl_prot_entry *pe1; pe->e = e; pe->abs_ec = ubi->abs_ec + abs_ec; p = &ubi->prot.pnum.rb_node; while (*p) { parent = *p; pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum); if (e->pnum < pe1->e->pnum) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&pe->rb_pnum, parent, p); rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum); p = &ubi->prot.aec.rb_node; parent = NULL; while (*p) { parent = *p; pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec); if (pe->abs_ec < pe1->abs_ec) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&pe->rb_aec, parent, p); rb_insert_color(&pe->rb_aec, &ubi->prot.aec); } /** * find_wl_entry - find wear-leveling entry closest to certain erase counter. * @root: the RB-tree where to look for * @max: highest possible erase counter * * This function looks for a wear leveling entry with erase counter closest to * @max and less then @max. */ static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) { struct rb_node *p; struct ubi_wl_entry *e; e = rb_entry(rb_first(root), struct ubi_wl_entry, rb); max += e->ec; p = root->rb_node; while (p) { struct ubi_wl_entry *e1; e1 = rb_entry(p, struct ubi_wl_entry, rb); if (e1->ec >= max) p = p->rb_left; else { p = p->rb_right; e = e1; } } return e; } /** * ubi_wl_get_peb - get a physical eraseblock. * @ubi: UBI device description object * @dtype: type of data which will be stored in this physical eraseblock * * This function returns a physical eraseblock in case of success and a * negative error code in case of failure. Might sleep. */ int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) { int err, protect, medium_ec; struct ubi_wl_entry *e, *first, *last; struct ubi_wl_prot_entry *pe; ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || dtype == UBI_UNKNOWN); pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_KERNEL); if (!pe) return -ENOMEM; retry: spin_lock(&ubi->wl_lock); if (tree_empty(&ubi->free)) { if (ubi->works_count == 0) { ubi_assert(list_empty(&ubi->works)); ubi_err("no free eraseblocks"); spin_unlock(&ubi->wl_lock); kfree(pe); return -ENOSPC; } spin_unlock(&ubi->wl_lock); err = produce_free_peb(ubi); if (err < 0) { kfree(pe); return err; } goto retry; } switch (dtype) { case UBI_LONGTERM: /* * For long term data we pick a physical eraseblock * with high erase counter. But the highest erase * counter we can pick is bounded by the the lowest * erase counter plus %WL_FREE_MAX_DIFF. */ e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); protect = LT_PROTECTION; break; case UBI_UNKNOWN: /* * For unknown data we pick a physical eraseblock with * medium erase counter. But we by no means can pick a * physical eraseblock with erase counter greater or * equivalent than the lowest erase counter plus * %WL_FREE_MAX_DIFF. */ first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb); last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, rb); if (last->ec - first->ec < WL_FREE_MAX_DIFF) e = rb_entry(ubi->free.rb_node, struct ubi_wl_entry, rb); else { medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; e = find_wl_entry(&ubi->free, medium_ec); } protect = U_PROTECTION; break; case UBI_SHORTTERM: /* * For short term data we pick a physical eraseblock * with the lowest erase counter as we expect it will * be erased soon. */ e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb); protect = ST_PROTECTION; break; default: protect = 0; e = NULL; BUG(); } /* * Move the physical eraseblock to the protection trees where it will * be protected from being moved for some time. */ free_tree_del(ubi, e); prot_tree_add(ubi, e, pe, protect); dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect); spin_unlock(&ubi->wl_lock); return e->pnum; } /** * prot_tree_del - remove a physical eraseblock from the protection trees * @ubi: UBI device description object * @pnum: the physical eraseblock to remove */ static void prot_tree_del(struct ubi_device *ubi, int pnum) { struct rb_node *p; struct ubi_wl_prot_entry *pe = NULL; p = ubi->prot.pnum.rb_node; while (p) { pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum); if (pnum == pe->e->pnum) break; if (pnum < pe->e->pnum) p = p->rb_left; else p = p->rb_right; } ubi_assert(pe->e->pnum == pnum); rb_erase(&pe->rb_aec, &ubi->prot.aec); rb_erase(&pe->rb_pnum, &ubi->prot.pnum); kfree(pe); } /** * sync_erase - synchronously erase a physical eraseblock. * @ubi: UBI device description object * @e: the the physical eraseblock to erase * @torture: if the physical eraseblock has to be tortured * * This function returns zero in case of success and a negative error code in * case of failure. */ static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) { int err; struct ubi_ec_hdr *ec_hdr; unsigned long long ec = e->ec; dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); err = paranoid_check_ec(ubi, e->pnum, e->ec); if (err > 0) return -EINVAL; ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); if (!ec_hdr) return -ENOMEM; err = ubi_io_sync_erase(ubi, e->pnum, torture); if (err < 0) goto out_free; ec += err; if (ec > UBI_MAX_ERASECOUNTER) { /* * Erase counter overflow. Upgrade UBI and use 64-bit * erase counters internally. */ ubi_err("erase counter overflow at PEB %d, EC %llu", e->pnum, ec); err = -EINVAL; goto out_free; } dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); ec_hdr->ec = cpu_to_be64(ec); err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); if (err) goto out_free; e->ec = ec; spin_lock(&ubi->wl_lock); if (e->ec > ubi->max_ec) ubi->max_ec = e->ec; spin_unlock(&ubi->wl_lock); out_free: kfree(ec_hdr); return err; } /** * check_protection_over - check if it is time to stop protecting some * physical eraseblocks. * @ubi: UBI device description object * * This function is called after each erase operation, when the absolute erase * counter is incremented, to check if some physical eraseblock have not to be * protected any longer. These physical eraseblocks are moved from the * protection trees to the used tree. */ static void check_protection_over(struct ubi_device *ubi) { struct ubi_wl_prot_entry *pe; /* * There may be several protected physical eraseblock to remove, * process them all. */ while (1) { spin_lock(&ubi->wl_lock); if (tree_empty(&ubi->prot.aec)) { spin_unlock(&ubi->wl_lock); break; } pe = rb_entry(rb_first(&ubi->prot.aec), struct ubi_wl_prot_entry, rb_aec); if (pe->abs_ec > ubi->abs_ec) { spin_unlock(&ubi->wl_lock); break; } dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu", pe->e->pnum, ubi->abs_ec, pe->abs_ec); rb_erase(&pe->rb_aec, &ubi->prot.aec); rb_erase(&pe->rb_pnum, &ubi->prot.pnum); used_tree_add(ubi, pe->e); spin_unlock(&ubi->wl_lock); kfree(pe); cond_resched(); } } /** * schedule_ubi_work - schedule a work. * @ubi: UBI device description object * @wrk: the work to schedule * * This function enqueues a work defined by @wrk to the tail of the pending * works list. */ static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) { spin_lock(&ubi->wl_lock); list_add_tail(&wrk->list, &ubi->works); ubi_assert(ubi->works_count >= 0); ubi->works_count += 1; if (ubi->thread_enabled) wake_up_process(ubi->bgt_thread); spin_unlock(&ubi->wl_lock); } static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, int cancel); /** * schedule_erase - schedule an erase work. * @ubi: UBI device description object * @e: the WL entry of the physical eraseblock to erase * @torture: if the physical eraseblock has to be tortured * * This function returns zero in case of success and a %-ENOMEM in case of * failure. */ static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) { struct ubi_work *wl_wrk; dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", e->pnum, e->ec, torture); wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL); if (!wl_wrk) return -ENOMEM; wl_wrk->func = &erase_worker; wl_wrk->e = e; wl_wrk->torture = torture; schedule_ubi_work(ubi, wl_wrk); return 0; } /** * wear_leveling_worker - wear-leveling worker function. * @ubi: UBI device description object * @wrk: the work object * @cancel: non-zero if the worker has to free memory and exit * * This function copies a more worn out physical eraseblock to a less worn out * one. Returns zero in case of success and a negative error code in case of * failure. */ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, int cancel) { int err, put = 0; struct ubi_wl_entry *e1, *e2; struct ubi_vid_hdr *vid_hdr; kfree(wrk); if (cancel) return 0; vid_hdr = ubi_zalloc_vid_hdr(ubi); if (!vid_hdr) return -ENOMEM; spin_lock(&ubi->wl_lock); /* * Only one WL worker at a time is supported at this implementation, so * make sure a PEB is not being moved already. */ if (ubi->move_to || tree_empty(&ubi->free) || (tree_empty(&ubi->used) && tree_empty(&ubi->scrub))) { /* * Only one WL worker at a time is supported at this * implementation, so if a LEB is already being moved, cancel. * * No free physical eraseblocks? Well, we cancel wear-leveling * then. It will be triggered again when a free physical * eraseblock appears. * * No used physical eraseblocks? They must be temporarily * protected from being moved. They will be moved to the * @ubi->used tree later and the wear-leveling will be * triggered again. */ dbg_wl("cancel WL, a list is empty: free %d, used %d", tree_empty(&ubi->free), tree_empty(&ubi->used)); ubi->wl_scheduled = 0; spin_unlock(&ubi->wl_lock); ubi_free_vid_hdr(ubi, vid_hdr); return 0; } if (tree_empty(&ubi->scrub)) { /* * Now pick the least worn-out used physical eraseblock and a * highly worn-out free physical eraseblock. If the erase * counters differ much enough, start wear-leveling. */ e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { dbg_wl("no WL needed: min used EC %d, max free EC %d", e1->ec, e2->ec); ubi->wl_scheduled = 0; spin_unlock(&ubi->wl_lock); ubi_free_vid_hdr(ubi, vid_hdr); return 0; } used_tree_del(ubi, e1); dbg_wl("move PEB %d EC %d to PEB %d EC %d", e1->pnum, e1->ec, e2->pnum, e2->ec); } else { e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb); e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); scrub_tree_del(ubi, e1); dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); } free_tree_del(ubi, e2); ubi_assert(!ubi->move_from && !ubi->move_to); ubi_assert(!ubi->move_to_put && !ubi->move_from_put); ubi->move_from = e1; ubi->move_to = e2; spin_unlock(&ubi->wl_lock); /* * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. * We so far do not know which logical eraseblock our physical * eraseblock (@e1) belongs to. We have to read the volume identifier * header first. */ err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); if (err && err != UBI_IO_BITFLIPS) { if (err == UBI_IO_PEB_FREE) { /* * We are trying to move PEB without a VID header. UBI * always write VID headers shortly after the PEB was * given, so we have a situation when it did not have * chance to write it down because it was preempted. * Just re-schedule the work, so that next time it will * likely have the VID header in place. */ dbg_wl("PEB %d has no VID header", e1->pnum); err = 0; } else { ubi_err("error %d while reading VID header from PEB %d", err, e1->pnum); if (err > 0) err = -EIO; } goto error; } err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); if (err) { if (err == UBI_IO_BITFLIPS) err = 0; goto error; } ubi_free_vid_hdr(ubi, vid_hdr); spin_lock(&ubi->wl_lock); if (!ubi->move_to_put) used_tree_add(ubi, e2); else put = 1; ubi->move_from = ubi->move_to = NULL; ubi->move_from_put = ubi->move_to_put = 0; ubi->wl_scheduled = 0; spin_unlock(&ubi->wl_lock); if (put) { /* * Well, the target PEB was put meanwhile, schedule it for * erasure. */ dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); err = schedule_erase(ubi, e2, 0); if (err) { kmem_cache_free(wl_entries_slab, e2); ubi_ro_mode(ubi); } } err = schedule_erase(ubi, e1, 0); if (err) { kmem_cache_free(wl_entries_slab, e1); ubi_ro_mode(ubi); } dbg_wl("done"); return err; /* * Some error occurred. @e1 was not changed, so return it back. @e2 * might be changed, schedule it for erasure. */ error: if (err) dbg_wl("error %d occurred, cancel operation", err); ubi_assert(err <= 0); ubi_free_vid_hdr(ubi, vid_hdr); spin_lock(&ubi->wl_lock); ubi->wl_scheduled = 0; if (ubi->move_from_put) put = 1; else used_tree_add(ubi, e1); ubi->move_from = ubi->move_to = NULL; ubi->move_from_put = ubi->move_to_put = 0; spin_unlock(&ubi->wl_lock); if (put) { /* * Well, the target PEB was put meanwhile, schedule it for * erasure. */ dbg_wl("PEB %d was put meanwhile, erase", e1->pnum); err = schedule_erase(ubi, e1, 0); if (err) { kmem_cache_free(wl_entries_slab, e1); ubi_ro_mode(ubi); } } err = schedule_erase(ubi, e2, 0); if (err) { kmem_cache_free(wl_entries_slab, e2); ubi_ro_mode(ubi); } yield(); return err; } /** * ensure_wear_leveling - schedule wear-leveling if it is needed. * @ubi: UBI device description object * * This function checks if it is time to start wear-leveling and schedules it * if yes. This function returns zero in case of success and a negative error * code in case of failure. */ static int ensure_wear_leveling(struct ubi_device *ubi) { int err = 0; struct ubi_wl_entry *e1; struct ubi_wl_entry *e2; struct ubi_work *wrk; spin_lock(&ubi->wl_lock); if (ubi->wl_scheduled) /* Wear-leveling is already in the work queue */ goto out_unlock; /* * If the ubi->scrub tree is not empty, scrubbing is needed, and the * the WL worker has to be scheduled anyway. */ if (tree_empty(&ubi->scrub)) { if (tree_empty(&ubi->used) || tree_empty(&ubi->free)) /* No physical eraseblocks - no deal */ goto out_unlock; /* * We schedule wear-leveling only if the difference between the * lowest erase counter of used physical eraseblocks and a high * erase counter of free physical eraseblocks is greater then * %UBI_WL_THRESHOLD. */ e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) goto out_unlock; dbg_wl("schedule wear-leveling"); } else dbg_wl("schedule scrubbing"); ubi->wl_scheduled = 1; spin_unlock(&ubi->wl_lock); wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL); if (!wrk) { err = -ENOMEM; goto out_cancel; } wrk->func = &wear_leveling_worker; schedule_ubi_work(ubi, wrk); return err; out_cancel: spin_lock(&ubi->wl_lock); ubi->wl_scheduled = 0; out_unlock: spin_unlock(&ubi->wl_lock); return err; } /** * erase_worker - physical eraseblock erase worker function. * @ubi: UBI device description object * @wl_wrk: the work object * @cancel: non-zero if the worker has to free memory and exit * * This function erases a physical eraseblock and perform torture testing if * needed. It also takes care about marking the physical eraseblock bad if * needed. Returns zero in case of success and a negative error code in case of * failure. */ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, int cancel) { struct ubi_wl_entry *e = wl_wrk->e; int pnum = e->pnum, err, need; if (cancel) { dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); kfree(wl_wrk); kmem_cache_free(wl_entries_slab, e); return 0; } dbg_wl("erase PEB %d EC %d", pnum, e->ec); err = sync_erase(ubi, e, wl_wrk->torture); if (!err) { /* Fine, we've erased it successfully */ kfree(wl_wrk); spin_lock(&ubi->wl_lock); ubi->abs_ec += 1; free_tree_add(ubi, e); spin_unlock(&ubi->wl_lock); /* * One more erase operation has happened, take care about protected * physical eraseblocks. */ check_protection_over(ubi); /* And take care about wear-leveling */ err = ensure_wear_leveling(ubi); return err; } kfree(wl_wrk); kmem_cache_free(wl_entries_slab, e); if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || err == -EBUSY) { int err1; /* Re-schedule the LEB for erasure */ err1 = schedule_erase(ubi, e, 0); if (err1) { err = err1; goto out_ro; } return err; } else if (err != -EIO) { /* * If this is not %-EIO, we have no idea what to do. Scheduling * this physical eraseblock for erasure again would cause * errors again and again. Well, lets switch to RO mode. */ goto out_ro; } /* It is %-EIO, the PEB went bad */ if (!ubi->bad_allowed) { ubi_err("bad physical eraseblock %d detected", pnum); goto out_ro; } spin_lock(&ubi->volumes_lock); need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; if (need > 0) { need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; ubi->avail_pebs -= need; ubi->rsvd_pebs += need; ubi->beb_rsvd_pebs += need; if (need > 0) ubi_msg("reserve more %d PEBs", need); } if (ubi->beb_rsvd_pebs == 0) { spin_unlock(&ubi->volumes_lock); ubi_err("no reserved physical eraseblocks"); goto out_ro; } spin_unlock(&ubi->volumes_lock); ubi_msg("mark PEB %d as bad", pnum); err = ubi_io_mark_bad(ubi, pnum); if (err) goto out_ro; spin_lock(&ubi->volumes_lock); ubi->beb_rsvd_pebs -= 1; ubi->bad_peb_count += 1; ubi->good_peb_count -= 1; ubi_calculate_reserved(ubi); if (ubi->beb_rsvd_pebs == 0) ubi_warn("last PEB from the reserved pool was used"); spin_unlock(&ubi->volumes_lock); return err; out_ro: ubi_ro_mode(ubi); return err; } /** * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling * unit. * @ubi: UBI device description object * @pnum: physical eraseblock to return * @torture: if this physical eraseblock has to be tortured * * This function is called to return physical eraseblock @pnum to the pool of * free physical eraseblocks. The @torture flag has to be set if an I/O error * occurred to this @pnum and it has to be tested. This function returns zero * in case of success and a negative error code in case of failure. */ int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) { int err; struct ubi_wl_entry *e; dbg_wl("PEB %d", pnum); ubi_assert(pnum >= 0); ubi_assert(pnum < ubi->peb_count); spin_lock(&ubi->wl_lock); e = ubi->lookuptbl[pnum]; if (e == ubi->move_from) { /* * User is putting the physical eraseblock which was selected to * be moved. It will be scheduled for erasure in the * wear-leveling worker. */ dbg_wl("PEB %d is being moved", pnum); ubi_assert(!ubi->move_from_put); ubi->move_from_put = 1; spin_unlock(&ubi->wl_lock); return 0; } else if (e == ubi->move_to) { /* * User is putting the physical eraseblock which was selected * as the target the data is moved to. It may happen if the EBA * unit already re-mapped the LEB but the WL unit did has not * put the PEB to the "used" tree. */ dbg_wl("PEB %d is the target of data moving", pnum); ubi_assert(!ubi->move_to_put); ubi->move_to_put = 1; spin_unlock(&ubi->wl_lock); return 0; } else { if (in_wl_tree(e, &ubi->used)) used_tree_del(ubi, e); else if (in_wl_tree(e, &ubi->scrub)) scrub_tree_del(ubi, e); else prot_tree_del(ubi, e->pnum); } spin_unlock(&ubi->wl_lock); err = schedule_erase(ubi, e, torture); if (err) { spin_lock(&ubi->wl_lock); used_tree_add(ubi, e); spin_unlock(&ubi->wl_lock); } return err; } /** * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. * @ubi: UBI device description object * @pnum: the physical eraseblock to schedule * * If a bit-flip in a physical eraseblock is detected, this physical eraseblock * needs scrubbing. This function schedules a physical eraseblock for * scrubbing which is done in background. This function returns zero in case of * success and a negative error code in case of failure. */ int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) { struct ubi_wl_entry *e; ubi_msg("schedule PEB %d for scrubbing", pnum); retry: spin_lock(&ubi->wl_lock); e = ubi->lookuptbl[pnum]; if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { spin_unlock(&ubi->wl_lock); return 0; } if (e == ubi->move_to) { /* * This physical eraseblock was used to move data to. The data * was moved but the PEB was not yet inserted to the proper * tree. We should just wait a little and let the WL worker * proceed. */ spin_unlock(&ubi->wl_lock); dbg_wl("the PEB %d is not in proper tree, retry", pnum); yield(); goto retry; } if (in_wl_tree(e, &ubi->used)) used_tree_del(ubi, e); else prot_tree_del(ubi, pnum); scrub_tree_add(ubi, e); spin_unlock(&ubi->wl_lock); /* * Technically scrubbing is the same as wear-leveling, so it is done * by the WL worker. */ return ensure_wear_leveling(ubi); } /** * ubi_wl_flush - flush all pending works. * @ubi: UBI device description object * * This function returns zero in case of success and a negative error code in * case of failure. */ int ubi_wl_flush(struct ubi_device *ubi) { int err, pending_count; pending_count = ubi->works_count; dbg_wl("flush (%d pending works)", pending_count); /* * Erase while the pending works queue is not empty, but not more then * the number of currently pending works. */ while (pending_count-- > 0) { err = do_work(ubi); if (err) return err; } return 0; } /** * tree_destroy - destroy an RB-tree. * @root: the root of the tree to destroy */ static void tree_destroy(struct rb_root *root) { struct rb_node *rb; struct ubi_wl_entry *e; rb = root->rb_node; while (rb) { if (rb->rb_left) rb = rb->rb_left; else if (rb->rb_right) rb = rb->rb_right; else { e = rb_entry(rb, struct ubi_wl_entry, rb); rb = rb_parent(rb); if (rb) { if (rb->rb_left == &e->rb) rb->rb_left = NULL; else rb->rb_right = NULL; } kmem_cache_free(wl_entries_slab, e); } } } /** * ubi_thread - UBI background thread. * @u: the UBI device description object pointer */ static int ubi_thread(void *u) { int failures = 0; struct ubi_device *ubi = u; ubi_msg("background thread \"%s\" started, PID %d", ubi->bgt_name, current->pid); set_freezable(); for (;;) { int err; if (kthread_should_stop()) goto out; if (try_to_freeze()) continue; spin_lock(&ubi->wl_lock); if (list_empty(&ubi->works) || ubi->ro_mode || !ubi->thread_enabled) { set_current_state(TASK_INTERRUPTIBLE); spin_unlock(&ubi->wl_lock); schedule(); continue; } spin_unlock(&ubi->wl_lock); err = do_work(ubi); if (err) { ubi_err("%s: work failed with error code %d", ubi->bgt_name, err); if (failures++ > WL_MAX_FAILURES) { /* * Too many failures, disable the thread and * switch to read-only mode. */ ubi_msg("%s: %d consecutive failures", ubi->bgt_name, WL_MAX_FAILURES); ubi_ro_mode(ubi); break; } } else failures = 0; cond_resched(); } out: dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); return 0; } /** * cancel_pending - cancel all pending works. * @ubi: UBI device description object */ static void cancel_pending(struct ubi_device *ubi) { while (!list_empty(&ubi->works)) { struct ubi_work *wrk; wrk = list_entry(ubi->works.next, struct ubi_work, list); list_del(&wrk->list); wrk->func(ubi, wrk, 1); ubi->works_count -= 1; ubi_assert(ubi->works_count >= 0); } } /** * ubi_wl_init_scan - initialize the wear-leveling unit using scanning * information. * @ubi: UBI device description object * @si: scanning information * * This function returns zero in case of success, and a negative error code in * case of failure. */ int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) { int err; struct rb_node *rb1, *rb2; struct ubi_scan_volume *sv; struct ubi_scan_leb *seb, *tmp; struct ubi_wl_entry *e; ubi->used = ubi->free = ubi->scrub = RB_ROOT; ubi->prot.pnum = ubi->prot.aec = RB_ROOT; spin_lock_init(&ubi->wl_lock); ubi->max_ec = si->max_ec; INIT_LIST_HEAD(&ubi->works); sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); if (IS_ERR(ubi->bgt_thread)) { err = PTR_ERR(ubi->bgt_thread); ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, err); return err; } if (ubi_devices_cnt == 0) { wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab", sizeof(struct ubi_wl_entry), 0, 0, NULL); if (!wl_entries_slab) return -ENOMEM; } err = -ENOMEM; ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); if (!ubi->lookuptbl) goto out_free; list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { cond_resched(); e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); if (!e) goto out_free; e->pnum = seb->pnum; e->ec = seb->ec; ubi->lookuptbl[e->pnum] = e; if (schedule_erase(ubi, e, 0)) { kmem_cache_free(wl_entries_slab, e); goto out_free; } } list_for_each_entry(seb, &si->free, u.list) { cond_resched(); e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); if (!e) goto out_free; e->pnum = seb->pnum; e->ec = seb->ec; ubi_assert(e->ec >= 0); free_tree_add(ubi, e); ubi->lookuptbl[e->pnum] = e; } list_for_each_entry(seb, &si->corr, u.list) { cond_resched(); e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); if (!e) goto out_free; e->pnum = seb->pnum; e->ec = seb->ec; ubi->lookuptbl[e->pnum] = e; if (schedule_erase(ubi, e, 0)) { kmem_cache_free(wl_entries_slab, e); goto out_free; } } ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { cond_resched(); e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); if (!e) goto out_free; e->pnum = seb->pnum; e->ec = seb->ec; ubi->lookuptbl[e->pnum] = e; if (!seb->scrub) { dbg_wl("add PEB %d EC %d to the used tree", e->pnum, e->ec); used_tree_add(ubi, e); } else { dbg_wl("add PEB %d EC %d to the scrub tree", e->pnum, e->ec); scrub_tree_add(ubi, e); } } } if (WL_RESERVED_PEBS > ubi->avail_pebs) { ubi_err("no enough physical eraseblocks (%d, need %d)", ubi->avail_pebs, WL_RESERVED_PEBS); goto out_free; } ubi->avail_pebs -= WL_RESERVED_PEBS; ubi->rsvd_pebs += WL_RESERVED_PEBS; /* Schedule wear-leveling if needed */ err = ensure_wear_leveling(ubi); if (err) goto out_free; return 0; out_free: cancel_pending(ubi); tree_destroy(&ubi->used); tree_destroy(&ubi->free); tree_destroy(&ubi->scrub); kfree(ubi->lookuptbl); if (ubi_devices_cnt == 0) kmem_cache_destroy(wl_entries_slab); return err; } /** * protection_trees_destroy - destroy the protection RB-trees. * @ubi: UBI device description object */ static void protection_trees_destroy(struct ubi_device *ubi) { struct rb_node *rb; struct ubi_wl_prot_entry *pe; rb = ubi->prot.aec.rb_node; while (rb) { if (rb->rb_left) rb = rb->rb_left; else if (rb->rb_right) rb = rb->rb_right; else { pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec); rb = rb_parent(rb); if (rb) { if (rb->rb_left == &pe->rb_aec) rb->rb_left = NULL; else rb->rb_right = NULL; } kmem_cache_free(wl_entries_slab, pe->e); kfree(pe); } } } /** * ubi_wl_close - close the wear-leveling unit. * @ubi: UBI device description object */ void ubi_wl_close(struct ubi_device *ubi) { dbg_wl("disable \"%s\"", ubi->bgt_name); if (ubi->bgt_thread) kthread_stop(ubi->bgt_thread); dbg_wl("close the UBI wear-leveling unit"); cancel_pending(ubi); protection_trees_destroy(ubi); tree_destroy(&ubi->used); tree_destroy(&ubi->free); tree_destroy(&ubi->scrub); kfree(ubi->lookuptbl); if (ubi_devices_cnt == 1) kmem_cache_destroy(wl_entries_slab); } #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID /** * paranoid_check_ec - make sure that the erase counter of a physical eraseblock * is correct. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * @ec: the erase counter to check * * This function returns zero if the erase counter of physical eraseblock @pnum * is equivalent to @ec, %1 if not, and a negative error code if an error * occurred. */ static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec) { int err; long long read_ec; struct ubi_ec_hdr *ec_hdr; ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); if (!ec_hdr) return -ENOMEM; err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); if (err && err != UBI_IO_BITFLIPS) { /* The header does not have to exist */ err = 0; goto out_free; } read_ec = be64_to_cpu(ec_hdr->ec); if (ec != read_ec) { ubi_err("paranoid check failed for PEB %d", pnum); ubi_err("read EC is %lld, should be %d", read_ec, ec); ubi_dbg_dump_stack(); err = 1; } else err = 0; out_free: kfree(ec_hdr); return err; } /** * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present * in a WL RB-tree. * @e: the wear-leveling entry to check * @root: the root of the tree * * This function returns zero if @e is in the @root RB-tree and %1 if it * is not. */ static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) { if (in_wl_tree(e, root)) return 0; ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", e->pnum, e->ec, root); ubi_dbg_dump_stack(); return 1; } #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */