/* * Amiga Linux/68k A2065 Ethernet Driver * * (C) Copyright 1995-2003 by Geert Uytterhoeven <geert@linux-m68k.org> * * Fixes and tips by: * - Janos Farkas (CHEXUM@sparta.banki.hu) * - Jes Degn Soerensen (jds@kom.auc.dk) * - Matt Domsch (Matt_Domsch@dell.com) * * ---------------------------------------------------------------------------- * * This program is based on * * ariadne.?: Amiga Linux/68k Ariadne Ethernet Driver * (C) Copyright 1995 by Geert Uytterhoeven, * Peter De Schrijver * * lance.c: An AMD LANCE ethernet driver for linux. * Written 1993-94 by Donald Becker. * * Am79C960: PCnet(tm)-ISA Single-Chip Ethernet Controller * Advanced Micro Devices * Publication #16907, Rev. B, Amendment/0, May 1994 * * ---------------------------------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. * * ---------------------------------------------------------------------------- * * The A2065 is a Zorro-II board made by Commodore/Ameristar. It contains: * * - an Am7990 Local Area Network Controller for Ethernet (LANCE) with * both 10BASE-2 (thin coax) and AUI (DB-15) connectors */ #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/module.h> #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/config.h> #include <linux/init.h> #include <linux/crc32.h> #include <linux/zorro.h> #include <linux/bitops.h> #include <asm/irq.h> #include <asm/amigaints.h> #include <asm/amigahw.h> #include "a2065.h" /* * Transmit/Receive Ring Definitions */ #define LANCE_LOG_TX_BUFFERS (2) #define LANCE_LOG_RX_BUFFERS (4) #define TX_RING_SIZE (1<<LANCE_LOG_TX_BUFFERS) #define RX_RING_SIZE (1<<LANCE_LOG_RX_BUFFERS) #define TX_RING_MOD_MASK (TX_RING_SIZE-1) #define RX_RING_MOD_MASK (RX_RING_SIZE-1) #define PKT_BUF_SIZE (1544) #define RX_BUFF_SIZE PKT_BUF_SIZE #define TX_BUFF_SIZE PKT_BUF_SIZE /* * Layout of the Lance's RAM Buffer */ struct lance_init_block { unsigned short mode; /* Pre-set mode (reg. 15) */ unsigned char phys_addr[6]; /* Physical ethernet address */ unsigned filter[2]; /* Multicast filter. */ /* Receive and transmit ring base, along with extra bits. */ unsigned short rx_ptr; /* receive descriptor addr */ unsigned short rx_len; /* receive len and high addr */ unsigned short tx_ptr; /* transmit descriptor addr */ unsigned short tx_len; /* transmit len and high addr */ /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */ struct lance_rx_desc brx_ring[RX_RING_SIZE]; struct lance_tx_desc btx_ring[TX_RING_SIZE]; char rx_buf [RX_RING_SIZE][RX_BUFF_SIZE]; char tx_buf [TX_RING_SIZE][TX_BUFF_SIZE]; }; /* * Private Device Data */ struct lance_private { char *name; volatile struct lance_regs *ll; volatile struct lance_init_block *init_block; /* Hosts view */ volatile struct lance_init_block *lance_init_block; /* Lance view */ int rx_new, tx_new; int rx_old, tx_old; int lance_log_rx_bufs, lance_log_tx_bufs; int rx_ring_mod_mask, tx_ring_mod_mask; struct net_device_stats stats; int tpe; /* cable-selection is TPE */ int auto_select; /* cable-selection by carrier */ unsigned short busmaster_regval; #ifdef CONFIG_SUNLANCE struct Linux_SBus_DMA *ledma; /* if set this points to ledma and arch=4m */ int burst_sizes; /* ledma SBus burst sizes */ #endif struct timer_list multicast_timer; }; #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\ lp->tx_old+lp->tx_ring_mod_mask-lp->tx_new:\ lp->tx_old - lp->tx_new-1) #define LANCE_ADDR(x) ((int)(x) & ~0xff000000) /* Load the CSR registers */ static void load_csrs (struct lance_private *lp) { volatile struct lance_regs *ll = lp->ll; volatile struct lance_init_block *aib = lp->lance_init_block; int leptr; leptr = LANCE_ADDR (aib); ll->rap = LE_CSR1; ll->rdp = (leptr & 0xFFFF); ll->rap = LE_CSR2; ll->rdp = leptr >> 16; ll->rap = LE_CSR3; ll->rdp = lp->busmaster_regval; /* Point back to csr0 */ ll->rap = LE_CSR0; } #define ZERO 0 /* Setup the Lance Rx and Tx rings */ static void lance_init_ring (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_init_block *aib; /* for LANCE_ADDR computations */ int leptr; int i; aib = lp->lance_init_block; /* Lock out other processes while setting up hardware */ netif_stop_queue(dev); lp->rx_new = lp->tx_new = 0; lp->rx_old = lp->tx_old = 0; ib->mode = 0; /* Copy the ethernet address to the lance init block * Note that on the sparc you need to swap the ethernet address. */ ib->phys_addr [0] = dev->dev_addr [1]; ib->phys_addr [1] = dev->dev_addr [0]; ib->phys_addr [2] = dev->dev_addr [3]; ib->phys_addr [3] = dev->dev_addr [2]; ib->phys_addr [4] = dev->dev_addr [5]; ib->phys_addr [5] = dev->dev_addr [4]; if (ZERO) printk(KERN_DEBUG "TX rings:\n"); /* Setup the Tx ring entries */ for (i = 0; i <= (1<<lp->lance_log_tx_bufs); i++) { leptr = LANCE_ADDR(&aib->tx_buf[i][0]); ib->btx_ring [i].tmd0 = leptr; ib->btx_ring [i].tmd1_hadr = leptr >> 16; ib->btx_ring [i].tmd1_bits = 0; ib->btx_ring [i].length = 0xf000; /* The ones required by tmd2 */ ib->btx_ring [i].misc = 0; if (i < 3 && ZERO) printk(KERN_DEBUG "%d: 0x%8.8x\n", i, leptr); } /* Setup the Rx ring entries */ if (ZERO) printk(KERN_DEBUG "RX rings:\n"); for (i = 0; i < (1<<lp->lance_log_rx_bufs); i++) { leptr = LANCE_ADDR(&aib->rx_buf[i][0]); ib->brx_ring [i].rmd0 = leptr; ib->brx_ring [i].rmd1_hadr = leptr >> 16; ib->brx_ring [i].rmd1_bits = LE_R1_OWN; ib->brx_ring [i].length = -RX_BUFF_SIZE | 0xf000; ib->brx_ring [i].mblength = 0; if (i < 3 && ZERO) printk(KERN_DEBUG "%d: 0x%8.8x\n", i, leptr); } /* Setup the initialization block */ /* Setup rx descriptor pointer */ leptr = LANCE_ADDR(&aib->brx_ring); ib->rx_len = (lp->lance_log_rx_bufs << 13) | (leptr >> 16); ib->rx_ptr = leptr; if (ZERO) printk(KERN_DEBUG "RX ptr: %8.8x\n", leptr); /* Setup tx descriptor pointer */ leptr = LANCE_ADDR(&aib->btx_ring); ib->tx_len = (lp->lance_log_tx_bufs << 13) | (leptr >> 16); ib->tx_ptr = leptr; if (ZERO) printk(KERN_DEBUG "TX ptr: %8.8x\n", leptr); /* Clear the multicast filter */ ib->filter [0] = 0; ib->filter [1] = 0; } static int init_restart_lance (struct lance_private *lp) { volatile struct lance_regs *ll = lp->ll; int i; ll->rap = LE_CSR0; ll->rdp = LE_C0_INIT; /* Wait for the lance to complete initialization */ for (i = 0; (i < 100) && !(ll->rdp & (LE_C0_ERR | LE_C0_IDON)); i++) barrier(); if ((i == 100) || (ll->rdp & LE_C0_ERR)) { printk(KERN_ERR "LANCE unopened after %d ticks, csr0=%4.4x.\n", i, ll->rdp); return -EIO; } /* Clear IDON by writing a "1", enable interrupts and start lance */ ll->rdp = LE_C0_IDON; ll->rdp = LE_C0_INEA | LE_C0_STRT; return 0; } static int lance_rx (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_regs *ll = lp->ll; volatile struct lance_rx_desc *rd; unsigned char bits; int len = 0; /* XXX shut up gcc warnings */ struct sk_buff *skb = 0; /* XXX shut up gcc warnings */ #ifdef TEST_HITS int i; printk(KERN_DEBUG "["); for (i = 0; i < RX_RING_SIZE; i++) { if (i == lp->rx_new) printk ("%s", ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "_" : "X"); else printk ("%s", ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "." : "1"); } printk ("]\n"); #endif ll->rdp = LE_C0_RINT|LE_C0_INEA; for (rd = &ib->brx_ring [lp->rx_new]; !((bits = rd->rmd1_bits) & LE_R1_OWN); rd = &ib->brx_ring [lp->rx_new]) { /* We got an incomplete frame? */ if ((bits & LE_R1_POK) != LE_R1_POK) { lp->stats.rx_over_errors++; lp->stats.rx_errors++; continue; } else if (bits & LE_R1_ERR) { /* Count only the end frame as a rx error, * not the beginning */ if (bits & LE_R1_BUF) lp->stats.rx_fifo_errors++; if (bits & LE_R1_CRC) lp->stats.rx_crc_errors++; if (bits & LE_R1_OFL) lp->stats.rx_over_errors++; if (bits & LE_R1_FRA) lp->stats.rx_frame_errors++; if (bits & LE_R1_EOP) lp->stats.rx_errors++; } else { len = (rd->mblength & 0xfff) - 4; skb = dev_alloc_skb (len+2); if (skb == 0) { printk(KERN_WARNING "%s: Memory squeeze, " "deferring packet.\n", dev->name); lp->stats.rx_dropped++; rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & lp->rx_ring_mod_mask; return 0; } skb->dev = dev; skb_reserve (skb, 2); /* 16 byte align */ skb_put (skb, len); /* make room */ eth_copy_and_sum(skb, (unsigned char *)&(ib->rx_buf [lp->rx_new][0]), len, 0); skb->protocol = eth_type_trans (skb, dev); netif_rx (skb); dev->last_rx = jiffies; lp->stats.rx_packets++; lp->stats.rx_bytes += len; } /* Return the packet to the pool */ rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & lp->rx_ring_mod_mask; } return 0; } static int lance_tx (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_regs *ll = lp->ll; volatile struct lance_tx_desc *td; int i, j; int status; /* csr0 is 2f3 */ ll->rdp = LE_C0_TINT | LE_C0_INEA; /* csr0 is 73 */ j = lp->tx_old; for (i = j; i != lp->tx_new; i = j) { td = &ib->btx_ring [i]; /* If we hit a packet not owned by us, stop */ if (td->tmd1_bits & LE_T1_OWN) break; if (td->tmd1_bits & LE_T1_ERR) { status = td->misc; lp->stats.tx_errors++; if (status & LE_T3_RTY) lp->stats.tx_aborted_errors++; if (status & LE_T3_LCOL) lp->stats.tx_window_errors++; if (status & LE_T3_CLOS) { lp->stats.tx_carrier_errors++; if (lp->auto_select) { lp->tpe = 1 - lp->tpe; printk(KERN_ERR "%s: Carrier Lost, " "trying %s\n", dev->name, lp->tpe?"TPE":"AUI"); /* Stop the lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); return 0; } } /* buffer errors and underflows turn off the transmitter */ /* Restart the adapter */ if (status & (LE_T3_BUF|LE_T3_UFL)) { lp->stats.tx_fifo_errors++; printk(KERN_ERR "%s: Tx: ERR_BUF|ERR_UFL, " "restarting\n", dev->name); /* Stop the lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); return 0; } } else if ((td->tmd1_bits & LE_T1_POK) == LE_T1_POK) { /* * So we don't count the packet more than once. */ td->tmd1_bits &= ~(LE_T1_POK); /* One collision before packet was sent. */ if (td->tmd1_bits & LE_T1_EONE) lp->stats.collisions++; /* More than one collision, be optimistic. */ if (td->tmd1_bits & LE_T1_EMORE) lp->stats.collisions += 2; lp->stats.tx_packets++; } j = (j + 1) & lp->tx_ring_mod_mask; } lp->tx_old = j; ll->rdp = LE_C0_TINT | LE_C0_INEA; return 0; } static irqreturn_t lance_interrupt (int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev; struct lance_private *lp; volatile struct lance_regs *ll; int csr0; dev = (struct net_device *) dev_id; lp = netdev_priv(dev); ll = lp->ll; ll->rap = LE_CSR0; /* LANCE Controller Status */ csr0 = ll->rdp; if (!(csr0 & LE_C0_INTR)) /* Check if any interrupt has */ return IRQ_NONE; /* been generated by the Lance. */ /* Acknowledge all the interrupt sources ASAP */ ll->rdp = csr0 & ~(LE_C0_INEA|LE_C0_TDMD|LE_C0_STOP|LE_C0_STRT| LE_C0_INIT); if ((csr0 & LE_C0_ERR)) { /* Clear the error condition */ ll->rdp = LE_C0_BABL|LE_C0_ERR|LE_C0_MISS|LE_C0_INEA; } if (csr0 & LE_C0_RINT) lance_rx (dev); if (csr0 & LE_C0_TINT) lance_tx (dev); /* Log misc errors. */ if (csr0 & LE_C0_BABL) lp->stats.tx_errors++; /* Tx babble. */ if (csr0 & LE_C0_MISS) lp->stats.rx_errors++; /* Missed a Rx frame. */ if (csr0 & LE_C0_MERR) { printk(KERN_ERR "%s: Bus master arbitration failure, status " "%4.4x.\n", dev->name, csr0); /* Restart the chip. */ ll->rdp = LE_C0_STRT; } if (netif_queue_stopped(dev) && TX_BUFFS_AVAIL > 0) netif_wake_queue(dev); ll->rap = LE_CSR0; ll->rdp = LE_C0_BABL|LE_C0_CERR|LE_C0_MISS|LE_C0_MERR| LE_C0_IDON|LE_C0_INEA; return IRQ_HANDLED; } struct net_device *last_dev = 0; static int lance_open (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_regs *ll = lp->ll; int ret; last_dev = dev; /* Stop the Lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; /* Install the Interrupt handler */ ret = request_irq(IRQ_AMIGA_PORTS, lance_interrupt, SA_SHIRQ, dev->name, dev); if (ret) return ret; load_csrs (lp); lance_init_ring (dev); netif_start_queue(dev); return init_restart_lance (lp); } static int lance_close (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_regs *ll = lp->ll; netif_stop_queue(dev); del_timer_sync(&lp->multicast_timer); /* Stop the card */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; free_irq(IRQ_AMIGA_PORTS, dev); return 0; } static inline int lance_reset (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_regs *ll = lp->ll; int status; /* Stop the lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; load_csrs (lp); lance_init_ring (dev); dev->trans_start = jiffies; netif_start_queue(dev); status = init_restart_lance (lp); #ifdef DEBUG_DRIVER printk(KERN_DEBUG "Lance restart=%d\n", status); #endif return status; } static void lance_tx_timeout(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_regs *ll = lp->ll; printk(KERN_ERR "%s: transmit timed out, status %04x, reset\n", dev->name, ll->rdp); lance_reset(dev); netif_wake_queue(dev); } static int lance_start_xmit (struct sk_buff *skb, struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_regs *ll = lp->ll; volatile struct lance_init_block *ib = lp->init_block; int entry, skblen, len; int status = 0; static int outs; unsigned long flags; skblen = skb->len; len = skblen; if (len < ETH_ZLEN) { len = ETH_ZLEN; skb = skb_padto(skb, ETH_ZLEN); if (skb == NULL) return 0; } local_irq_save(flags); if (!TX_BUFFS_AVAIL){ local_irq_restore(flags); return -1; } #ifdef DEBUG_DRIVER /* dump the packet */ { int i; for (i = 0; i < 64; i++) { if ((i % 16) == 0) printk("\n" KERN_DEBUG); printk ("%2.2x ", skb->data [i]); } printk("\n"); } #endif entry = lp->tx_new & lp->tx_ring_mod_mask; ib->btx_ring [entry].length = (-len) | 0xf000; ib->btx_ring [entry].misc = 0; memcpy ((char *)&ib->tx_buf [entry][0], skb->data, skblen); /* Clear the slack of the packet, do I need this? */ if (len != skblen) memset ((char *) &ib->tx_buf [entry][skblen], 0, len - skblen); /* Now, give the packet to the lance */ ib->btx_ring [entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN); lp->tx_new = (lp->tx_new+1) & lp->tx_ring_mod_mask; outs++; if (TX_BUFFS_AVAIL <= 0) netif_stop_queue(dev); /* Kick the lance: transmit now */ ll->rdp = LE_C0_INEA | LE_C0_TDMD; dev->trans_start = jiffies; dev_kfree_skb (skb); local_irq_restore(flags); return status; } static struct net_device_stats *lance_get_stats (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); return &lp->stats; } /* taken from the depca driver */ static void lance_load_multicast (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_init_block *ib = lp->init_block; volatile u16 *mcast_table = (u16 *)&ib->filter; struct dev_mc_list *dmi=dev->mc_list; char *addrs; int i; u32 crc; /* set all multicast bits */ if (dev->flags & IFF_ALLMULTI){ ib->filter [0] = 0xffffffff; ib->filter [1] = 0xffffffff; return; } /* clear the multicast filter */ ib->filter [0] = 0; ib->filter [1] = 0; /* Add addresses */ for (i = 0; i < dev->mc_count; i++){ addrs = dmi->dmi_addr; dmi = dmi->next; /* multicast address? */ if (!(*addrs & 1)) continue; crc = ether_crc_le(6, addrs); crc = crc >> 26; mcast_table [crc >> 4] |= 1 << (crc & 0xf); } return; } static void lance_set_multicast (struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_regs *ll = lp->ll; if (!netif_running(dev)) return; if (lp->tx_old != lp->tx_new) { mod_timer(&lp->multicast_timer, jiffies + 4); netif_wake_queue(dev); return; } netif_stop_queue(dev); ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; lance_init_ring (dev); if (dev->flags & IFF_PROMISC) { ib->mode |= LE_MO_PROM; } else { ib->mode &= ~LE_MO_PROM; lance_load_multicast (dev); } load_csrs (lp); init_restart_lance (lp); netif_wake_queue(dev); } static int __devinit a2065_init_one(struct zorro_dev *z, const struct zorro_device_id *ent); static void __devexit a2065_remove_one(struct zorro_dev *z); static struct zorro_device_id a2065_zorro_tbl[] __devinitdata = { { ZORRO_PROD_CBM_A2065_1 }, { ZORRO_PROD_CBM_A2065_2 }, { ZORRO_PROD_AMERISTAR_A2065 }, { 0 } }; static struct zorro_driver a2065_driver = { .name = "a2065", .id_table = a2065_zorro_tbl, .probe = a2065_init_one, .remove = __devexit_p(a2065_remove_one), }; static int __devinit a2065_init_one(struct zorro_dev *z, const struct zorro_device_id *ent) { struct net_device *dev; struct lance_private *priv; unsigned long board, base_addr, mem_start; struct resource *r1, *r2; int err; board = z->resource.start; base_addr = board+A2065_LANCE; mem_start = board+A2065_RAM; r1 = request_mem_region(base_addr, sizeof(struct lance_regs), "Am7990"); if (!r1) return -EBUSY; r2 = request_mem_region(mem_start, A2065_RAM_SIZE, "RAM"); if (!r2) { release_resource(r1); return -EBUSY; } dev = alloc_etherdev(sizeof(struct lance_private)); if (dev == NULL) { release_resource(r1); release_resource(r2); return -ENOMEM; } SET_MODULE_OWNER(dev); priv = netdev_priv(dev); r1->name = dev->name; r2->name = dev->name; dev->dev_addr[0] = 0x00; if (z->id != ZORRO_PROD_AMERISTAR_A2065) { /* Commodore */ dev->dev_addr[1] = 0x80; dev->dev_addr[2] = 0x10; } else { /* Ameristar */ dev->dev_addr[1] = 0x00; dev->dev_addr[2] = 0x9f; } dev->dev_addr[3] = (z->rom.er_SerialNumber>>16) & 0xff; dev->dev_addr[4] = (z->rom.er_SerialNumber>>8) & 0xff; dev->dev_addr[5] = z->rom.er_SerialNumber & 0xff; dev->base_addr = ZTWO_VADDR(base_addr); dev->mem_start = ZTWO_VADDR(mem_start); dev->mem_end = dev->mem_start+A2065_RAM_SIZE; priv->ll = (volatile struct lance_regs *)dev->base_addr; priv->init_block = (struct lance_init_block *)dev->mem_start; priv->lance_init_block = (struct lance_init_block *)A2065_RAM; priv->auto_select = 0; priv->busmaster_regval = LE_C3_BSWP; priv->lance_log_rx_bufs = LANCE_LOG_RX_BUFFERS; priv->lance_log_tx_bufs = LANCE_LOG_TX_BUFFERS; priv->rx_ring_mod_mask = RX_RING_MOD_MASK; priv->tx_ring_mod_mask = TX_RING_MOD_MASK; dev->open = &lance_open; dev->stop = &lance_close; dev->hard_start_xmit = &lance_start_xmit; dev->tx_timeout = &lance_tx_timeout; dev->watchdog_timeo = 5*HZ; dev->get_stats = &lance_get_stats; dev->set_multicast_list = &lance_set_multicast; dev->dma = 0; init_timer(&priv->multicast_timer); priv->multicast_timer.data = (unsigned long) dev; priv->multicast_timer.function = (void (*)(unsigned long)) &lance_set_multicast; err = register_netdev(dev); if (err) { release_resource(r1); release_resource(r2); free_netdev(dev); return err; } zorro_set_drvdata(z, dev); printk(KERN_INFO "%s: A2065 at 0x%08lx, Ethernet Address " "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, board, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); return 0; } static void __devexit a2065_remove_one(struct zorro_dev *z) { struct net_device *dev = zorro_get_drvdata(z); unregister_netdev(dev); release_mem_region(ZTWO_PADDR(dev->base_addr), sizeof(struct lance_regs)); release_mem_region(ZTWO_PADDR(dev->mem_start), A2065_RAM_SIZE); free_netdev(dev); } static int __init a2065_init_module(void) { return zorro_register_driver(&a2065_driver); } static void __exit a2065_cleanup_module(void) { zorro_unregister_driver(&a2065_driver); } module_init(a2065_init_module); module_exit(a2065_cleanup_module); MODULE_LICENSE("GPL");