/* * Intel IXP4xx Ethernet driver for Linux * * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl> * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. * * Ethernet port config (0x00 is not present on IXP42X): * * logical port 0x00 0x10 0x20 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C) * physical PortId 2 0 1 * TX queue 23 24 25 * RX-free queue 26 27 28 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable * * * Queue entries: * bits 0 -> 1 - NPE ID (RX and TX-done) * bits 0 -> 2 - priority (TX, per 802.1D) * bits 3 -> 4 - port ID (user-set?) * bits 5 -> 31 - physical descriptor address */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/etherdevice.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/mii.h> #include <linux/platform_device.h> #include <asm/arch/npe.h> #include <asm/arch/qmgr.h> #define DEBUG_QUEUES 0 #define DEBUG_DESC 0 #define DEBUG_RX 0 #define DEBUG_TX 0 #define DEBUG_PKT_BYTES 0 #define DEBUG_MDIO 0 #define DEBUG_CLOSE 0 #define DRV_NAME "ixp4xx_eth" #define MAX_NPES 3 #define RX_DESCS 64 /* also length of all RX queues */ #define TX_DESCS 16 /* also length of all TX queues */ #define TXDONE_QUEUE_LEN 64 /* dwords */ #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS)) #define REGS_SIZE 0x1000 #define MAX_MRU 1536 /* 0x600 */ #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4) #define NAPI_WEIGHT 16 #define MDIO_INTERVAL (3 * HZ) #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */ #define MAX_MII_RESET_RETRIES 100 /* mdio_read() cycles, typically 4 */ #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */ #define NPE_ID(port_id) ((port_id) >> 4) #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3) #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23) #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26) #define TXDONE_QUEUE 31 /* TX Control Registers */ #define TX_CNTRL0_TX_EN 0x01 #define TX_CNTRL0_HALFDUPLEX 0x02 #define TX_CNTRL0_RETRY 0x04 #define TX_CNTRL0_PAD_EN 0x08 #define TX_CNTRL0_APPEND_FCS 0x10 #define TX_CNTRL0_2DEFER 0x20 #define TX_CNTRL0_RMII 0x40 /* reduced MII */ #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */ /* RX Control Registers */ #define RX_CNTRL0_RX_EN 0x01 #define RX_CNTRL0_PADSTRIP_EN 0x02 #define RX_CNTRL0_SEND_FCS 0x04 #define RX_CNTRL0_PAUSE_EN 0x08 #define RX_CNTRL0_LOOP_EN 0x10 #define RX_CNTRL0_ADDR_FLTR_EN 0x20 #define RX_CNTRL0_RX_RUNT_EN 0x40 #define RX_CNTRL0_BCAST_DIS 0x80 #define RX_CNTRL1_DEFER_EN 0x01 /* Core Control Register */ #define CORE_RESET 0x01 #define CORE_RX_FIFO_FLUSH 0x02 #define CORE_TX_FIFO_FLUSH 0x04 #define CORE_SEND_JAM 0x08 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */ #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \ TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \ TX_CNTRL0_2DEFER) #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN #define DEFAULT_CORE_CNTRL CORE_MDC_EN /* NPE message codes */ #define NPE_GETSTATUS 0x00 #define NPE_EDB_SETPORTADDRESS 0x01 #define NPE_EDB_GETMACADDRESSDATABASE 0x02 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03 #define NPE_GETSTATS 0x04 #define NPE_RESETSTATS 0x05 #define NPE_SETMAXFRAMELENGTHS 0x06 #define NPE_VLAN_SETRXTAGMODE 0x07 #define NPE_VLAN_SETDEFAULTRXVID 0x08 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A #define NPE_VLAN_SETRXQOSENTRY 0x0B #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C #define NPE_STP_SETBLOCKINGSTATE 0x0D #define NPE_FW_SETFIREWALLMODE 0x0E #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F #define NPE_PC_SETAPMACTABLE 0x11 #define NPE_SETLOOPBACK_MODE 0x12 #define NPE_PC_SETBSSIDTABLE 0x13 #define NPE_ADDRESS_FILTER_CONFIG 0x14 #define NPE_APPENDFCSCONFIG 0x15 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16 #define NPE_MAC_RECOVERY_START 0x17 #ifdef __ARMEB__ typedef struct sk_buff buffer_t; #define free_buffer dev_kfree_skb #define free_buffer_irq dev_kfree_skb_irq #else typedef void buffer_t; #define free_buffer kfree #define free_buffer_irq kfree #endif struct eth_regs { u32 tx_control[2], __res1[2]; /* 000 */ u32 rx_control[2], __res2[2]; /* 010 */ u32 random_seed, __res3[3]; /* 020 */ u32 partial_empty_threshold, __res4; /* 030 */ u32 partial_full_threshold, __res5; /* 038 */ u32 tx_start_bytes, __res6[3]; /* 040 */ u32 tx_deferral, rx_deferral, __res7[2];/* 050 */ u32 tx_2part_deferral[2], __res8[2]; /* 060 */ u32 slot_time, __res9[3]; /* 070 */ u32 mdio_command[4]; /* 080 */ u32 mdio_status[4]; /* 090 */ u32 mcast_mask[6], __res10[2]; /* 0A0 */ u32 mcast_addr[6], __res11[2]; /* 0C0 */ u32 int_clock_threshold, __res12[3]; /* 0E0 */ u32 hw_addr[6], __res13[61]; /* 0F0 */ u32 core_control; /* 1FC */ }; struct port { struct resource *mem_res; struct eth_regs __iomem *regs; struct npe *npe; struct net_device *netdev; struct napi_struct napi; struct net_device_stats stat; struct mii_if_info mii; struct delayed_work mdio_thread; struct eth_plat_info *plat; buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS]; struct desc *desc_tab; /* coherent */ u32 desc_tab_phys; int id; /* logical port ID */ u16 mii_bmcr; }; /* NPE message structure */ struct msg { #ifdef __ARMEB__ u8 cmd, eth_id, byte2, byte3; u8 byte4, byte5, byte6, byte7; #else u8 byte3, byte2, eth_id, cmd; u8 byte7, byte6, byte5, byte4; #endif }; /* Ethernet packet descriptor */ struct desc { u32 next; /* pointer to next buffer, unused */ #ifdef __ARMEB__ u16 buf_len; /* buffer length */ u16 pkt_len; /* packet length */ u32 data; /* pointer to data buffer in RAM */ u8 dest_id; u8 src_id; u16 flags; u8 qos; u8 padlen; u16 vlan_tci; #else u16 pkt_len; /* packet length */ u16 buf_len; /* buffer length */ u32 data; /* pointer to data buffer in RAM */ u16 flags; u8 src_id; u8 dest_id; u16 vlan_tci; u8 padlen; u8 qos; #endif #ifdef __ARMEB__ u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3; u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1; u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5; #else u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0; u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4; u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2; #endif }; #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \ (n) * sizeof(struct desc)) #define rx_desc_ptr(port, n) (&(port)->desc_tab[n]) #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \ ((n) + RX_DESCS) * sizeof(struct desc)) #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS]) #ifndef __ARMEB__ static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt) { int i; for (i = 0; i < cnt; i++) dest[i] = swab32(src[i]); } #endif static spinlock_t mdio_lock; static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */ static int ports_open; static struct port *npe_port_tab[MAX_NPES]; static struct dma_pool *dma_pool; static u16 mdio_cmd(struct net_device *dev, int phy_id, int location, int write, u16 cmd) { int cycles = 0; if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) { printk(KERN_ERR "%s: MII not ready to transmit\n", dev->name); return 0; } if (write) { __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]); __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]); } __raw_writel(((phy_id << 5) | location) & 0xFF, &mdio_regs->mdio_command[2]); __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */, &mdio_regs->mdio_command[3]); while ((cycles < MAX_MDIO_RETRIES) && (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) { udelay(1); cycles++; } if (cycles == MAX_MDIO_RETRIES) { printk(KERN_ERR "%s: MII write failed\n", dev->name); return 0; } #if DEBUG_MDIO printk(KERN_DEBUG "%s: mdio_cmd() took %i cycles\n", dev->name, cycles); #endif if (write) return 0; if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) { printk(KERN_ERR "%s: MII read failed\n", dev->name); return 0; } return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) | (__raw_readl(&mdio_regs->mdio_status[1]) << 8); } static int mdio_read(struct net_device *dev, int phy_id, int location) { unsigned long flags; u16 val; spin_lock_irqsave(&mdio_lock, flags); val = mdio_cmd(dev, phy_id, location, 0, 0); spin_unlock_irqrestore(&mdio_lock, flags); return val; } static void mdio_write(struct net_device *dev, int phy_id, int location, int val) { unsigned long flags; spin_lock_irqsave(&mdio_lock, flags); mdio_cmd(dev, phy_id, location, 1, val); spin_unlock_irqrestore(&mdio_lock, flags); } static void phy_reset(struct net_device *dev, int phy_id) { struct port *port = netdev_priv(dev); int cycles = 0; mdio_write(dev, phy_id, MII_BMCR, port->mii_bmcr | BMCR_RESET); while (cycles < MAX_MII_RESET_RETRIES) { if (!(mdio_read(dev, phy_id, MII_BMCR) & BMCR_RESET)) { #if DEBUG_MDIO printk(KERN_DEBUG "%s: phy_reset() took %i cycles\n", dev->name, cycles); #endif return; } udelay(1); cycles++; } printk(KERN_ERR "%s: MII reset failed\n", dev->name); } static void eth_set_duplex(struct port *port) { if (port->mii.full_duplex) __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX, &port->regs->tx_control[0]); else __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX, &port->regs->tx_control[0]); } static void phy_check_media(struct port *port, int init) { if (mii_check_media(&port->mii, 1, init)) eth_set_duplex(port); if (port->mii.force_media) { /* mii_check_media() doesn't work */ struct net_device *dev = port->netdev; int cur_link = mii_link_ok(&port->mii); int prev_link = netif_carrier_ok(dev); if (!prev_link && cur_link) { printk(KERN_INFO "%s: link up\n", dev->name); netif_carrier_on(dev); } else if (prev_link && !cur_link) { printk(KERN_INFO "%s: link down\n", dev->name); netif_carrier_off(dev); } } } static void mdio_thread(struct work_struct *work) { struct port *port = container_of(work, struct port, mdio_thread.work); phy_check_media(port, 0); schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL); } static inline void debug_pkt(struct net_device *dev, const char *func, u8 *data, int len) { #if DEBUG_PKT_BYTES int i; printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len); for (i = 0; i < len; i++) { if (i >= DEBUG_PKT_BYTES) break; printk("%s%02X", ((i == 6) || (i == 12) || (i >= 14)) ? " " : "", data[i]); } printk("\n"); #endif } static inline void debug_desc(u32 phys, struct desc *desc) { #if DEBUG_DESC printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X" " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n", phys, desc->next, desc->buf_len, desc->pkt_len, desc->data, desc->dest_id, desc->src_id, desc->flags, desc->qos, desc->padlen, desc->vlan_tci, desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2, desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5, desc->src_mac_0, desc->src_mac_1, desc->src_mac_2, desc->src_mac_3, desc->src_mac_4, desc->src_mac_5); #endif } static inline void debug_queue(unsigned int queue, int is_get, u32 phys) { #if DEBUG_QUEUES static struct { int queue; char *name; } names[] = { { TX_QUEUE(0x10), "TX#0 " }, { TX_QUEUE(0x20), "TX#1 " }, { TX_QUEUE(0x00), "TX#2 " }, { RXFREE_QUEUE(0x10), "RX-free#0 " }, { RXFREE_QUEUE(0x20), "RX-free#1 " }, { RXFREE_QUEUE(0x00), "RX-free#2 " }, { TXDONE_QUEUE, "TX-done " }, }; int i; for (i = 0; i < ARRAY_SIZE(names); i++) if (names[i].queue == queue) break; printk(KERN_DEBUG "Queue %i %s%s %X\n", queue, i < ARRAY_SIZE(names) ? names[i].name : "", is_get ? "->" : "<-", phys); #endif } static inline u32 queue_get_entry(unsigned int queue) { u32 phys = qmgr_get_entry(queue); debug_queue(queue, 1, phys); return phys; } static inline int queue_get_desc(unsigned int queue, struct port *port, int is_tx) { u32 phys, tab_phys, n_desc; struct desc *tab; if (!(phys = queue_get_entry(queue))) return -1; phys &= ~0x1F; /* mask out non-address bits */ tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0); tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0); n_desc = (phys - tab_phys) / sizeof(struct desc); BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS)); debug_desc(phys, &tab[n_desc]); BUG_ON(tab[n_desc].next); return n_desc; } static inline void queue_put_desc(unsigned int queue, u32 phys, struct desc *desc) { debug_queue(queue, 0, phys); debug_desc(phys, desc); BUG_ON(phys & 0x1F); qmgr_put_entry(queue, phys); BUG_ON(qmgr_stat_overflow(queue)); } static inline void dma_unmap_tx(struct port *port, struct desc *desc) { #ifdef __ARMEB__ dma_unmap_single(&port->netdev->dev, desc->data, desc->buf_len, DMA_TO_DEVICE); #else dma_unmap_single(&port->netdev->dev, desc->data & ~3, ALIGN((desc->data & 3) + desc->buf_len, 4), DMA_TO_DEVICE); #endif } static void eth_rx_irq(void *pdev) { struct net_device *dev = pdev; struct port *port = netdev_priv(dev); #if DEBUG_RX printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name); #endif qmgr_disable_irq(port->plat->rxq); netif_rx_schedule(dev, &port->napi); } static int eth_poll(struct napi_struct *napi, int budget) { struct port *port = container_of(napi, struct port, napi); struct net_device *dev = port->netdev; unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id); int received = 0; #if DEBUG_RX printk(KERN_DEBUG "%s: eth_poll\n", dev->name); #endif while (received < budget) { struct sk_buff *skb; struct desc *desc; int n; #ifdef __ARMEB__ struct sk_buff *temp; u32 phys; #endif if ((n = queue_get_desc(rxq, port, 0)) < 0) { received = 0; /* No packet received */ #if DEBUG_RX printk(KERN_DEBUG "%s: eth_poll netif_rx_complete\n", dev->name); #endif netif_rx_complete(dev, napi); qmgr_enable_irq(rxq); if (!qmgr_stat_empty(rxq) && netif_rx_reschedule(dev, napi)) { #if DEBUG_RX printk(KERN_DEBUG "%s: eth_poll" " netif_rx_reschedule successed\n", dev->name); #endif qmgr_disable_irq(rxq); continue; } #if DEBUG_RX printk(KERN_DEBUG "%s: eth_poll all done\n", dev->name); #endif return 0; /* all work done */ } desc = rx_desc_ptr(port, n); #ifdef __ARMEB__ if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) { phys = dma_map_single(&dev->dev, skb->data, RX_BUFF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(phys)) { dev_kfree_skb(skb); skb = NULL; } } #else skb = netdev_alloc_skb(dev, ALIGN(NET_IP_ALIGN + desc->pkt_len, 4)); #endif if (!skb) { port->stat.rx_dropped++; /* put the desc back on RX-ready queue */ desc->buf_len = MAX_MRU; desc->pkt_len = 0; queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); continue; } /* process received frame */ #ifdef __ARMEB__ temp = skb; skb = port->rx_buff_tab[n]; dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN, RX_BUFF_SIZE, DMA_FROM_DEVICE); #else dma_sync_single(&dev->dev, desc->data - NET_IP_ALIGN, RX_BUFF_SIZE, DMA_FROM_DEVICE); memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n], ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4); #endif skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, desc->pkt_len); debug_pkt(dev, "eth_poll", skb->data, skb->len); skb->protocol = eth_type_trans(skb, dev); dev->last_rx = jiffies; port->stat.rx_packets++; port->stat.rx_bytes += skb->len; netif_receive_skb(skb); /* put the new buffer on RX-free queue */ #ifdef __ARMEB__ port->rx_buff_tab[n] = temp; desc->data = phys + NET_IP_ALIGN; #endif desc->buf_len = MAX_MRU; desc->pkt_len = 0; queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); received++; } #if DEBUG_RX printk(KERN_DEBUG "eth_poll(): end, not all work done\n"); #endif return received; /* not all work done */ } static void eth_txdone_irq(void *unused) { u32 phys; #if DEBUG_TX printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n"); #endif while ((phys = queue_get_entry(TXDONE_QUEUE)) != 0) { u32 npe_id, n_desc; struct port *port; struct desc *desc; int start; npe_id = phys & 3; BUG_ON(npe_id >= MAX_NPES); port = npe_port_tab[npe_id]; BUG_ON(!port); phys &= ~0x1F; /* mask out non-address bits */ n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc); BUG_ON(n_desc >= TX_DESCS); desc = tx_desc_ptr(port, n_desc); debug_desc(phys, desc); if (port->tx_buff_tab[n_desc]) { /* not the draining packet */ port->stat.tx_packets++; port->stat.tx_bytes += desc->pkt_len; dma_unmap_tx(port, desc); #if DEBUG_TX printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n", port->netdev->name, port->tx_buff_tab[n_desc]); #endif free_buffer_irq(port->tx_buff_tab[n_desc]); port->tx_buff_tab[n_desc] = NULL; } start = qmgr_stat_empty(port->plat->txreadyq); queue_put_desc(port->plat->txreadyq, phys, desc); if (start) { #if DEBUG_TX printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n", port->netdev->name); #endif netif_wake_queue(port->netdev); } } } static int eth_xmit(struct sk_buff *skb, struct net_device *dev) { struct port *port = netdev_priv(dev); unsigned int txreadyq = port->plat->txreadyq; int len, offset, bytes, n; void *mem; u32 phys; struct desc *desc; #if DEBUG_TX printk(KERN_DEBUG "%s: eth_xmit\n", dev->name); #endif if (unlikely(skb->len > MAX_MRU)) { dev_kfree_skb(skb); port->stat.tx_errors++; return NETDEV_TX_OK; } debug_pkt(dev, "eth_xmit", skb->data, skb->len); len = skb->len; #ifdef __ARMEB__ offset = 0; /* no need to keep alignment */ bytes = len; mem = skb->data; #else offset = (int)skb->data & 3; /* keep 32-bit alignment */ bytes = ALIGN(offset + len, 4); if (!(mem = kmalloc(bytes, GFP_ATOMIC))) { dev_kfree_skb(skb); port->stat.tx_dropped++; return NETDEV_TX_OK; } memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4); dev_kfree_skb(skb); #endif phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE); if (dma_mapping_error(phys)) { #ifdef __ARMEB__ dev_kfree_skb(skb); #else kfree(mem); #endif port->stat.tx_dropped++; return NETDEV_TX_OK; } n = queue_get_desc(txreadyq, port, 1); BUG_ON(n < 0); desc = tx_desc_ptr(port, n); #ifdef __ARMEB__ port->tx_buff_tab[n] = skb; #else port->tx_buff_tab[n] = mem; #endif desc->data = phys + offset; desc->buf_len = desc->pkt_len = len; /* NPE firmware pads short frames with zeros internally */ wmb(); queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc); dev->trans_start = jiffies; if (qmgr_stat_empty(txreadyq)) { #if DEBUG_TX printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name); #endif netif_stop_queue(dev); /* we could miss TX ready interrupt */ if (!qmgr_stat_empty(txreadyq)) { #if DEBUG_TX printk(KERN_DEBUG "%s: eth_xmit ready again\n", dev->name); #endif netif_wake_queue(dev); } } #if DEBUG_TX printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name); #endif return NETDEV_TX_OK; } static struct net_device_stats *eth_stats(struct net_device *dev) { struct port *port = netdev_priv(dev); return &port->stat; } static void eth_set_mcast_list(struct net_device *dev) { struct port *port = netdev_priv(dev); struct dev_mc_list *mclist = dev->mc_list; u8 diffs[ETH_ALEN], *addr; int cnt = dev->mc_count, i; if ((dev->flags & IFF_PROMISC) || !mclist || !cnt) { __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN, &port->regs->rx_control[0]); return; } memset(diffs, 0, ETH_ALEN); addr = mclist->dmi_addr; /* first MAC address */ while (--cnt && (mclist = mclist->next)) for (i = 0; i < ETH_ALEN; i++) diffs[i] |= addr[i] ^ mclist->dmi_addr[i]; for (i = 0; i < ETH_ALEN; i++) { __raw_writel(addr[i], &port->regs->mcast_addr[i]); __raw_writel(~diffs[i], &port->regs->mcast_mask[i]); } __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN, &port->regs->rx_control[0]); } static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct port *port = netdev_priv(dev); unsigned int duplex_chg; int err; if (!netif_running(dev)) return -EINVAL; err = generic_mii_ioctl(&port->mii, if_mii(req), cmd, &duplex_chg); if (duplex_chg) eth_set_duplex(port); return err; } static int request_queues(struct port *port) { int err; err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0); if (err) return err; err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0); if (err) goto rel_rxfree; err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0); if (err) goto rel_rx; err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0); if (err) goto rel_tx; /* TX-done queue handles skbs sent out by the NPEs */ if (!ports_open) { err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0); if (err) goto rel_txready; } return 0; rel_txready: qmgr_release_queue(port->plat->txreadyq); rel_tx: qmgr_release_queue(TX_QUEUE(port->id)); rel_rx: qmgr_release_queue(port->plat->rxq); rel_rxfree: qmgr_release_queue(RXFREE_QUEUE(port->id)); printk(KERN_DEBUG "%s: unable to request hardware queues\n", port->netdev->name); return err; } static void release_queues(struct port *port) { qmgr_release_queue(RXFREE_QUEUE(port->id)); qmgr_release_queue(port->plat->rxq); qmgr_release_queue(TX_QUEUE(port->id)); qmgr_release_queue(port->plat->txreadyq); if (!ports_open) qmgr_release_queue(TXDONE_QUEUE); } static int init_queues(struct port *port) { int i; if (!ports_open) if (!(dma_pool = dma_pool_create(DRV_NAME, NULL, POOL_ALLOC_SIZE, 32, 0))) return -ENOMEM; if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL, &port->desc_tab_phys))) return -ENOMEM; memset(port->desc_tab, 0, POOL_ALLOC_SIZE); memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */ memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab)); /* Setup RX buffers */ for (i = 0; i < RX_DESCS; i++) { struct desc *desc = rx_desc_ptr(port, i); buffer_t *buff; /* skb or kmalloc()ated memory */ void *data; #ifdef __ARMEB__ if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE))) return -ENOMEM; data = buff->data; #else if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL))) return -ENOMEM; data = buff; #endif desc->buf_len = MAX_MRU; desc->data = dma_map_single(&port->netdev->dev, data, RX_BUFF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(desc->data)) { free_buffer(buff); return -EIO; } desc->data += NET_IP_ALIGN; port->rx_buff_tab[i] = buff; } return 0; } static void destroy_queues(struct port *port) { int i; if (port->desc_tab) { for (i = 0; i < RX_DESCS; i++) { struct desc *desc = rx_desc_ptr(port, i); buffer_t *buff = port->rx_buff_tab[i]; if (buff) { dma_unmap_single(&port->netdev->dev, desc->data - NET_IP_ALIGN, RX_BUFF_SIZE, DMA_FROM_DEVICE); free_buffer(buff); } } for (i = 0; i < TX_DESCS; i++) { struct desc *desc = tx_desc_ptr(port, i); buffer_t *buff = port->tx_buff_tab[i]; if (buff) { dma_unmap_tx(port, desc); free_buffer(buff); } } dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys); port->desc_tab = NULL; } if (!ports_open && dma_pool) { dma_pool_destroy(dma_pool); dma_pool = NULL; } } static int eth_open(struct net_device *dev) { struct port *port = netdev_priv(dev); struct npe *npe = port->npe; struct msg msg; int i, err; if (!npe_running(npe)) { err = npe_load_firmware(npe, npe_name(npe), &dev->dev); if (err) return err; if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) { printk(KERN_ERR "%s: %s not responding\n", dev->name, npe_name(npe)); return -EIO; } } mdio_write(dev, port->plat->phy, MII_BMCR, port->mii_bmcr); memset(&msg, 0, sizeof(msg)); msg.cmd = NPE_VLAN_SETRXQOSENTRY; msg.eth_id = port->id; msg.byte5 = port->plat->rxq | 0x80; msg.byte7 = port->plat->rxq << 4; for (i = 0; i < 8; i++) { msg.byte3 = i; if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ")) return -EIO; } msg.cmd = NPE_EDB_SETPORTADDRESS; msg.eth_id = PHYSICAL_ID(port->id); msg.byte2 = dev->dev_addr[0]; msg.byte3 = dev->dev_addr[1]; msg.byte4 = dev->dev_addr[2]; msg.byte5 = dev->dev_addr[3]; msg.byte6 = dev->dev_addr[4]; msg.byte7 = dev->dev_addr[5]; if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC")) return -EIO; memset(&msg, 0, sizeof(msg)); msg.cmd = NPE_FW_SETFIREWALLMODE; msg.eth_id = port->id; if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE")) return -EIO; if ((err = request_queues(port)) != 0) return err; if ((err = init_queues(port)) != 0) { destroy_queues(port); release_queues(port); return err; } for (i = 0; i < ETH_ALEN; i++) __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]); __raw_writel(0x08, &port->regs->random_seed); __raw_writel(0x12, &port->regs->partial_empty_threshold); __raw_writel(0x30, &port->regs->partial_full_threshold); __raw_writel(0x08, &port->regs->tx_start_bytes); __raw_writel(0x15, &port->regs->tx_deferral); __raw_writel(0x08, &port->regs->tx_2part_deferral[0]); __raw_writel(0x07, &port->regs->tx_2part_deferral[1]); __raw_writel(0x80, &port->regs->slot_time); __raw_writel(0x01, &port->regs->int_clock_threshold); /* Populate queues with buffers, no failure after this point */ for (i = 0; i < TX_DESCS; i++) queue_put_desc(port->plat->txreadyq, tx_desc_phys(port, i), tx_desc_ptr(port, i)); for (i = 0; i < RX_DESCS; i++) queue_put_desc(RXFREE_QUEUE(port->id), rx_desc_phys(port, i), rx_desc_ptr(port, i)); __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]); __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]); __raw_writel(0, &port->regs->rx_control[1]); __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]); napi_enable(&port->napi); phy_check_media(port, 1); eth_set_mcast_list(dev); netif_start_queue(dev); schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL); qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY, eth_rx_irq, dev); if (!ports_open) { qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY, eth_txdone_irq, NULL); qmgr_enable_irq(TXDONE_QUEUE); } ports_open++; /* we may already have RX data, enables IRQ */ netif_rx_schedule(dev, &port->napi); return 0; } static int eth_close(struct net_device *dev) { struct port *port = netdev_priv(dev); struct msg msg; int buffs = RX_DESCS; /* allocated RX buffers */ int i; ports_open--; qmgr_disable_irq(port->plat->rxq); napi_disable(&port->napi); netif_stop_queue(dev); while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0) buffs--; memset(&msg, 0, sizeof(msg)); msg.cmd = NPE_SETLOOPBACK_MODE; msg.eth_id = port->id; msg.byte3 = 1; if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK")) printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name); i = 0; do { /* drain RX buffers */ while (queue_get_desc(port->plat->rxq, port, 0) >= 0) buffs--; if (!buffs) break; if (qmgr_stat_empty(TX_QUEUE(port->id))) { /* we have to inject some packet */ struct desc *desc; u32 phys; int n = queue_get_desc(port->plat->txreadyq, port, 1); BUG_ON(n < 0); desc = tx_desc_ptr(port, n); phys = tx_desc_phys(port, n); desc->buf_len = desc->pkt_len = 1; wmb(); queue_put_desc(TX_QUEUE(port->id), phys, desc); } udelay(1); } while (++i < MAX_CLOSE_WAIT); if (buffs) printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)" " left in NPE\n", dev->name, buffs); #if DEBUG_CLOSE if (!buffs) printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i); #endif buffs = TX_DESCS; while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0) buffs--; /* cancel TX */ i = 0; do { while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0) buffs--; if (!buffs) break; } while (++i < MAX_CLOSE_WAIT); if (buffs) printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) " "left in NPE\n", dev->name, buffs); #if DEBUG_CLOSE if (!buffs) printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i); #endif msg.byte3 = 0; if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK")) printk(KERN_CRIT "%s: unable to disable loopback\n", dev->name); port->mii_bmcr = mdio_read(dev, port->plat->phy, MII_BMCR) & ~(BMCR_RESET | BMCR_PDOWN); /* may have been altered */ mdio_write(dev, port->plat->phy, MII_BMCR, port->mii_bmcr | BMCR_PDOWN); if (!ports_open) qmgr_disable_irq(TXDONE_QUEUE); cancel_rearming_delayed_work(&port->mdio_thread); destroy_queues(port); release_queues(port); return 0; } static int __devinit eth_init_one(struct platform_device *pdev) { struct port *port; struct net_device *dev; struct eth_plat_info *plat = pdev->dev.platform_data; u32 regs_phys; int err; if (!(dev = alloc_etherdev(sizeof(struct port)))) return -ENOMEM; SET_NETDEV_DEV(dev, &pdev->dev); port = netdev_priv(dev); port->netdev = dev; port->id = pdev->id; switch (port->id) { case IXP4XX_ETH_NPEA: port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT; regs_phys = IXP4XX_EthA_BASE_PHYS; break; case IXP4XX_ETH_NPEB: port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT; regs_phys = IXP4XX_EthB_BASE_PHYS; break; case IXP4XX_ETH_NPEC: port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT; regs_phys = IXP4XX_EthC_BASE_PHYS; break; default: err = -ENOSYS; goto err_free; } dev->open = eth_open; dev->hard_start_xmit = eth_xmit; dev->stop = eth_close; dev->get_stats = eth_stats; dev->do_ioctl = eth_ioctl; dev->set_multicast_list = eth_set_mcast_list; dev->tx_queue_len = 100; netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT); if (!(port->npe = npe_request(NPE_ID(port->id)))) { err = -EIO; goto err_free; } if (register_netdev(dev)) { err = -EIO; goto err_npe_rel; } port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name); if (!port->mem_res) { err = -EBUSY; goto err_unreg; } port->plat = plat; npe_port_tab[NPE_ID(port->id)] = port; memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN); platform_set_drvdata(pdev, dev); __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET, &port->regs->core_control); udelay(50); __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control); udelay(50); port->mii.dev = dev; port->mii.mdio_read = mdio_read; port->mii.mdio_write = mdio_write; port->mii.phy_id = plat->phy; port->mii.phy_id_mask = 0x1F; port->mii.reg_num_mask = 0x1F; printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy, npe_name(port->npe)); phy_reset(dev, plat->phy); port->mii_bmcr = mdio_read(dev, plat->phy, MII_BMCR) & ~(BMCR_RESET | BMCR_PDOWN); mdio_write(dev, plat->phy, MII_BMCR, port->mii_bmcr | BMCR_PDOWN); INIT_DELAYED_WORK(&port->mdio_thread, mdio_thread); return 0; err_unreg: unregister_netdev(dev); err_npe_rel: npe_release(port->npe); err_free: free_netdev(dev); return err; } static int __devexit eth_remove_one(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct port *port = netdev_priv(dev); unregister_netdev(dev); npe_port_tab[NPE_ID(port->id)] = NULL; platform_set_drvdata(pdev, NULL); npe_release(port->npe); release_resource(port->mem_res); free_netdev(dev); return 0; } static struct platform_driver drv = { .driver.name = DRV_NAME, .probe = eth_init_one, .remove = eth_remove_one, }; static int __init eth_init_module(void) { if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0)) return -ENOSYS; /* All MII PHY accesses use NPE-B Ethernet registers */ spin_lock_init(&mdio_lock); mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT; __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control); return platform_driver_register(&drv); } static void __exit eth_cleanup_module(void) { platform_driver_unregister(&drv); } MODULE_AUTHOR("Krzysztof Halasa"); MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:ixp4xx_eth"); module_init(eth_init_module); module_exit(eth_cleanup_module);