/* * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * */ #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/pkt_sched.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/if_bonding.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <net/ipx.h> #include <net/arp.h> #include <net/ipv6.h> #include <asm/byteorder.h> #include "bonding.h" #include "bond_alb.h" #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */ #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing. * Used for division - never set * to zero !!! */ #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of * learning packets to the switch */ #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \ * ALB_TIMER_TICKS_PER_SEC) #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \ * ALB_TIMER_TICKS_PER_SEC) #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table. * Note that this value MUST NOT be smaller * because the key hash table is BYTE wide ! */ #define TLB_NULL_INDEX 0xffffffff #define MAX_LP_BURST 3 /* rlb defs */ #define RLB_HASH_TABLE_SIZE 256 #define RLB_NULL_INDEX 0xffffffff #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */ #define RLB_ARP_BURST_SIZE 2 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb * rebalance interval (5 min). */ /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is * promiscuous after failover */ #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff}; static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01}; static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; #pragma pack(1) struct learning_pkt { u8 mac_dst[ETH_ALEN]; u8 mac_src[ETH_ALEN]; __be16 type; u8 padding[ETH_ZLEN - ETH_HLEN]; }; struct arp_pkt { __be16 hw_addr_space; __be16 prot_addr_space; u8 hw_addr_len; u8 prot_addr_len; __be16 op_code; u8 mac_src[ETH_ALEN]; /* sender hardware address */ __be32 ip_src; /* sender IP address */ u8 mac_dst[ETH_ALEN]; /* target hardware address */ __be32 ip_dst; /* target IP address */ }; #pragma pack() static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb) { return (struct arp_pkt *)skb_network_header(skb); } /* Forward declaration */ static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]); static inline u8 _simple_hash(const u8 *hash_start, int hash_size) { int i; u8 hash = 0; for (i = 0; i < hash_size; i++) { hash ^= hash_start[i]; } return hash; } /*********************** tlb specific functions ***************************/ static inline void _lock_tx_hashtbl(struct bonding *bond) { spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); } static inline void _unlock_tx_hashtbl(struct bonding *bond) { spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); } /* Caller must hold tx_hashtbl lock */ static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) { if (save_load) { entry->load_history = 1 + entry->tx_bytes / BOND_TLB_REBALANCE_INTERVAL; entry->tx_bytes = 0; } entry->tx_slave = NULL; entry->next = TLB_NULL_INDEX; entry->prev = TLB_NULL_INDEX; } static inline void tlb_init_slave(struct slave *slave) { SLAVE_TLB_INFO(slave).load = 0; SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; } /* Caller must hold bond lock for read */ static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) { struct tlb_client_info *tx_hash_table; u32 index; _lock_tx_hashtbl(bond); /* clear slave from tx_hashtbl */ tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; /* skip this if we've already freed the tx hash table */ if (tx_hash_table) { index = SLAVE_TLB_INFO(slave).head; while (index != TLB_NULL_INDEX) { u32 next_index = tx_hash_table[index].next; tlb_init_table_entry(&tx_hash_table[index], save_load); index = next_index; } } tlb_init_slave(slave); _unlock_tx_hashtbl(bond); } /* Must be called before starting the monitor timer */ static int tlb_initialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); struct tlb_client_info *new_hashtbl; int i; spin_lock_init(&(bond_info->tx_hashtbl_lock)); new_hashtbl = kzalloc(size, GFP_KERNEL); if (!new_hashtbl) { printk(KERN_ERR DRV_NAME ": %s: Error: Failed to allocate TLB hash table\n", bond->dev->name); return -1; } _lock_tx_hashtbl(bond); bond_info->tx_hashtbl = new_hashtbl; for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) { tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1); } _unlock_tx_hashtbl(bond); return 0; } /* Must be called only after all slaves have been released */ static void tlb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); _lock_tx_hashtbl(bond); kfree(bond_info->tx_hashtbl); bond_info->tx_hashtbl = NULL; _unlock_tx_hashtbl(bond); } /* Caller must hold bond lock for read */ static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) { struct slave *slave, *least_loaded; s64 max_gap; int i, found = 0; /* Find the first enabled slave */ bond_for_each_slave(bond, slave, i) { if (SLAVE_IS_OK(slave)) { found = 1; break; } } if (!found) { return NULL; } least_loaded = slave; max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */ (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ /* Find the slave with the largest gap */ bond_for_each_slave_from(bond, slave, i, least_loaded) { if (SLAVE_IS_OK(slave)) { s64 gap = (s64)(slave->speed << 20) - (s64)(SLAVE_TLB_INFO(slave).load << 3); if (max_gap < gap) { least_loaded = slave; max_gap = gap; } } } return least_loaded; } /* Caller must hold bond lock for read */ static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct tlb_client_info *hash_table; struct slave *assigned_slave; _lock_tx_hashtbl(bond); hash_table = bond_info->tx_hashtbl; assigned_slave = hash_table[hash_index].tx_slave; if (!assigned_slave) { assigned_slave = tlb_get_least_loaded_slave(bond); if (assigned_slave) { struct tlb_slave_info *slave_info = &(SLAVE_TLB_INFO(assigned_slave)); u32 next_index = slave_info->head; hash_table[hash_index].tx_slave = assigned_slave; hash_table[hash_index].next = next_index; hash_table[hash_index].prev = TLB_NULL_INDEX; if (next_index != TLB_NULL_INDEX) { hash_table[next_index].prev = hash_index; } slave_info->head = hash_index; slave_info->load += hash_table[hash_index].load_history; } } if (assigned_slave) { hash_table[hash_index].tx_bytes += skb_len; } _unlock_tx_hashtbl(bond); return assigned_slave; } /*********************** rlb specific functions ***************************/ static inline void _lock_rx_hashtbl(struct bonding *bond) { spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); } static inline void _unlock_rx_hashtbl(struct bonding *bond) { spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); } /* when an ARP REPLY is received from a client update its info * in the rx_hashtbl */ static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; _lock_rx_hashtbl(bond); hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src)); client_info = &(bond_info->rx_hashtbl[hash_index]); if ((client_info->assigned) && (client_info->ip_src == arp->ip_dst) && (client_info->ip_dst == arp->ip_src)) { /* update the clients MAC address */ memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN); client_info->ntt = 1; bond_info->rx_ntt = 1; } _unlock_rx_hashtbl(bond); } static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev) { struct bonding *bond; struct arp_pkt *arp = (struct arp_pkt *)skb->data; int res = NET_RX_DROP; if (dev_net(bond_dev) != &init_net) goto out; while (bond_dev->priv_flags & IFF_802_1Q_VLAN) bond_dev = vlan_dev_real_dev(bond_dev); if (!(bond_dev->priv_flags & IFF_BONDING) || !(bond_dev->flags & IFF_MASTER)) goto out; if (!arp) { pr_debug("Packet has no ARP data\n"); goto out; } if (skb->len < sizeof(struct arp_pkt)) { pr_debug("Packet is too small to be an ARP\n"); goto out; } if (arp->op_code == htons(ARPOP_REPLY)) { /* update rx hash table for this ARP */ printk("rar: update orig %s bond_dev %s\n", orig_dev->name, bond_dev->name); bond = netdev_priv(bond_dev); rlb_update_entry_from_arp(bond, arp); pr_debug("Server received an ARP Reply from client\n"); } res = NET_RX_SUCCESS; out: dev_kfree_skb(skb); return res; } /* Caller must hold bond lock for read */ static struct slave *rlb_next_rx_slave(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *rx_slave, *slave, *start_at; int i = 0; if (bond_info->next_rx_slave) { start_at = bond_info->next_rx_slave; } else { start_at = bond->first_slave; } rx_slave = NULL; bond_for_each_slave_from(bond, slave, i, start_at) { if (SLAVE_IS_OK(slave)) { if (!rx_slave) { rx_slave = slave; } else if (slave->speed > rx_slave->speed) { rx_slave = slave; } } } if (rx_slave) { bond_info->next_rx_slave = rx_slave->next; } return rx_slave; } /* teach the switch the mac of a disabled slave * on the primary for fault tolerance * * Caller must hold bond->curr_slave_lock for write or bond lock for write */ static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) { if (!bond->curr_active_slave) { return; } if (!bond->alb_info.primary_is_promisc) { if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1)) bond->alb_info.primary_is_promisc = 1; else bond->alb_info.primary_is_promisc = 0; } bond->alb_info.rlb_promisc_timeout_counter = 0; alb_send_learning_packets(bond->curr_active_slave, addr); } /* slave being removed should not be active at this point * * Caller must hold bond lock for read */ static void rlb_clear_slave(struct bonding *bond, struct slave *slave) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *rx_hash_table; u32 index, next_index; /* clear slave from rx_hashtbl */ _lock_rx_hashtbl(bond); rx_hash_table = bond_info->rx_hashtbl; index = bond_info->rx_hashtbl_head; for (; index != RLB_NULL_INDEX; index = next_index) { next_index = rx_hash_table[index].next; if (rx_hash_table[index].slave == slave) { struct slave *assigned_slave = rlb_next_rx_slave(bond); if (assigned_slave) { rx_hash_table[index].slave = assigned_slave; if (memcmp(rx_hash_table[index].mac_dst, mac_bcast, ETH_ALEN)) { bond_info->rx_hashtbl[index].ntt = 1; bond_info->rx_ntt = 1; /* A slave has been removed from the * table because it is either disabled * or being released. We must retry the * update to avoid clients from not * being updated & disconnecting when * there is stress */ bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; } } else { /* there is no active slave */ rx_hash_table[index].slave = NULL; } } } _unlock_rx_hashtbl(bond); write_lock_bh(&bond->curr_slave_lock); if (slave != bond->curr_active_slave) { rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); } write_unlock_bh(&bond->curr_slave_lock); } static void rlb_update_client(struct rlb_client_info *client_info) { int i; if (!client_info->slave) { return; } for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { struct sk_buff *skb; skb = arp_create(ARPOP_REPLY, ETH_P_ARP, client_info->ip_dst, client_info->slave->dev, client_info->ip_src, client_info->mac_dst, client_info->slave->dev->dev_addr, client_info->mac_dst); if (!skb) { printk(KERN_ERR DRV_NAME ": %s: Error: failed to create an ARP packet\n", client_info->slave->dev->master->name); continue; } skb->dev = client_info->slave->dev; if (client_info->tag) { skb = vlan_put_tag(skb, client_info->vlan_id); if (!skb) { printk(KERN_ERR DRV_NAME ": %s: Error: failed to insert VLAN tag\n", client_info->slave->dev->master->name); continue; } } arp_xmit(skb); } } /* sends ARP REPLIES that update the clients that need updating */ static void rlb_update_rx_clients(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; _lock_rx_hashtbl(bond); hash_index = bond_info->rx_hashtbl_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if (client_info->ntt) { rlb_update_client(client_info); if (bond_info->rlb_update_retry_counter == 0) { client_info->ntt = 0; } } } /* do not update the entries again untill this counter is zero so that * not to confuse the clients. */ bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; _unlock_rx_hashtbl(bond); } /* The slave was assigned a new mac address - update the clients */ static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; int ntt = 0; u32 hash_index; _lock_rx_hashtbl(bond); hash_index = bond_info->rx_hashtbl_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if ((client_info->slave == slave) && memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { client_info->ntt = 1; ntt = 1; } } // update the team's flag only after the whole iteration if (ntt) { bond_info->rx_ntt = 1; //fasten the change bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; } _unlock_rx_hashtbl(bond); } /* mark all clients using src_ip to be updated */ static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; _lock_rx_hashtbl(bond); hash_index = bond_info->rx_hashtbl_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if (!client_info->slave) { printk(KERN_ERR DRV_NAME ": %s: Error: found a client with no channel in " "the client's hash table\n", bond->dev->name); continue; } /*update all clients using this src_ip, that are not assigned * to the team's address (curr_active_slave) and have a known * unicast mac address. */ if ((client_info->ip_src == src_ip) && memcmp(client_info->slave->dev->dev_addr, bond->dev->dev_addr, ETH_ALEN) && memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { client_info->ntt = 1; bond_info->rx_ntt = 1; } } _unlock_rx_hashtbl(bond); } /* Caller must hold both bond and ptr locks for read */ static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct arp_pkt *arp = arp_pkt(skb); struct slave *assigned_slave; struct rlb_client_info *client_info; u32 hash_index = 0; _lock_rx_hashtbl(bond); hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src)); client_info = &(bond_info->rx_hashtbl[hash_index]); if (client_info->assigned) { if ((client_info->ip_src == arp->ip_src) && (client_info->ip_dst == arp->ip_dst)) { /* the entry is already assigned to this client */ if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) { /* update mac address from arp */ memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); } assigned_slave = client_info->slave; if (assigned_slave) { _unlock_rx_hashtbl(bond); return assigned_slave; } } else { /* the entry is already assigned to some other client, * move the old client to primary (curr_active_slave) so * that the new client can be assigned to this entry. */ if (bond->curr_active_slave && client_info->slave != bond->curr_active_slave) { client_info->slave = bond->curr_active_slave; rlb_update_client(client_info); } } } /* assign a new slave */ assigned_slave = rlb_next_rx_slave(bond); if (assigned_slave) { client_info->ip_src = arp->ip_src; client_info->ip_dst = arp->ip_dst; /* arp->mac_dst is broadcast for arp reqeusts. * will be updated with clients actual unicast mac address * upon receiving an arp reply. */ memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); client_info->slave = assigned_slave; if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { client_info->ntt = 1; bond->alb_info.rx_ntt = 1; } else { client_info->ntt = 0; } if (!list_empty(&bond->vlan_list)) { if (!vlan_get_tag(skb, &client_info->vlan_id)) client_info->tag = 1; } if (!client_info->assigned) { u32 prev_tbl_head = bond_info->rx_hashtbl_head; bond_info->rx_hashtbl_head = hash_index; client_info->next = prev_tbl_head; if (prev_tbl_head != RLB_NULL_INDEX) { bond_info->rx_hashtbl[prev_tbl_head].prev = hash_index; } client_info->assigned = 1; } } _unlock_rx_hashtbl(bond); return assigned_slave; } /* chooses (and returns) transmit channel for arp reply * does not choose channel for other arp types since they are * sent on the curr_active_slave */ static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) { struct arp_pkt *arp = arp_pkt(skb); struct slave *tx_slave = NULL; if (arp->op_code == htons(ARPOP_REPLY)) { /* the arp must be sent on the selected * rx channel */ tx_slave = rlb_choose_channel(skb, bond); if (tx_slave) { memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN); } pr_debug("Server sent ARP Reply packet\n"); } else if (arp->op_code == htons(ARPOP_REQUEST)) { /* Create an entry in the rx_hashtbl for this client as a * place holder. * When the arp reply is received the entry will be updated * with the correct unicast address of the client. */ rlb_choose_channel(skb, bond); /* The ARP relpy packets must be delayed so that * they can cancel out the influence of the ARP request. */ bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; /* arp requests are broadcast and are sent on the primary * the arp request will collapse all clients on the subnet to * the primary slave. We must register these clients to be * updated with their assigned mac. */ rlb_req_update_subnet_clients(bond, arp->ip_src); pr_debug("Server sent ARP Request packet\n"); } return tx_slave; } /* Caller must hold bond lock for read */ static void rlb_rebalance(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *assigned_slave; struct rlb_client_info *client_info; int ntt; u32 hash_index; _lock_rx_hashtbl(bond); ntt = 0; hash_index = bond_info->rx_hashtbl_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { client_info = &(bond_info->rx_hashtbl[hash_index]); assigned_slave = rlb_next_rx_slave(bond); if (assigned_slave && (client_info->slave != assigned_slave)) { client_info->slave = assigned_slave; client_info->ntt = 1; ntt = 1; } } /* update the team's flag only after the whole iteration */ if (ntt) { bond_info->rx_ntt = 1; } _unlock_rx_hashtbl(bond); } /* Caller must hold rx_hashtbl lock */ static void rlb_init_table_entry(struct rlb_client_info *entry) { memset(entry, 0, sizeof(struct rlb_client_info)); entry->next = RLB_NULL_INDEX; entry->prev = RLB_NULL_INDEX; } static int rlb_initialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type); struct rlb_client_info *new_hashtbl; int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); int i; spin_lock_init(&(bond_info->rx_hashtbl_lock)); new_hashtbl = kmalloc(size, GFP_KERNEL); if (!new_hashtbl) { printk(KERN_ERR DRV_NAME ": %s: Error: Failed to allocate RLB hash table\n", bond->dev->name); return -1; } _lock_rx_hashtbl(bond); bond_info->rx_hashtbl = new_hashtbl; bond_info->rx_hashtbl_head = RLB_NULL_INDEX; for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) { rlb_init_table_entry(bond_info->rx_hashtbl + i); } _unlock_rx_hashtbl(bond); /*initialize packet type*/ pk_type->type = __constant_htons(ETH_P_ARP); pk_type->dev = NULL; pk_type->func = rlb_arp_recv; /* register to receive ARPs */ dev_add_pack(pk_type); return 0; } static void rlb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); dev_remove_pack(&(bond_info->rlb_pkt_type)); _lock_rx_hashtbl(bond); kfree(bond_info->rx_hashtbl); bond_info->rx_hashtbl = NULL; bond_info->rx_hashtbl_head = RLB_NULL_INDEX; _unlock_rx_hashtbl(bond); } static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 curr_index; _lock_rx_hashtbl(bond); curr_index = bond_info->rx_hashtbl_head; while (curr_index != RLB_NULL_INDEX) { struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); u32 next_index = bond_info->rx_hashtbl[curr_index].next; u32 prev_index = bond_info->rx_hashtbl[curr_index].prev; if (curr->tag && (curr->vlan_id == vlan_id)) { if (curr_index == bond_info->rx_hashtbl_head) { bond_info->rx_hashtbl_head = next_index; } if (prev_index != RLB_NULL_INDEX) { bond_info->rx_hashtbl[prev_index].next = next_index; } if (next_index != RLB_NULL_INDEX) { bond_info->rx_hashtbl[next_index].prev = prev_index; } rlb_init_table_entry(curr); } curr_index = next_index; } _unlock_rx_hashtbl(bond); } /*********************** tlb/rlb shared functions *********************/ static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]) { struct bonding *bond = bond_get_bond_by_slave(slave); struct learning_pkt pkt; int size = sizeof(struct learning_pkt); int i; memset(&pkt, 0, size); memcpy(pkt.mac_dst, mac_addr, ETH_ALEN); memcpy(pkt.mac_src, mac_addr, ETH_ALEN); pkt.type = __constant_htons(ETH_P_LOOP); for (i = 0; i < MAX_LP_BURST; i++) { struct sk_buff *skb; char *data; skb = dev_alloc_skb(size); if (!skb) { return; } data = skb_put(skb, size); memcpy(data, &pkt, size); skb_reset_mac_header(skb); skb->network_header = skb->mac_header + ETH_HLEN; skb->protocol = pkt.type; skb->priority = TC_PRIO_CONTROL; skb->dev = slave->dev; if (!list_empty(&bond->vlan_list)) { struct vlan_entry *vlan; vlan = bond_next_vlan(bond, bond->alb_info.current_alb_vlan); bond->alb_info.current_alb_vlan = vlan; if (!vlan) { kfree_skb(skb); continue; } skb = vlan_put_tag(skb, vlan->vlan_id); if (!skb) { printk(KERN_ERR DRV_NAME ": %s: Error: failed to insert VLAN tag\n", bond->dev->name); continue; } } dev_queue_xmit(skb); } } /* hw is a boolean parameter that determines whether we should try and * set the hw address of the device as well as the hw address of the * net_device */ static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw) { struct net_device *dev = slave->dev; struct sockaddr s_addr; if (!hw) { memcpy(dev->dev_addr, addr, dev->addr_len); return 0; } /* for rlb each slave must have a unique hw mac addresses so that */ /* each slave will receive packets destined to a different mac */ memcpy(s_addr.sa_data, addr, dev->addr_len); s_addr.sa_family = dev->type; if (dev_set_mac_address(dev, &s_addr)) { printk(KERN_ERR DRV_NAME ": %s: Error: dev_set_mac_address of dev %s failed! ALB " "mode requires that the base driver support setting " "the hw address also when the network device's " "interface is open\n", dev->master->name, dev->name); return -EOPNOTSUPP; } return 0; } /* * Swap MAC addresses between two slaves. * * Called with RTNL held, and no other locks. * */ static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2) { u8 tmp_mac_addr[ETH_ALEN]; memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN); alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled); alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled); } /* * Send learning packets after MAC address swap. * * Called with RTNL and no other locks */ static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, struct slave *slave2) { int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2)); struct slave *disabled_slave = NULL; ASSERT_RTNL(); /* fasten the change in the switch */ if (SLAVE_IS_OK(slave1)) { alb_send_learning_packets(slave1, slave1->dev->dev_addr); if (bond->alb_info.rlb_enabled) { /* inform the clients that the mac address * has changed */ rlb_req_update_slave_clients(bond, slave1); } } else { disabled_slave = slave1; } if (SLAVE_IS_OK(slave2)) { alb_send_learning_packets(slave2, slave2->dev->dev_addr); if (bond->alb_info.rlb_enabled) { /* inform the clients that the mac address * has changed */ rlb_req_update_slave_clients(bond, slave2); } } else { disabled_slave = slave2; } if (bond->alb_info.rlb_enabled && slaves_state_differ) { /* A disabled slave was assigned an active mac addr */ rlb_teach_disabled_mac_on_primary(bond, disabled_slave->dev->dev_addr); } } /** * alb_change_hw_addr_on_detach * @bond: bonding we're working on * @slave: the slave that was just detached * * We assume that @slave was already detached from the slave list. * * If @slave's permanent hw address is different both from its current * address and from @bond's address, then somewhere in the bond there's * a slave that has @slave's permanet address as its current address. * We'll make sure that that slave no longer uses @slave's permanent address. * * Caller must hold RTNL and no other locks */ static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) { int perm_curr_diff; int perm_bond_diff; perm_curr_diff = memcmp(slave->perm_hwaddr, slave->dev->dev_addr, ETH_ALEN); perm_bond_diff = memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN); if (perm_curr_diff && perm_bond_diff) { struct slave *tmp_slave; int i, found = 0; bond_for_each_slave(bond, tmp_slave, i) { if (!memcmp(slave->perm_hwaddr, tmp_slave->dev->dev_addr, ETH_ALEN)) { found = 1; break; } } if (found) { /* locking: needs RTNL and nothing else */ alb_swap_mac_addr(bond, slave, tmp_slave); alb_fasten_mac_swap(bond, slave, tmp_slave); } } } /** * alb_handle_addr_collision_on_attach * @bond: bonding we're working on * @slave: the slave that was just attached * * checks uniqueness of slave's mac address and handles the case the * new slave uses the bonds mac address. * * If the permanent hw address of @slave is @bond's hw address, we need to * find a different hw address to give @slave, that isn't in use by any other * slave in the bond. This address must be, of course, one of the premanent * addresses of the other slaves. * * We go over the slave list, and for each slave there we compare its * permanent hw address with the current address of all the other slaves. * If no match was found, then we've found a slave with a permanent address * that isn't used by any other slave in the bond, so we can assign it to * @slave. * * assumption: this function is called before @slave is attached to the * bond slave list. * * caller must hold the bond lock for write since the mac addresses are compared * and may be swapped. */ static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) { struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave; struct slave *has_bond_addr = bond->curr_active_slave; int i, j, found = 0; if (bond->slave_cnt == 0) { /* this is the first slave */ return 0; } /* if slave's mac address differs from bond's mac address * check uniqueness of slave's mac address against the other * slaves in the bond. */ if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) { bond_for_each_slave(bond, tmp_slave1, i) { if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr, ETH_ALEN)) { found = 1; break; } } if (!found) return 0; /* Try setting slave mac to bond address and fall-through to code handling that situation below... */ alb_set_slave_mac_addr(slave, bond->dev->dev_addr, bond->alb_info.rlb_enabled); } /* The slave's address is equal to the address of the bond. * Search for a spare address in the bond for this slave. */ free_mac_slave = NULL; bond_for_each_slave(bond, tmp_slave1, i) { found = 0; bond_for_each_slave(bond, tmp_slave2, j) { if (!memcmp(tmp_slave1->perm_hwaddr, tmp_slave2->dev->dev_addr, ETH_ALEN)) { found = 1; break; } } if (!found) { /* no slave has tmp_slave1's perm addr * as its curr addr */ free_mac_slave = tmp_slave1; break; } if (!has_bond_addr) { if (!memcmp(tmp_slave1->dev->dev_addr, bond->dev->dev_addr, ETH_ALEN)) { has_bond_addr = tmp_slave1; } } } if (free_mac_slave) { alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, bond->alb_info.rlb_enabled); printk(KERN_WARNING DRV_NAME ": %s: Warning: the hw address of slave %s is in use by " "the bond; giving it the hw address of %s\n", bond->dev->name, slave->dev->name, free_mac_slave->dev->name); } else if (has_bond_addr) { printk(KERN_ERR DRV_NAME ": %s: Error: the hw address of slave %s is in use by the " "bond; couldn't find a slave with a free hw address to " "give it (this should not have happened)\n", bond->dev->name, slave->dev->name); return -EFAULT; } return 0; } /** * alb_set_mac_address * @bond: * @addr: * * In TLB mode all slaves are configured to the bond's hw address, but set * their dev_addr field to different addresses (based on their permanent hw * addresses). * * For each slave, this function sets the interface to the new address and then * changes its dev_addr field to its previous value. * * Unwinding assumes bond's mac address has not yet changed. */ static int alb_set_mac_address(struct bonding *bond, void *addr) { struct sockaddr sa; struct slave *slave, *stop_at; char tmp_addr[ETH_ALEN]; int res; int i; if (bond->alb_info.rlb_enabled) { return 0; } bond_for_each_slave(bond, slave, i) { /* save net_device's current hw address */ memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); res = dev_set_mac_address(slave->dev, addr); /* restore net_device's hw address */ memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); if (res) goto unwind; } return 0; unwind: memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len); sa.sa_family = bond->dev->type; /* unwind from head to the slave that failed */ stop_at = slave; bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); dev_set_mac_address(slave->dev, &sa); memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); } return res; } /************************ exported alb funcions ************************/ int bond_alb_initialize(struct bonding *bond, int rlb_enabled) { int res; res = tlb_initialize(bond); if (res) { return res; } if (rlb_enabled) { bond->alb_info.rlb_enabled = 1; /* initialize rlb */ res = rlb_initialize(bond); if (res) { tlb_deinitialize(bond); return res; } } else { bond->alb_info.rlb_enabled = 0; } return 0; } void bond_alb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); tlb_deinitialize(bond); if (bond_info->rlb_enabled) { rlb_deinitialize(bond); } } int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = netdev_priv(bond_dev); struct ethhdr *eth_data; struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *tx_slave = NULL; static const __be32 ip_bcast = htonl(0xffffffff); int hash_size = 0; int do_tx_balance = 1; u32 hash_index = 0; const u8 *hash_start = NULL; int res = 1; struct ipv6hdr *ip6hdr; skb_reset_mac_header(skb); eth_data = eth_hdr(skb); /* make sure that the curr_active_slave and the slaves list do * not change during tx */ read_lock(&bond->lock); read_lock(&bond->curr_slave_lock); if (!BOND_IS_OK(bond)) { goto out; } switch (ntohs(skb->protocol)) { case ETH_P_IP: { const struct iphdr *iph = ip_hdr(skb); if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) || (iph->daddr == ip_bcast) || (iph->protocol == IPPROTO_IGMP)) { do_tx_balance = 0; break; } hash_start = (char *)&(iph->daddr); hash_size = sizeof(iph->daddr); } break; case ETH_P_IPV6: /* IPv6 doesn't really use broadcast mac address, but leave * that here just in case. */ if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) { do_tx_balance = 0; break; } /* IPv6 uses all-nodes multicast as an equivalent to * broadcasts in IPv4. */ if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) { do_tx_balance = 0; break; } /* Additianally, DAD probes should not be tx-balanced as that * will lead to false positives for duplicate addresses and * prevent address configuration from working. */ ip6hdr = ipv6_hdr(skb); if (ipv6_addr_any(&ip6hdr->saddr)) { do_tx_balance = 0; break; } hash_start = (char *)&(ipv6_hdr(skb)->daddr); hash_size = sizeof(ipv6_hdr(skb)->daddr); break; case ETH_P_IPX: if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { /* something is wrong with this packet */ do_tx_balance = 0; break; } if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { /* The only protocol worth balancing in * this family since it has an "ARP" like * mechanism */ do_tx_balance = 0; break; } hash_start = (char*)eth_data->h_dest; hash_size = ETH_ALEN; break; case ETH_P_ARP: do_tx_balance = 0; if (bond_info->rlb_enabled) { tx_slave = rlb_arp_xmit(skb, bond); } break; default: do_tx_balance = 0; break; } if (do_tx_balance) { hash_index = _simple_hash(hash_start, hash_size); tx_slave = tlb_choose_channel(bond, hash_index, skb->len); } if (!tx_slave) { /* unbalanced or unassigned, send through primary */ tx_slave = bond->curr_active_slave; bond_info->unbalanced_load += skb->len; } if (tx_slave && SLAVE_IS_OK(tx_slave)) { if (tx_slave != bond->curr_active_slave) { memcpy(eth_data->h_source, tx_slave->dev->dev_addr, ETH_ALEN); } res = bond_dev_queue_xmit(bond, skb, tx_slave->dev); } else { if (tx_slave) { tlb_clear_slave(bond, tx_slave, 0); } } out: if (res) { /* no suitable interface, frame not sent */ dev_kfree_skb(skb); } read_unlock(&bond->curr_slave_lock); read_unlock(&bond->lock); return 0; } void bond_alb_monitor(struct work_struct *work) { struct bonding *bond = container_of(work, struct bonding, alb_work.work); struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *slave; int i; read_lock(&bond->lock); if (bond->kill_timers) { goto out; } if (bond->slave_cnt == 0) { bond_info->tx_rebalance_counter = 0; bond_info->lp_counter = 0; goto re_arm; } bond_info->tx_rebalance_counter++; bond_info->lp_counter++; /* send learning packets */ if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) { /* change of curr_active_slave involves swapping of mac addresses. * in order to avoid this swapping from happening while * sending the learning packets, the curr_slave_lock must be held for * read. */ read_lock(&bond->curr_slave_lock); bond_for_each_slave(bond, slave, i) { alb_send_learning_packets(slave, slave->dev->dev_addr); } read_unlock(&bond->curr_slave_lock); bond_info->lp_counter = 0; } /* rebalance tx traffic */ if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { read_lock(&bond->curr_slave_lock); bond_for_each_slave(bond, slave, i) { tlb_clear_slave(bond, slave, 1); if (slave == bond->curr_active_slave) { SLAVE_TLB_INFO(slave).load = bond_info->unbalanced_load / BOND_TLB_REBALANCE_INTERVAL; bond_info->unbalanced_load = 0; } } read_unlock(&bond->curr_slave_lock); bond_info->tx_rebalance_counter = 0; } /* handle rlb stuff */ if (bond_info->rlb_enabled) { if (bond_info->primary_is_promisc && (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { /* * dev_set_promiscuity requires rtnl and * nothing else. */ read_unlock(&bond->lock); rtnl_lock(); bond_info->rlb_promisc_timeout_counter = 0; /* If the primary was set to promiscuous mode * because a slave was disabled then * it can now leave promiscuous mode. */ dev_set_promiscuity(bond->curr_active_slave->dev, -1); bond_info->primary_is_promisc = 0; rtnl_unlock(); read_lock(&bond->lock); } if (bond_info->rlb_rebalance) { bond_info->rlb_rebalance = 0; rlb_rebalance(bond); } /* check if clients need updating */ if (bond_info->rx_ntt) { if (bond_info->rlb_update_delay_counter) { --bond_info->rlb_update_delay_counter; } else { rlb_update_rx_clients(bond); if (bond_info->rlb_update_retry_counter) { --bond_info->rlb_update_retry_counter; } else { bond_info->rx_ntt = 0; } } } } re_arm: queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); out: read_unlock(&bond->lock); } /* assumption: called before the slave is attached to the bond * and not locked by the bond lock */ int bond_alb_init_slave(struct bonding *bond, struct slave *slave) { int res; res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, bond->alb_info.rlb_enabled); if (res) { return res; } /* caller must hold the bond lock for write since the mac addresses * are compared and may be swapped. */ read_lock(&bond->lock); res = alb_handle_addr_collision_on_attach(bond, slave); read_unlock(&bond->lock); if (res) { return res; } tlb_init_slave(slave); /* order a rebalance ASAP */ bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; if (bond->alb_info.rlb_enabled) { bond->alb_info.rlb_rebalance = 1; } return 0; } /* * Remove slave from tlb and rlb hash tables, and fix up MAC addresses * if necessary. * * Caller must hold RTNL and no other locks */ void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) { if (bond->slave_cnt > 1) { alb_change_hw_addr_on_detach(bond, slave); } tlb_clear_slave(bond, slave, 0); if (bond->alb_info.rlb_enabled) { bond->alb_info.next_rx_slave = NULL; rlb_clear_slave(bond, slave); } } /* Caller must hold bond lock for read */ void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); if (link == BOND_LINK_DOWN) { tlb_clear_slave(bond, slave, 0); if (bond->alb_info.rlb_enabled) { rlb_clear_slave(bond, slave); } } else if (link == BOND_LINK_UP) { /* order a rebalance ASAP */ bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; if (bond->alb_info.rlb_enabled) { bond->alb_info.rlb_rebalance = 1; /* If the updelay module parameter is smaller than the * forwarding delay of the switch the rebalance will * not work because the rebalance arp replies will * not be forwarded to the clients.. */ } } } /** * bond_alb_handle_active_change - assign new curr_active_slave * @bond: our bonding struct * @new_slave: new slave to assign * * Set the bond->curr_active_slave to @new_slave and handle * mac address swapping and promiscuity changes as needed. * * If new_slave is NULL, caller must hold curr_slave_lock or * bond->lock for write. * * If new_slave is not NULL, caller must hold RTNL, bond->lock for * read and curr_slave_lock for write. Processing here may sleep, so * no other locks may be held. */ void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) { struct slave *swap_slave; int i; if (bond->curr_active_slave == new_slave) { return; } if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) { dev_set_promiscuity(bond->curr_active_slave->dev, -1); bond->alb_info.primary_is_promisc = 0; bond->alb_info.rlb_promisc_timeout_counter = 0; } swap_slave = bond->curr_active_slave; bond->curr_active_slave = new_slave; if (!new_slave || (bond->slave_cnt == 0)) { return; } /* set the new curr_active_slave to the bonds mac address * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave */ if (!swap_slave) { struct slave *tmp_slave; /* find slave that is holding the bond's mac address */ bond_for_each_slave(bond, tmp_slave, i) { if (!memcmp(tmp_slave->dev->dev_addr, bond->dev->dev_addr, ETH_ALEN)) { swap_slave = tmp_slave; break; } } } /* * Arrange for swap_slave and new_slave to temporarily be * ignored so we can mess with their MAC addresses without * fear of interference from transmit activity. */ if (swap_slave) { tlb_clear_slave(bond, swap_slave, 1); } tlb_clear_slave(bond, new_slave, 1); write_unlock_bh(&bond->curr_slave_lock); read_unlock(&bond->lock); ASSERT_RTNL(); /* curr_active_slave must be set before calling alb_swap_mac_addr */ if (swap_slave) { /* swap mac address */ alb_swap_mac_addr(bond, swap_slave, new_slave); } else { /* set the new_slave to the bond mac address */ alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, bond->alb_info.rlb_enabled); } if (swap_slave) { alb_fasten_mac_swap(bond, swap_slave, new_slave); read_lock(&bond->lock); } else { read_lock(&bond->lock); alb_send_learning_packets(new_slave, bond->dev->dev_addr); } write_lock_bh(&bond->curr_slave_lock); } /* * Called with RTNL */ int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) { struct bonding *bond = netdev_priv(bond_dev); struct sockaddr *sa = addr; struct slave *slave, *swap_slave; int res; int i; if (!is_valid_ether_addr(sa->sa_data)) { return -EADDRNOTAVAIL; } res = alb_set_mac_address(bond, addr); if (res) { return res; } memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); /* If there is no curr_active_slave there is nothing else to do. * Otherwise we'll need to pass the new address to it and handle * duplications. */ if (!bond->curr_active_slave) { return 0; } swap_slave = NULL; bond_for_each_slave(bond, slave, i) { if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) { swap_slave = slave; break; } } write_unlock_bh(&bond->curr_slave_lock); read_unlock(&bond->lock); if (swap_slave) { alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave); alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave); } else { alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr, bond->alb_info.rlb_enabled); alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr); if (bond->alb_info.rlb_enabled) { /* inform clients mac address has changed */ rlb_req_update_slave_clients(bond, bond->curr_active_slave); } } read_lock(&bond->lock); write_lock_bh(&bond->curr_slave_lock); return 0; } void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) { if (bond->alb_info.current_alb_vlan && (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) { bond->alb_info.current_alb_vlan = NULL; } if (bond->alb_info.rlb_enabled) { rlb_clear_vlan(bond, vlan_id); } }