/* cassini.c: Sun Microsystems Cassini(+) ethernet driver. * * Copyright (C) 2004 Sun Microsystems Inc. * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. * * This driver uses the sungem driver (c) David Miller * (davem@redhat.com) as its basis. * * The cassini chip has a number of features that distinguish it from * the gem chip: * 4 transmit descriptor rings that are used for either QoS (VLAN) or * load balancing (non-VLAN mode) * batching of multiple packets * multiple CPU dispatching * page-based RX descriptor engine with separate completion rings * Gigabit support (GMII and PCS interface) * MIF link up/down detection works * * RX is handled by page sized buffers that are attached as fragments to * the skb. here's what's done: * -- driver allocates pages at a time and keeps reference counts * on them. * -- the upper protocol layers assume that the header is in the skb * itself. as a result, cassini will copy a small amount (64 bytes) * to make them happy. * -- driver appends the rest of the data pages as frags to skbuffs * and increments the reference count * -- on page reclamation, the driver swaps the page with a spare page. * if that page is still in use, it frees its reference to that page, * and allocates a new page for use. otherwise, it just recycles the * the page. * * NOTE: cassini can parse the header. however, it's not worth it * as long as the network stack requires a header copy. * * TX has 4 queues. currently these queues are used in a round-robin * fashion for load balancing. They can also be used for QoS. for that * to work, however, QoS information needs to be exposed down to the driver * level so that subqueues get targetted to particular transmit rings. * alternatively, the queues can be configured via use of the all-purpose * ioctl. * * RX DATA: the rx completion ring has all the info, but the rx desc * ring has all of the data. RX can conceivably come in under multiple * interrupts, but the INT# assignment needs to be set up properly by * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do * that. also, the two descriptor rings are designed to distinguish between * encrypted and non-encrypted packets, but we use them for buffering * instead. * * by default, the selective clear mask is set up to process rx packets. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/compiler.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/list.h> #include <linux/dma-mapping.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/crc32.h> #include <linux/random.h> #include <linux/mii.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/mutex.h> #include <net/checksum.h> #include <asm/atomic.h> #include <asm/system.h> #include <asm/io.h> #include <asm/byteorder.h> #include <asm/uaccess.h> #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ) #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ) #define CAS_NCPUS num_online_cpus() #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL) #define USE_NAPI #define cas_skb_release(x) netif_receive_skb(x) #else #define cas_skb_release(x) netif_rx(x) #endif /* select which firmware to use */ #define USE_HP_WORKAROUND #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ #include "cassini.h" #define USE_TX_COMPWB /* use completion writeback registers */ #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ #define USE_RX_BLANK /* hw interrupt mitigation */ #undef USE_ENTROPY_DEV /* don't test for entropy device */ /* NOTE: these aren't useable unless PCI interrupts can be assigned. * also, we need to make cp->lock finer-grained. */ #undef USE_PCI_INTB #undef USE_PCI_INTC #undef USE_PCI_INTD #undef USE_QOS #undef USE_VPD_DEBUG /* debug vpd information if defined */ /* rx processing options */ #define USE_PAGE_ORDER /* specify to allocate large rx pages */ #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ #define RX_COPY_ALWAYS 0 /* if 0, use frags */ #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ #define DRV_MODULE_NAME "cassini" #define PFX DRV_MODULE_NAME ": " #define DRV_MODULE_VERSION "1.4" #define DRV_MODULE_RELDATE "1 July 2004" #define CAS_DEF_MSG_ENABLE \ (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) /* length of time before we decide the hardware is borked, * and dev->tx_timeout() should be called to fix the problem */ #define CAS_TX_TIMEOUT (HZ) #define CAS_LINK_TIMEOUT (22*HZ/10) #define CAS_LINK_FAST_TIMEOUT (1) /* timeout values for state changing. these specify the number * of 10us delays to be used before giving up. */ #define STOP_TRIES_PHY 1000 #define STOP_TRIES 5000 /* specify a minimum frame size to deal with some fifo issues * max mtu == 2 * page size - ethernet header - 64 - swivel = * 2 * page_size - 0x50 */ #define CAS_MIN_FRAME 97 #define CAS_1000MB_MIN_FRAME 255 #define CAS_MIN_MTU 60 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) #if 1 /* * Eliminate these and use separate atomic counters for each, to * avoid a race condition. */ #else #define CAS_RESET_MTU 1 #define CAS_RESET_ALL 2 #define CAS_RESET_SPARE 3 #endif static char version[] __devinitdata = DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ static int link_mode; MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); MODULE_LICENSE("GPL"); module_param(cassini_debug, int, 0); MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); module_param(link_mode, int, 0); MODULE_PARM_DESC(link_mode, "default link mode"); /* * Work around for a PCS bug in which the link goes down due to the chip * being confused and never showing a link status of "up." */ #define DEFAULT_LINKDOWN_TIMEOUT 5 /* * Value in seconds, for user input. */ static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; module_param(linkdown_timeout, int, 0); MODULE_PARM_DESC(linkdown_timeout, "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); /* * value in 'ticks' (units used by jiffies). Set when we init the * module because 'HZ' in actually a function call on some flavors of * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. */ static int link_transition_timeout; static u16 link_modes[] __devinitdata = { BMCR_ANENABLE, /* 0 : autoneg */ 0, /* 1 : 10bt half duplex */ BMCR_SPEED100, /* 2 : 100bt half duplex */ BMCR_FULLDPLX, /* 3 : 10bt full duplex */ BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ }; static struct pci_device_id cas_pci_tbl[] __devinitdata = { { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { 0, } }; MODULE_DEVICE_TABLE(pci, cas_pci_tbl); static void cas_set_link_modes(struct cas *cp); static inline void cas_lock_tx(struct cas *cp) { int i; for (i = 0; i < N_TX_RINGS; i++) spin_lock(&cp->tx_lock[i]); } static inline void cas_lock_all(struct cas *cp) { spin_lock_irq(&cp->lock); cas_lock_tx(cp); } /* WTZ: QA was finding deadlock problems with the previous * versions after long test runs with multiple cards per machine. * See if replacing cas_lock_all with safer versions helps. The * symptoms QA is reporting match those we'd expect if interrupts * aren't being properly restored, and we fixed a previous deadlock * with similar symptoms by using save/restore versions in other * places. */ #define cas_lock_all_save(cp, flags) \ do { \ struct cas *xxxcp = (cp); \ spin_lock_irqsave(&xxxcp->lock, flags); \ cas_lock_tx(xxxcp); \ } while (0) static inline void cas_unlock_tx(struct cas *cp) { int i; for (i = N_TX_RINGS; i > 0; i--) spin_unlock(&cp->tx_lock[i - 1]); } static inline void cas_unlock_all(struct cas *cp) { cas_unlock_tx(cp); spin_unlock_irq(&cp->lock); } #define cas_unlock_all_restore(cp, flags) \ do { \ struct cas *xxxcp = (cp); \ cas_unlock_tx(xxxcp); \ spin_unlock_irqrestore(&xxxcp->lock, flags); \ } while (0) static void cas_disable_irq(struct cas *cp, const int ring) { /* Make sure we won't get any more interrupts */ if (ring == 0) { writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); return; } /* disable completion interrupts and selectively mask */ if (cp->cas_flags & CAS_FLAG_REG_PLUS) { switch (ring) { #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) #ifdef USE_PCI_INTB case 1: #endif #ifdef USE_PCI_INTC case 2: #endif #ifdef USE_PCI_INTD case 3: #endif writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, cp->regs + REG_PLUS_INTRN_MASK(ring)); break; #endif default: writel(INTRN_MASK_CLEAR_ALL, cp->regs + REG_PLUS_INTRN_MASK(ring)); break; } } } static inline void cas_mask_intr(struct cas *cp) { int i; for (i = 0; i < N_RX_COMP_RINGS; i++) cas_disable_irq(cp, i); } static inline void cas_buffer_init(cas_page_t *cp) { struct page *page = cp->buffer; atomic_set((atomic_t *)&page->lru.next, 1); } static inline int cas_buffer_count(cas_page_t *cp) { struct page *page = cp->buffer; return atomic_read((atomic_t *)&page->lru.next); } static inline void cas_buffer_inc(cas_page_t *cp) { struct page *page = cp->buffer; atomic_inc((atomic_t *)&page->lru.next); } static inline void cas_buffer_dec(cas_page_t *cp) { struct page *page = cp->buffer; atomic_dec((atomic_t *)&page->lru.next); } static void cas_enable_irq(struct cas *cp, const int ring) { if (ring == 0) { /* all but TX_DONE */ writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); return; } if (cp->cas_flags & CAS_FLAG_REG_PLUS) { switch (ring) { #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) #ifdef USE_PCI_INTB case 1: #endif #ifdef USE_PCI_INTC case 2: #endif #ifdef USE_PCI_INTD case 3: #endif writel(INTRN_MASK_RX_EN, cp->regs + REG_PLUS_INTRN_MASK(ring)); break; #endif default: break; } } } static inline void cas_unmask_intr(struct cas *cp) { int i; for (i = 0; i < N_RX_COMP_RINGS; i++) cas_enable_irq(cp, i); } static inline void cas_entropy_gather(struct cas *cp) { #ifdef USE_ENTROPY_DEV if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) return; batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), readl(cp->regs + REG_ENTROPY_IV), sizeof(uint64_t)*8); #endif } static inline void cas_entropy_reset(struct cas *cp) { #ifdef USE_ENTROPY_DEV if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) return; writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, cp->regs + REG_BIM_LOCAL_DEV_EN); writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); /* if we read back 0x0, we don't have an entropy device */ if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; #endif } /* access to the phy. the following assumes that we've initialized the MIF to * be in frame rather than bit-bang mode */ static u16 cas_phy_read(struct cas *cp, int reg) { u32 cmd; int limit = STOP_TRIES_PHY; cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); cmd |= MIF_FRAME_TURN_AROUND_MSB; writel(cmd, cp->regs + REG_MIF_FRAME); /* poll for completion */ while (limit-- > 0) { udelay(10); cmd = readl(cp->regs + REG_MIF_FRAME); if (cmd & MIF_FRAME_TURN_AROUND_LSB) return (cmd & MIF_FRAME_DATA_MASK); } return 0xFFFF; /* -1 */ } static int cas_phy_write(struct cas *cp, int reg, u16 val) { int limit = STOP_TRIES_PHY; u32 cmd; cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); cmd |= MIF_FRAME_TURN_AROUND_MSB; cmd |= val & MIF_FRAME_DATA_MASK; writel(cmd, cp->regs + REG_MIF_FRAME); /* poll for completion */ while (limit-- > 0) { udelay(10); cmd = readl(cp->regs + REG_MIF_FRAME); if (cmd & MIF_FRAME_TURN_AROUND_LSB) return 0; } return -1; } static void cas_phy_powerup(struct cas *cp) { u16 ctl = cas_phy_read(cp, MII_BMCR); if ((ctl & BMCR_PDOWN) == 0) return; ctl &= ~BMCR_PDOWN; cas_phy_write(cp, MII_BMCR, ctl); } static void cas_phy_powerdown(struct cas *cp) { u16 ctl = cas_phy_read(cp, MII_BMCR); if (ctl & BMCR_PDOWN) return; ctl |= BMCR_PDOWN; cas_phy_write(cp, MII_BMCR, ctl); } /* cp->lock held. note: the last put_page will free the buffer */ static int cas_page_free(struct cas *cp, cas_page_t *page) { pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, PCI_DMA_FROMDEVICE); cas_buffer_dec(page); __free_pages(page->buffer, cp->page_order); kfree(page); return 0; } #ifdef RX_COUNT_BUFFERS #define RX_USED_ADD(x, y) ((x)->used += (y)) #define RX_USED_SET(x, y) ((x)->used = (y)) #else #define RX_USED_ADD(x, y) #define RX_USED_SET(x, y) #endif /* local page allocation routines for the receive buffers. jumbo pages * require at least 8K contiguous and 8K aligned buffers. */ static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) { cas_page_t *page; page = kmalloc(sizeof(cas_page_t), flags); if (!page) return NULL; INIT_LIST_HEAD(&page->list); RX_USED_SET(page, 0); page->buffer = alloc_pages(flags, cp->page_order); if (!page->buffer) goto page_err; cas_buffer_init(page); page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, cp->page_size, PCI_DMA_FROMDEVICE); return page; page_err: kfree(page); return NULL; } /* initialize spare pool of rx buffers, but allocate during the open */ static void cas_spare_init(struct cas *cp) { spin_lock(&cp->rx_inuse_lock); INIT_LIST_HEAD(&cp->rx_inuse_list); spin_unlock(&cp->rx_inuse_lock); spin_lock(&cp->rx_spare_lock); INIT_LIST_HEAD(&cp->rx_spare_list); cp->rx_spares_needed = RX_SPARE_COUNT; spin_unlock(&cp->rx_spare_lock); } /* used on close. free all the spare buffers. */ static void cas_spare_free(struct cas *cp) { struct list_head list, *elem, *tmp; /* free spare buffers */ INIT_LIST_HEAD(&list); spin_lock(&cp->rx_spare_lock); list_splice(&cp->rx_spare_list, &list); INIT_LIST_HEAD(&cp->rx_spare_list); spin_unlock(&cp->rx_spare_lock); list_for_each_safe(elem, tmp, &list) { cas_page_free(cp, list_entry(elem, cas_page_t, list)); } INIT_LIST_HEAD(&list); #if 1 /* * Looks like Adrian had protected this with a different * lock than used everywhere else to manipulate this list. */ spin_lock(&cp->rx_inuse_lock); list_splice(&cp->rx_inuse_list, &list); INIT_LIST_HEAD(&cp->rx_inuse_list); spin_unlock(&cp->rx_inuse_lock); #else spin_lock(&cp->rx_spare_lock); list_splice(&cp->rx_inuse_list, &list); INIT_LIST_HEAD(&cp->rx_inuse_list); spin_unlock(&cp->rx_spare_lock); #endif list_for_each_safe(elem, tmp, &list) { cas_page_free(cp, list_entry(elem, cas_page_t, list)); } } /* replenish spares if needed */ static void cas_spare_recover(struct cas *cp, const gfp_t flags) { struct list_head list, *elem, *tmp; int needed, i; /* check inuse list. if we don't need any more free buffers, * just free it */ /* make a local copy of the list */ INIT_LIST_HEAD(&list); spin_lock(&cp->rx_inuse_lock); list_splice(&cp->rx_inuse_list, &list); INIT_LIST_HEAD(&cp->rx_inuse_list); spin_unlock(&cp->rx_inuse_lock); list_for_each_safe(elem, tmp, &list) { cas_page_t *page = list_entry(elem, cas_page_t, list); if (cas_buffer_count(page) > 1) continue; list_del(elem); spin_lock(&cp->rx_spare_lock); if (cp->rx_spares_needed > 0) { list_add(elem, &cp->rx_spare_list); cp->rx_spares_needed--; spin_unlock(&cp->rx_spare_lock); } else { spin_unlock(&cp->rx_spare_lock); cas_page_free(cp, page); } } /* put any inuse buffers back on the list */ if (!list_empty(&list)) { spin_lock(&cp->rx_inuse_lock); list_splice(&list, &cp->rx_inuse_list); spin_unlock(&cp->rx_inuse_lock); } spin_lock(&cp->rx_spare_lock); needed = cp->rx_spares_needed; spin_unlock(&cp->rx_spare_lock); if (!needed) return; /* we still need spares, so try to allocate some */ INIT_LIST_HEAD(&list); i = 0; while (i < needed) { cas_page_t *spare = cas_page_alloc(cp, flags); if (!spare) break; list_add(&spare->list, &list); i++; } spin_lock(&cp->rx_spare_lock); list_splice(&list, &cp->rx_spare_list); cp->rx_spares_needed -= i; spin_unlock(&cp->rx_spare_lock); } /* pull a page from the list. */ static cas_page_t *cas_page_dequeue(struct cas *cp) { struct list_head *entry; int recover; spin_lock(&cp->rx_spare_lock); if (list_empty(&cp->rx_spare_list)) { /* try to do a quick recovery */ spin_unlock(&cp->rx_spare_lock); cas_spare_recover(cp, GFP_ATOMIC); spin_lock(&cp->rx_spare_lock); if (list_empty(&cp->rx_spare_list)) { if (netif_msg_rx_err(cp)) printk(KERN_ERR "%s: no spare buffers " "available.\n", cp->dev->name); spin_unlock(&cp->rx_spare_lock); return NULL; } } entry = cp->rx_spare_list.next; list_del(entry); recover = ++cp->rx_spares_needed; spin_unlock(&cp->rx_spare_lock); /* trigger the timer to do the recovery */ if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { #if 1 atomic_inc(&cp->reset_task_pending); atomic_inc(&cp->reset_task_pending_spare); schedule_work(&cp->reset_task); #else atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); schedule_work(&cp->reset_task); #endif } return list_entry(entry, cas_page_t, list); } static void cas_mif_poll(struct cas *cp, const int enable) { u32 cfg; cfg = readl(cp->regs + REG_MIF_CFG); cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); if (cp->phy_type & CAS_PHY_MII_MDIO1) cfg |= MIF_CFG_PHY_SELECT; /* poll and interrupt on link status change. */ if (enable) { cfg |= MIF_CFG_POLL_EN; cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); } writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, cp->regs + REG_MIF_MASK); writel(cfg, cp->regs + REG_MIF_CFG); } /* Must be invoked under cp->lock */ static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) { u16 ctl; #if 1 int lcntl; int changed = 0; int oldstate = cp->lstate; int link_was_not_down = !(oldstate == link_down); #endif /* Setup link parameters */ if (!ep) goto start_aneg; lcntl = cp->link_cntl; if (ep->autoneg == AUTONEG_ENABLE) cp->link_cntl = BMCR_ANENABLE; else { cp->link_cntl = 0; if (ep->speed == SPEED_100) cp->link_cntl |= BMCR_SPEED100; else if (ep->speed == SPEED_1000) cp->link_cntl |= CAS_BMCR_SPEED1000; if (ep->duplex == DUPLEX_FULL) cp->link_cntl |= BMCR_FULLDPLX; } #if 1 changed = (lcntl != cp->link_cntl); #endif start_aneg: if (cp->lstate == link_up) { printk(KERN_INFO "%s: PCS link down.\n", cp->dev->name); } else { if (changed) { printk(KERN_INFO "%s: link configuration changed\n", cp->dev->name); } } cp->lstate = link_down; cp->link_transition = LINK_TRANSITION_LINK_DOWN; if (!cp->hw_running) return; #if 1 /* * WTZ: If the old state was link_up, we turn off the carrier * to replicate everything we do elsewhere on a link-down * event when we were already in a link-up state.. */ if (oldstate == link_up) netif_carrier_off(cp->dev); if (changed && link_was_not_down) { /* * WTZ: This branch will simply schedule a full reset after * we explicitly changed link modes in an ioctl. See if this * fixes the link-problems we were having for forced mode. */ atomic_inc(&cp->reset_task_pending); atomic_inc(&cp->reset_task_pending_all); schedule_work(&cp->reset_task); cp->timer_ticks = 0; mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); return; } #endif if (cp->phy_type & CAS_PHY_SERDES) { u32 val = readl(cp->regs + REG_PCS_MII_CTRL); if (cp->link_cntl & BMCR_ANENABLE) { val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); cp->lstate = link_aneg; } else { if (cp->link_cntl & BMCR_FULLDPLX) val |= PCS_MII_CTRL_DUPLEX; val &= ~PCS_MII_AUTONEG_EN; cp->lstate = link_force_ok; } cp->link_transition = LINK_TRANSITION_LINK_CONFIG; writel(val, cp->regs + REG_PCS_MII_CTRL); } else { cas_mif_poll(cp, 0); ctl = cas_phy_read(cp, MII_BMCR); ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | CAS_BMCR_SPEED1000 | BMCR_ANENABLE); ctl |= cp->link_cntl; if (ctl & BMCR_ANENABLE) { ctl |= BMCR_ANRESTART; cp->lstate = link_aneg; } else { cp->lstate = link_force_ok; } cp->link_transition = LINK_TRANSITION_LINK_CONFIG; cas_phy_write(cp, MII_BMCR, ctl); cas_mif_poll(cp, 1); } cp->timer_ticks = 0; mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); } /* Must be invoked under cp->lock. */ static int cas_reset_mii_phy(struct cas *cp) { int limit = STOP_TRIES_PHY; u16 val; cas_phy_write(cp, MII_BMCR, BMCR_RESET); udelay(100); while (limit--) { val = cas_phy_read(cp, MII_BMCR); if ((val & BMCR_RESET) == 0) break; udelay(10); } return (limit <= 0); } static void cas_saturn_firmware_load(struct cas *cp) { cas_saturn_patch_t *patch = cas_saturn_patch; cas_phy_powerdown(cp); /* expanded memory access mode */ cas_phy_write(cp, DP83065_MII_MEM, 0x0); /* pointer configuration for new firmware */ cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); cas_phy_write(cp, DP83065_MII_REGD, 0xbd); cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); cas_phy_write(cp, DP83065_MII_REGD, 0x82); cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); cas_phy_write(cp, DP83065_MII_REGD, 0x0); cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); cas_phy_write(cp, DP83065_MII_REGD, 0x39); /* download new firmware */ cas_phy_write(cp, DP83065_MII_MEM, 0x1); cas_phy_write(cp, DP83065_MII_REGE, patch->addr); while (patch->addr) { cas_phy_write(cp, DP83065_MII_REGD, patch->val); patch++; } /* enable firmware */ cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); cas_phy_write(cp, DP83065_MII_REGD, 0x1); } /* phy initialization */ static void cas_phy_init(struct cas *cp) { u16 val; /* if we're in MII/GMII mode, set up phy */ if (CAS_PHY_MII(cp->phy_type)) { writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); cas_mif_poll(cp, 0); cas_reset_mii_phy(cp); /* take out of isolate mode */ if (PHY_LUCENT_B0 == cp->phy_id) { /* workaround link up/down issue with lucent */ cas_phy_write(cp, LUCENT_MII_REG, 0x8000); cas_phy_write(cp, MII_BMCR, 0x00f1); cas_phy_write(cp, LUCENT_MII_REG, 0x0); } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { /* workarounds for broadcom phy */ cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); } else if (PHY_BROADCOM_5411 == cp->phy_id) { val = cas_phy_read(cp, BROADCOM_MII_REG4); val = cas_phy_read(cp, BROADCOM_MII_REG4); if (val & 0x0080) { /* link workaround */ cas_phy_write(cp, BROADCOM_MII_REG4, val & ~0x0080); } } else if (cp->cas_flags & CAS_FLAG_SATURN) { writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? SATURN_PCFG_FSI : 0x0, cp->regs + REG_SATURN_PCFG); /* load firmware to address 10Mbps auto-negotiation * issue. NOTE: this will need to be changed if the * default firmware gets fixed. */ if (PHY_NS_DP83065 == cp->phy_id) { cas_saturn_firmware_load(cp); } cas_phy_powerup(cp); } /* advertise capabilities */ val = cas_phy_read(cp, MII_BMCR); val &= ~BMCR_ANENABLE; cas_phy_write(cp, MII_BMCR, val); udelay(10); cas_phy_write(cp, MII_ADVERTISE, cas_phy_read(cp, MII_ADVERTISE) | (ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL | CAS_ADVERTISE_PAUSE | CAS_ADVERTISE_ASYM_PAUSE)); if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { /* make sure that we don't advertise half * duplex to avoid a chip issue */ val = cas_phy_read(cp, CAS_MII_1000_CTRL); val &= ~CAS_ADVERTISE_1000HALF; val |= CAS_ADVERTISE_1000FULL; cas_phy_write(cp, CAS_MII_1000_CTRL, val); } } else { /* reset pcs for serdes */ u32 val; int limit; writel(PCS_DATAPATH_MODE_SERDES, cp->regs + REG_PCS_DATAPATH_MODE); /* enable serdes pins on saturn */ if (cp->cas_flags & CAS_FLAG_SATURN) writel(0, cp->regs + REG_SATURN_PCFG); /* Reset PCS unit. */ val = readl(cp->regs + REG_PCS_MII_CTRL); val |= PCS_MII_RESET; writel(val, cp->regs + REG_PCS_MII_CTRL); limit = STOP_TRIES; while (limit-- > 0) { udelay(10); if ((readl(cp->regs + REG_PCS_MII_CTRL) & PCS_MII_RESET) == 0) break; } if (limit <= 0) printk(KERN_WARNING "%s: PCS reset bit would not " "clear [%08x].\n", cp->dev->name, readl(cp->regs + REG_PCS_STATE_MACHINE)); /* Make sure PCS is disabled while changing advertisement * configuration. */ writel(0x0, cp->regs + REG_PCS_CFG); /* Advertise all capabilities except half-duplex. */ val = readl(cp->regs + REG_PCS_MII_ADVERT); val &= ~PCS_MII_ADVERT_HD; val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | PCS_MII_ADVERT_ASYM_PAUSE); writel(val, cp->regs + REG_PCS_MII_ADVERT); /* enable PCS */ writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); /* pcs workaround: enable sync detect */ writel(PCS_SERDES_CTRL_SYNCD_EN, cp->regs + REG_PCS_SERDES_CTRL); } } static int cas_pcs_link_check(struct cas *cp) { u32 stat, state_machine; int retval = 0; /* The link status bit latches on zero, so you must * read it twice in such a case to see a transition * to the link being up. */ stat = readl(cp->regs + REG_PCS_MII_STATUS); if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) stat = readl(cp->regs + REG_PCS_MII_STATUS); /* The remote-fault indication is only valid * when autoneg has completed. */ if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) == (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) { if (netif_msg_link(cp)) printk(KERN_INFO "%s: PCS RemoteFault\n", cp->dev->name); } /* work around link detection issue by querying the PCS state * machine directly. */ state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { stat &= ~PCS_MII_STATUS_LINK_STATUS; } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { stat |= PCS_MII_STATUS_LINK_STATUS; } if (stat & PCS_MII_STATUS_LINK_STATUS) { if (cp->lstate != link_up) { if (cp->opened) { cp->lstate = link_up; cp->link_transition = LINK_TRANSITION_LINK_UP; cas_set_link_modes(cp); netif_carrier_on(cp->dev); } } } else if (cp->lstate == link_up) { cp->lstate = link_down; if (link_transition_timeout != 0 && cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && !cp->link_transition_jiffies_valid) { /* * force a reset, as a workaround for the * link-failure problem. May want to move this to a * point a bit earlier in the sequence. If we had * generated a reset a short time ago, we'll wait for * the link timer to check the status until a * timer expires (link_transistion_jiffies_valid is * true when the timer is running.) Instead of using * a system timer, we just do a check whenever the * link timer is running - this clears the flag after * a suitable delay. */ retval = 1; cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; cp->link_transition_jiffies = jiffies; cp->link_transition_jiffies_valid = 1; } else { cp->link_transition = LINK_TRANSITION_ON_FAILURE; } netif_carrier_off(cp->dev); if (cp->opened && netif_msg_link(cp)) { printk(KERN_INFO "%s: PCS link down.\n", cp->dev->name); } /* Cassini only: if you force a mode, there can be * sync problems on link down. to fix that, the following * things need to be checked: * 1) read serialink state register * 2) read pcs status register to verify link down. * 3) if link down and serial link == 0x03, then you need * to global reset the chip. */ if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { /* should check to see if we're in a forced mode */ stat = readl(cp->regs + REG_PCS_SERDES_STATE); if (stat == 0x03) return 1; } } else if (cp->lstate == link_down) { if (link_transition_timeout != 0 && cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && !cp->link_transition_jiffies_valid) { /* force a reset, as a workaround for the * link-failure problem. May want to move * this to a point a bit earlier in the * sequence. */ retval = 1; cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; cp->link_transition_jiffies = jiffies; cp->link_transition_jiffies_valid = 1; } else { cp->link_transition = LINK_TRANSITION_STILL_FAILED; } } return retval; } static int cas_pcs_interrupt(struct net_device *dev, struct cas *cp, u32 status) { u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) return 0; return cas_pcs_link_check(cp); } static int cas_txmac_interrupt(struct net_device *dev, struct cas *cp, u32 status) { u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); if (!txmac_stat) return 0; if (netif_msg_intr(cp)) printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", cp->dev->name, txmac_stat); /* Defer timer expiration is quite normal, * don't even log the event. */ if ((txmac_stat & MAC_TX_DEFER_TIMER) && !(txmac_stat & ~MAC_TX_DEFER_TIMER)) return 0; spin_lock(&cp->stat_lock[0]); if (txmac_stat & MAC_TX_UNDERRUN) { printk(KERN_ERR "%s: TX MAC xmit underrun.\n", dev->name); cp->net_stats[0].tx_fifo_errors++; } if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { printk(KERN_ERR "%s: TX MAC max packet size error.\n", dev->name); cp->net_stats[0].tx_errors++; } /* The rest are all cases of one of the 16-bit TX * counters expiring. */ if (txmac_stat & MAC_TX_COLL_NORMAL) cp->net_stats[0].collisions += 0x10000; if (txmac_stat & MAC_TX_COLL_EXCESS) { cp->net_stats[0].tx_aborted_errors += 0x10000; cp->net_stats[0].collisions += 0x10000; } if (txmac_stat & MAC_TX_COLL_LATE) { cp->net_stats[0].tx_aborted_errors += 0x10000; cp->net_stats[0].collisions += 0x10000; } spin_unlock(&cp->stat_lock[0]); /* We do not keep track of MAC_TX_COLL_FIRST and * MAC_TX_PEAK_ATTEMPTS events. */ return 0; } static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) { cas_hp_inst_t *inst; u32 val; int i; i = 0; while ((inst = firmware) && inst->note) { writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); ++firmware; ++i; } } static void cas_init_rx_dma(struct cas *cp) { u64 desc_dma = cp->block_dvma; u32 val; int i, size; /* rx free descriptors */ val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); if ((N_RX_DESC_RINGS > 1) && (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); writel(val, cp->regs + REG_RX_CFG); val = (unsigned long) cp->init_rxds[0] - (unsigned long) cp->init_block; writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); if (cp->cas_flags & CAS_FLAG_REG_PLUS) { /* rx desc 2 is for IPSEC packets. however, * we don't it that for that purpose. */ val = (unsigned long) cp->init_rxds[1] - (unsigned long) cp->init_block; writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); writel((desc_dma + val) & 0xffffffff, cp->regs + REG_PLUS_RX_DB1_LOW); writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + REG_PLUS_RX_KICK1); } /* rx completion registers */ val = (unsigned long) cp->init_rxcs[0] - (unsigned long) cp->init_block; writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); if (cp->cas_flags & CAS_FLAG_REG_PLUS) { /* rx comp 2-4 */ for (i = 1; i < MAX_RX_COMP_RINGS; i++) { val = (unsigned long) cp->init_rxcs[i] - (unsigned long) cp->init_block; writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_CBN_HI(i)); writel((desc_dma + val) & 0xffffffff, cp->regs + REG_PLUS_RX_CBN_LOW(i)); } } /* read selective clear regs to prevent spurious interrupts * on reset because complete == kick. * selective clear set up to prevent interrupts on resets */ readl(cp->regs + REG_INTR_STATUS_ALIAS); writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); if (cp->cas_flags & CAS_FLAG_REG_PLUS) { for (i = 1; i < N_RX_COMP_RINGS; i++) readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); /* 2 is different from 3 and 4 */ if (N_RX_COMP_RINGS > 1) writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, cp->regs + REG_PLUS_ALIASN_CLEAR(1)); for (i = 2; i < N_RX_COMP_RINGS; i++) writel(INTR_RX_DONE_ALT, cp->regs + REG_PLUS_ALIASN_CLEAR(i)); } /* set up pause thresholds */ val = CAS_BASE(RX_PAUSE_THRESH_OFF, cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); val |= CAS_BASE(RX_PAUSE_THRESH_ON, cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); writel(val, cp->regs + REG_RX_PAUSE_THRESH); /* zero out dma reassembly buffers */ for (i = 0; i < 64; i++) { writel(i, cp->regs + REG_RX_TABLE_ADDR); writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); } /* make sure address register is 0 for normal operation */ writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); /* interrupt mitigation */ #ifdef USE_RX_BLANK val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); writel(val, cp->regs + REG_RX_BLANK); #else writel(0x0, cp->regs + REG_RX_BLANK); #endif /* interrupt generation as a function of low water marks for * free desc and completion entries. these are used to trigger * housekeeping for rx descs. we don't use the free interrupt * as it's not very useful */ /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); writel(val, cp->regs + REG_RX_AE_THRESH); if (cp->cas_flags & CAS_FLAG_REG_PLUS) { val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); } /* Random early detect registers. useful for congestion avoidance. * this should be tunable. */ writel(0x0, cp->regs + REG_RX_RED); /* receive page sizes. default == 2K (0x800) */ val = 0; if (cp->page_size == 0x1000) val = 0x1; else if (cp->page_size == 0x2000) val = 0x2; else if (cp->page_size == 0x4000) val = 0x3; /* round mtu + offset. constrain to page size. */ size = cp->dev->mtu + 64; if (size > cp->page_size) size = cp->page_size; if (size <= 0x400) i = 0x0; else if (size <= 0x800) i = 0x1; else if (size <= 0x1000) i = 0x2; else i = 0x3; cp->mtu_stride = 1 << (i + 10); val = CAS_BASE(RX_PAGE_SIZE, val); val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); writel(val, cp->regs + REG_RX_PAGE_SIZE); /* enable the header parser if desired */ if (CAS_HP_FIRMWARE == cas_prog_null) return; val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); writel(val, cp->regs + REG_HP_CFG); } static inline void cas_rxc_init(struct cas_rx_comp *rxc) { memset(rxc, 0, sizeof(*rxc)); rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); } /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] * flipping is protected by the fact that the chip will not * hand back the same page index while it's being processed. */ static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) { cas_page_t *page = cp->rx_pages[1][index]; cas_page_t *new; if (cas_buffer_count(page) == 1) return page; new = cas_page_dequeue(cp); if (new) { spin_lock(&cp->rx_inuse_lock); list_add(&page->list, &cp->rx_inuse_list); spin_unlock(&cp->rx_inuse_lock); } return new; } /* this needs to be changed if we actually use the ENC RX DESC ring */ static cas_page_t *cas_page_swap(struct cas *cp, const int ring, const int index) { cas_page_t **page0 = cp->rx_pages[0]; cas_page_t **page1 = cp->rx_pages[1]; /* swap if buffer is in use */ if (cas_buffer_count(page0[index]) > 1) { cas_page_t *new = cas_page_spare(cp, index); if (new) { page1[index] = page0[index]; page0[index] = new; } } RX_USED_SET(page0[index], 0); return page0[index]; } static void cas_clean_rxds(struct cas *cp) { /* only clean ring 0 as ring 1 is used for spare buffers */ struct cas_rx_desc *rxd = cp->init_rxds[0]; int i, size; /* release all rx flows */ for (i = 0; i < N_RX_FLOWS; i++) { struct sk_buff *skb; while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { cas_skb_release(skb); } } /* initialize descriptors */ size = RX_DESC_RINGN_SIZE(0); for (i = 0; i < size; i++) { cas_page_t *page = cas_page_swap(cp, 0, i); rxd[i].buffer = cpu_to_le64(page->dma_addr); rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | CAS_BASE(RX_INDEX_RING, 0)); } cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; cp->rx_last[0] = 0; cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); } static void cas_clean_rxcs(struct cas *cp) { int i, j; /* take ownership of rx comp descriptors */ memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); for (i = 0; i < N_RX_COMP_RINGS; i++) { struct cas_rx_comp *rxc = cp->init_rxcs[i]; for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { cas_rxc_init(rxc + j); } } } #if 0 /* When we get a RX fifo overflow, the RX unit is probably hung * so we do the following. * * If any part of the reset goes wrong, we return 1 and that causes the * whole chip to be reset. */ static int cas_rxmac_reset(struct cas *cp) { struct net_device *dev = cp->dev; int limit; u32 val; /* First, reset MAC RX. */ writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); for (limit = 0; limit < STOP_TRIES; limit++) { if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) break; udelay(10); } if (limit == STOP_TRIES) { printk(KERN_ERR "%s: RX MAC will not disable, resetting whole " "chip.\n", dev->name); return 1; } /* Second, disable RX DMA. */ writel(0, cp->regs + REG_RX_CFG); for (limit = 0; limit < STOP_TRIES; limit++) { if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) break; udelay(10); } if (limit == STOP_TRIES) { printk(KERN_ERR "%s: RX DMA will not disable, resetting whole " "chip.\n", dev->name); return 1; } mdelay(5); /* Execute RX reset command. */ writel(SW_RESET_RX, cp->regs + REG_SW_RESET); for (limit = 0; limit < STOP_TRIES; limit++) { if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) break; udelay(10); } if (limit == STOP_TRIES) { printk(KERN_ERR "%s: RX reset command will not execute, " "resetting whole chip.\n", dev->name); return 1; } /* reset driver rx state */ cas_clean_rxds(cp); cas_clean_rxcs(cp); /* Now, reprogram the rest of RX unit. */ cas_init_rx_dma(cp); /* re-enable */ val = readl(cp->regs + REG_RX_CFG); writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); val = readl(cp->regs + REG_MAC_RX_CFG); writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); return 0; } #endif static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, u32 status) { u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); if (!stat) return 0; if (netif_msg_intr(cp)) printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n", cp->dev->name, stat); /* these are all rollovers */ spin_lock(&cp->stat_lock[0]); if (stat & MAC_RX_ALIGN_ERR) cp->net_stats[0].rx_frame_errors += 0x10000; if (stat & MAC_RX_CRC_ERR) cp->net_stats[0].rx_crc_errors += 0x10000; if (stat & MAC_RX_LEN_ERR) cp->net_stats[0].rx_length_errors += 0x10000; if (stat & MAC_RX_OVERFLOW) { cp->net_stats[0].rx_over_errors++; cp->net_stats[0].rx_fifo_errors++; } /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR * events. */ spin_unlock(&cp->stat_lock[0]); return 0; } static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, u32 status) { u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); if (!stat) return 0; if (netif_msg_intr(cp)) printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n", cp->dev->name, stat); /* This interrupt is just for pause frame and pause * tracking. It is useful for diagnostics and debug * but probably by default we will mask these events. */ if (stat & MAC_CTRL_PAUSE_STATE) cp->pause_entered++; if (stat & MAC_CTRL_PAUSE_RECEIVED) cp->pause_last_time_recvd = (stat >> 16); return 0; } /* Must be invoked under cp->lock. */ static inline int cas_mdio_link_not_up(struct cas *cp) { u16 val; switch (cp->lstate) { case link_force_ret: if (netif_msg_link(cp)) printk(KERN_INFO "%s: Autoneg failed again, keeping" " forced mode\n", cp->dev->name); cas_phy_write(cp, MII_BMCR, cp->link_fcntl); cp->timer_ticks = 5; cp->lstate = link_force_ok; cp->link_transition = LINK_TRANSITION_LINK_CONFIG; break; case link_aneg: val = cas_phy_read(cp, MII_BMCR); /* Try forced modes. we try things in the following order: * 1000 full -> 100 full/half -> 10 half */ val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); val |= BMCR_FULLDPLX; val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? CAS_BMCR_SPEED1000 : BMCR_SPEED100; cas_phy_write(cp, MII_BMCR, val); cp->timer_ticks = 5; cp->lstate = link_force_try; cp->link_transition = LINK_TRANSITION_LINK_CONFIG; break; case link_force_try: /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ val = cas_phy_read(cp, MII_BMCR); cp->timer_ticks = 5; if (val & CAS_BMCR_SPEED1000) { /* gigabit */ val &= ~CAS_BMCR_SPEED1000; val |= (BMCR_SPEED100 | BMCR_FULLDPLX); cas_phy_write(cp, MII_BMCR, val); break; } if (val & BMCR_SPEED100) { if (val & BMCR_FULLDPLX) /* fd failed */ val &= ~BMCR_FULLDPLX; else { /* 100Mbps failed */ val &= ~BMCR_SPEED100; } cas_phy_write(cp, MII_BMCR, val); break; } default: break; } return 0; } /* must be invoked with cp->lock held */ static int cas_mii_link_check(struct cas *cp, const u16 bmsr) { int restart; if (bmsr & BMSR_LSTATUS) { /* Ok, here we got a link. If we had it due to a forced * fallback, and we were configured for autoneg, we * retry a short autoneg pass. If you know your hub is * broken, use ethtool ;) */ if ((cp->lstate == link_force_try) && (cp->link_cntl & BMCR_ANENABLE)) { cp->lstate = link_force_ret; cp->link_transition = LINK_TRANSITION_LINK_CONFIG; cas_mif_poll(cp, 0); cp->link_fcntl = cas_phy_read(cp, MII_BMCR); cp->timer_ticks = 5; if (cp->opened && netif_msg_link(cp)) printk(KERN_INFO "%s: Got link after fallback, retrying" " autoneg once...\n", cp->dev->name); cas_phy_write(cp, MII_BMCR, cp->link_fcntl | BMCR_ANENABLE | BMCR_ANRESTART); cas_mif_poll(cp, 1); } else if (cp->lstate != link_up) { cp->lstate = link_up; cp->link_transition = LINK_TRANSITION_LINK_UP; if (cp->opened) { cas_set_link_modes(cp); netif_carrier_on(cp->dev); } } return 0; } /* link not up. if the link was previously up, we restart the * whole process */ restart = 0; if (cp->lstate == link_up) { cp->lstate = link_down; cp->link_transition = LINK_TRANSITION_LINK_DOWN; netif_carrier_off(cp->dev); if (cp->opened && netif_msg_link(cp)) printk(KERN_INFO "%s: Link down\n", cp->dev->name); restart = 1; } else if (++cp->timer_ticks > 10) cas_mdio_link_not_up(cp); return restart; } static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, u32 status) { u32 stat = readl(cp->regs + REG_MIF_STATUS); u16 bmsr; /* check for a link change */ if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) return 0; bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); return cas_mii_link_check(cp, bmsr); } static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, u32 status) { u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); if (!stat) return 0; printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat, readl(cp->regs + REG_BIM_DIAG)); /* cassini+ has this reserved */ if ((stat & PCI_ERR_BADACK) && ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) printk("<No ACK64# during ABS64 cycle> "); if (stat & PCI_ERR_DTRTO) printk("<Delayed transaction timeout> "); if (stat & PCI_ERR_OTHER) printk("<other> "); if (stat & PCI_ERR_BIM_DMA_WRITE) printk("<BIM DMA 0 write req> "); if (stat & PCI_ERR_BIM_DMA_READ) printk("<BIM DMA 0 read req> "); printk("\n"); if (stat & PCI_ERR_OTHER) { u16 cfg; /* Interrogate PCI config space for the * true cause. */ pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n", dev->name, cfg); if (cfg & PCI_STATUS_PARITY) printk(KERN_ERR "%s: PCI parity error detected.\n", dev->name); if (cfg & PCI_STATUS_SIG_TARGET_ABORT) printk(KERN_ERR "%s: PCI target abort.\n", dev->name); if (cfg & PCI_STATUS_REC_TARGET_ABORT) printk(KERN_ERR "%s: PCI master acks target abort.\n", dev->name); if (cfg & PCI_STATUS_REC_MASTER_ABORT) printk(KERN_ERR "%s: PCI master abort.\n", dev->name); if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) printk(KERN_ERR "%s: PCI system error SERR#.\n", dev->name); if (cfg & PCI_STATUS_DETECTED_PARITY) printk(KERN_ERR "%s: PCI parity error.\n", dev->name); /* Write the error bits back to clear them. */ cfg &= (PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY); pci_write_config_word(cp->pdev, PCI_STATUS, cfg); } /* For all PCI errors, we should reset the chip. */ return 1; } /* All non-normal interrupt conditions get serviced here. * Returns non-zero if we should just exit the interrupt * handler right now (ie. if we reset the card which invalidates * all of the other original irq status bits). */ static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, u32 status) { if (status & INTR_RX_TAG_ERROR) { /* corrupt RX tag framing */ if (netif_msg_rx_err(cp)) printk(KERN_DEBUG "%s: corrupt rx tag framing\n", cp->dev->name); spin_lock(&cp->stat_lock[0]); cp->net_stats[0].rx_errors++; spin_unlock(&cp->stat_lock[0]); goto do_reset; } if (status & INTR_RX_LEN_MISMATCH) { /* length mismatch. */ if (netif_msg_rx_err(cp)) printk(KERN_DEBUG "%s: length mismatch for rx frame\n", cp->dev->name); spin_lock(&cp->stat_lock[0]); cp->net_stats[0].rx_errors++; spin_unlock(&cp->stat_lock[0]); goto do_reset; } if (status & INTR_PCS_STATUS) { if (cas_pcs_interrupt(dev, cp, status)) goto do_reset; } if (status & INTR_TX_MAC_STATUS) { if (cas_txmac_interrupt(dev, cp, status)) goto do_reset; } if (status & INTR_RX_MAC_STATUS) { if (cas_rxmac_interrupt(dev, cp, status)) goto do_reset; } if (status & INTR_MAC_CTRL_STATUS) { if (cas_mac_interrupt(dev, cp, status)) goto do_reset; } if (status & INTR_MIF_STATUS) { if (cas_mif_interrupt(dev, cp, status)) goto do_reset; } if (status & INTR_PCI_ERROR_STATUS) { if (cas_pci_interrupt(dev, cp, status)) goto do_reset; } return 0; do_reset: #if 1 atomic_inc(&cp->reset_task_pending); atomic_inc(&cp->reset_task_pending_all); printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n", dev->name, status); schedule_work(&cp->reset_task); #else atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); printk(KERN_ERR "reset called in cas_abnormal_irq\n"); schedule_work(&cp->reset_task); #endif return 1; } /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when * determining whether to do a netif_stop/wakeup */ #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, const int len) { unsigned long off = addr + len; if (CAS_TABORT(cp) == 1) return 0; if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) return 0; return TX_TARGET_ABORT_LEN; } static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) { struct cas_tx_desc *txds; struct sk_buff **skbs; struct net_device *dev = cp->dev; int entry, count; spin_lock(&cp->tx_lock[ring]); txds = cp->init_txds[ring]; skbs = cp->tx_skbs[ring]; entry = cp->tx_old[ring]; count = TX_BUFF_COUNT(ring, entry, limit); while (entry != limit) { struct sk_buff *skb = skbs[entry]; dma_addr_t daddr; u32 dlen; int frag; if (!skb) { /* this should never occur */ entry = TX_DESC_NEXT(ring, entry); continue; } /* however, we might get only a partial skb release. */ count -= skb_shinfo(skb)->nr_frags + + cp->tx_tiny_use[ring][entry].nbufs + 1; if (count < 0) break; if (netif_msg_tx_done(cp)) printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n", cp->dev->name, ring, entry); skbs[entry] = NULL; cp->tx_tiny_use[ring][entry].nbufs = 0; for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { struct cas_tx_desc *txd = txds + entry; daddr = le64_to_cpu(txd->buffer); dlen = CAS_VAL(TX_DESC_BUFLEN, le64_to_cpu(txd->control)); pci_unmap_page(cp->pdev, daddr, dlen, PCI_DMA_TODEVICE); entry = TX_DESC_NEXT(ring, entry); /* tiny buffer may follow */ if (cp->tx_tiny_use[ring][entry].used) { cp->tx_tiny_use[ring][entry].used = 0; entry = TX_DESC_NEXT(ring, entry); } } spin_lock(&cp->stat_lock[ring]); cp->net_stats[ring].tx_packets++; cp->net_stats[ring].tx_bytes += skb->len; spin_unlock(&cp->stat_lock[ring]); dev_kfree_skb_irq(skb); } cp->tx_old[ring] = entry; /* this is wrong for multiple tx rings. the net device needs * multiple queues for this to do the right thing. we wait * for 2*packets to be available when using tiny buffers */ if (netif_queue_stopped(dev) && (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) netif_wake_queue(dev); spin_unlock(&cp->tx_lock[ring]); } static void cas_tx(struct net_device *dev, struct cas *cp, u32 status) { int limit, ring; #ifdef USE_TX_COMPWB u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); #endif if (netif_msg_intr(cp)) printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n", cp->dev->name, status, (unsigned long long)compwb); /* process all the rings */ for (ring = 0; ring < N_TX_RINGS; ring++) { #ifdef USE_TX_COMPWB /* use the completion writeback registers */ limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | CAS_VAL(TX_COMPWB_LSB, compwb); compwb = TX_COMPWB_NEXT(compwb); #else limit = readl(cp->regs + REG_TX_COMPN(ring)); #endif if (cp->tx_old[ring] != limit) cas_tx_ringN(cp, ring, limit); } } static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, int entry, const u64 *words, struct sk_buff **skbref) { int dlen, hlen, len, i, alloclen; int off, swivel = RX_SWIVEL_OFF_VAL; struct cas_page *page; struct sk_buff *skb; void *addr, *crcaddr; char *p; hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); len = hlen + dlen; if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) alloclen = len; else alloclen = max(hlen, RX_COPY_MIN); skb = dev_alloc_skb(alloclen + swivel + cp->crc_size); if (skb == NULL) return -1; *skbref = skb; skb->dev = cp->dev; skb_reserve(skb, swivel); p = skb->data; addr = crcaddr = NULL; if (hlen) { /* always copy header pages */ i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + swivel; i = hlen; if (!dlen) /* attach FCS */ i += cp->crc_size; pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, PCI_DMA_FROMDEVICE); addr = cas_page_map(page->buffer); memcpy(p, addr + off, i); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, PCI_DMA_FROMDEVICE); cas_page_unmap(addr); RX_USED_ADD(page, 0x100); p += hlen; swivel = 0; } if (alloclen < (hlen + dlen)) { skb_frag_t *frag = skb_shinfo(skb)->frags; /* normal or jumbo packets. we use frags */ i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; hlen = min(cp->page_size - off, dlen); if (hlen < 0) { if (netif_msg_rx_err(cp)) { printk(KERN_DEBUG "%s: rx page overflow: " "%d\n", cp->dev->name, hlen); } dev_kfree_skb_irq(skb); return -1; } i = hlen; if (i == dlen) /* attach FCS */ i += cp->crc_size; pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, PCI_DMA_FROMDEVICE); /* make sure we always copy a header */ swivel = 0; if (p == (char *) skb->data) { /* not split */ addr = cas_page_map(page->buffer); memcpy(p, addr + off, RX_COPY_MIN); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, PCI_DMA_FROMDEVICE); cas_page_unmap(addr); off += RX_COPY_MIN; swivel = RX_COPY_MIN; RX_USED_ADD(page, cp->mtu_stride); } else { RX_USED_ADD(page, hlen); } skb_put(skb, alloclen); skb_shinfo(skb)->nr_frags++; skb->data_len += hlen - swivel; skb->len += hlen - swivel; get_page(page->buffer); cas_buffer_inc(page); frag->page = page->buffer; frag->page_offset = off; frag->size = hlen - swivel; /* any more data? */ if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { hlen = dlen; off = 0; i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, hlen + cp->crc_size, PCI_DMA_FROMDEVICE); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, hlen + cp->crc_size, PCI_DMA_FROMDEVICE); skb_shinfo(skb)->nr_frags++; skb->data_len += hlen; skb->len += hlen; frag++; get_page(page->buffer); cas_buffer_inc(page); frag->page = page->buffer; frag->page_offset = 0; frag->size = hlen; RX_USED_ADD(page, hlen + cp->crc_size); } if (cp->crc_size) { addr = cas_page_map(page->buffer); crcaddr = addr + off + hlen; } } else { /* copying packet */ if (!dlen) goto end_copy_pkt; i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; hlen = min(cp->page_size - off, dlen); if (hlen < 0) { if (netif_msg_rx_err(cp)) { printk(KERN_DEBUG "%s: rx page overflow: " "%d\n", cp->dev->name, hlen); } dev_kfree_skb_irq(skb); return -1; } i = hlen; if (i == dlen) /* attach FCS */ i += cp->crc_size; pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, PCI_DMA_FROMDEVICE); addr = cas_page_map(page->buffer); memcpy(p, addr + off, i); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, PCI_DMA_FROMDEVICE); cas_page_unmap(addr); if (p == (char *) skb->data) /* not split */ RX_USED_ADD(page, cp->mtu_stride); else RX_USED_ADD(page, i); /* any more data? */ if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { p += hlen; i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, dlen + cp->crc_size, PCI_DMA_FROMDEVICE); addr = cas_page_map(page->buffer); memcpy(p, addr, dlen + cp->crc_size); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, dlen + cp->crc_size, PCI_DMA_FROMDEVICE); cas_page_unmap(addr); RX_USED_ADD(page, dlen + cp->crc_size); } end_copy_pkt: if (cp->crc_size) { addr = NULL; crcaddr = skb->data + alloclen; } skb_put(skb, alloclen); } i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]); if (cp->crc_size) { /* checksum includes FCS. strip it out. */ i = csum_fold(csum_partial(crcaddr, cp->crc_size, i)); if (addr) cas_page_unmap(addr); } skb->csum = ntohs(i ^ 0xffff); skb->ip_summed = CHECKSUM_COMPLETE; skb->protocol = eth_type_trans(skb, cp->dev); return len; } /* we can handle up to 64 rx flows at a time. we do the same thing * as nonreassm except that we batch up the buffers. * NOTE: we currently just treat each flow as a bunch of packets that * we pass up. a better way would be to coalesce the packets * into a jumbo packet. to do that, we need to do the following: * 1) the first packet will have a clean split between header and * data. save both. * 2) each time the next flow packet comes in, extend the * data length and merge the checksums. * 3) on flow release, fix up the header. * 4) make sure the higher layer doesn't care. * because packets get coalesced, we shouldn't run into fragment count * issues. */ static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, struct sk_buff *skb) { int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); struct sk_buff_head *flow = &cp->rx_flows[flowid]; /* this is protected at a higher layer, so no need to * do any additional locking here. stick the buffer * at the end. */ __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow); if (words[0] & RX_COMP1_RELEASE_FLOW) { while ((skb = __skb_dequeue(flow))) { cas_skb_release(skb); } } } /* put rx descriptor back on ring. if a buffer is in use by a higher * layer, this will need to put in a replacement. */ static void cas_post_page(struct cas *cp, const int ring, const int index) { cas_page_t *new; int entry; entry = cp->rx_old[ring]; new = cas_page_swap(cp, ring, index); cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); cp->init_rxds[ring][entry].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | CAS_BASE(RX_INDEX_RING, ring)); entry = RX_DESC_ENTRY(ring, entry + 1); cp->rx_old[ring] = entry; if (entry % 4) return; if (ring == 0) writel(entry, cp->regs + REG_RX_KICK); else if ((N_RX_DESC_RINGS > 1) && (cp->cas_flags & CAS_FLAG_REG_PLUS)) writel(entry, cp->regs + REG_PLUS_RX_KICK1); } /* only when things are bad */ static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) { unsigned int entry, last, count, released; int cluster; cas_page_t **page = cp->rx_pages[ring]; entry = cp->rx_old[ring]; if (netif_msg_intr(cp)) printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n", cp->dev->name, ring, entry); cluster = -1; count = entry & 0x3; last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); released = 0; while (entry != last) { /* make a new buffer if it's still in use */ if (cas_buffer_count(page[entry]) > 1) { cas_page_t *new = cas_page_dequeue(cp); if (!new) { /* let the timer know that we need to * do this again */ cp->cas_flags |= CAS_FLAG_RXD_POST(ring); if (!timer_pending(&cp->link_timer)) mod_timer(&cp->link_timer, jiffies + CAS_LINK_FAST_TIMEOUT); cp->rx_old[ring] = entry; cp->rx_last[ring] = num ? num - released : 0; return -ENOMEM; } spin_lock(&cp->rx_inuse_lock); list_add(&page[entry]->list, &cp->rx_inuse_list); spin_unlock(&cp->rx_inuse_lock); cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); page[entry] = new; } if (++count == 4) { cluster = entry; count = 0; } released++; entry = RX_DESC_ENTRY(ring, entry + 1); } cp->rx_old[ring] = entry; if (cluster < 0) return 0; if (ring == 0) writel(cluster, cp->regs + REG_RX_KICK); else if ((N_RX_DESC_RINGS > 1) && (cp->cas_flags & CAS_FLAG_REG_PLUS)) writel(cluster, cp->regs + REG_PLUS_RX_KICK1); return 0; } /* process a completion ring. packets are set up in three basic ways: * small packets: should be copied header + data in single buffer. * large packets: header and data in a single buffer. * split packets: header in a separate buffer from data. * data may be in multiple pages. data may be > 256 * bytes but in a single page. * * NOTE: RX page posting is done in this routine as well. while there's * the capability of using multiple RX completion rings, it isn't * really worthwhile due to the fact that the page posting will * force serialization on the single descriptor ring. */ static int cas_rx_ringN(struct cas *cp, int ring, int budget) { struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; int entry, drops; int npackets = 0; if (netif_msg_intr(cp)) printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n", cp->dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); entry = cp->rx_new[ring]; drops = 0; while (1) { struct cas_rx_comp *rxc = rxcs + entry; struct sk_buff *skb; int type, len; u64 words[4]; int i, dring; words[0] = le64_to_cpu(rxc->word1); words[1] = le64_to_cpu(rxc->word2); words[2] = le64_to_cpu(rxc->word3); words[3] = le64_to_cpu(rxc->word4); /* don't touch if still owned by hw */ type = CAS_VAL(RX_COMP1_TYPE, words[0]); if (type == 0) break; /* hw hasn't cleared the zero bit yet */ if (words[3] & RX_COMP4_ZERO) { break; } /* get info on the packet */ if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { spin_lock(&cp->stat_lock[ring]); cp->net_stats[ring].rx_errors++; if (words[3] & RX_COMP4_LEN_MISMATCH) cp->net_stats[ring].rx_length_errors++; if (words[3] & RX_COMP4_BAD) cp->net_stats[ring].rx_crc_errors++; spin_unlock(&cp->stat_lock[ring]); /* We'll just return it to Cassini. */ drop_it: spin_lock(&cp->stat_lock[ring]); ++cp->net_stats[ring].rx_dropped; spin_unlock(&cp->stat_lock[ring]); goto next; } len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); if (len < 0) { ++drops; goto drop_it; } /* see if it's a flow re-assembly or not. the driver * itself handles release back up. */ if (RX_DONT_BATCH || (type == 0x2)) { /* non-reassm: these always get released */ cas_skb_release(skb); } else { cas_rx_flow_pkt(cp, words, skb); } spin_lock(&cp->stat_lock[ring]); cp->net_stats[ring].rx_packets++; cp->net_stats[ring].rx_bytes += len; spin_unlock(&cp->stat_lock[ring]); cp->dev->last_rx = jiffies; next: npackets++; /* should it be released? */ if (words[0] & RX_COMP1_RELEASE_HDR) { i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); dring = CAS_VAL(RX_INDEX_RING, i); i = CAS_VAL(RX_INDEX_NUM, i); cas_post_page(cp, dring, i); } if (words[0] & RX_COMP1_RELEASE_DATA) { i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); dring = CAS_VAL(RX_INDEX_RING, i); i = CAS_VAL(RX_INDEX_NUM, i); cas_post_page(cp, dring, i); } if (words[0] & RX_COMP1_RELEASE_NEXT) { i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); dring = CAS_VAL(RX_INDEX_RING, i); i = CAS_VAL(RX_INDEX_NUM, i); cas_post_page(cp, dring, i); } /* skip to the next entry */ entry = RX_COMP_ENTRY(ring, entry + 1 + CAS_VAL(RX_COMP1_SKIP, words[0])); #ifdef USE_NAPI if (budget && (npackets >= budget)) break; #endif } cp->rx_new[ring] = entry; if (drops) printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", cp->dev->name); return npackets; } /* put completion entries back on the ring */ static void cas_post_rxcs_ringN(struct net_device *dev, struct cas *cp, int ring) { struct cas_rx_comp *rxc = cp->init_rxcs[ring]; int last, entry; last = cp->rx_cur[ring]; entry = cp->rx_new[ring]; if (netif_msg_intr(cp)) printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n", dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); /* zero and re-mark descriptors */ while (last != entry) { cas_rxc_init(rxc + last); last = RX_COMP_ENTRY(ring, last + 1); } cp->rx_cur[ring] = last; if (ring == 0) writel(last, cp->regs + REG_RX_COMP_TAIL); else if (cp->cas_flags & CAS_FLAG_REG_PLUS) writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); } /* cassini can use all four PCI interrupts for the completion ring. * rings 3 and 4 are identical */ #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) static inline void cas_handle_irqN(struct net_device *dev, struct cas *cp, const u32 status, const int ring) { if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) cas_post_rxcs_ringN(dev, cp, ring); } static irqreturn_t cas_interruptN(int irq, void *dev_id) { struct net_device *dev = dev_id; struct cas *cp = netdev_priv(dev); unsigned long flags; int ring; u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); /* check for shared irq */ if (status == 0) return IRQ_NONE; ring = (irq == cp->pci_irq_INTC) ? 2 : 3; spin_lock_irqsave(&cp->lock, flags); if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ #ifdef USE_NAPI cas_mask_intr(cp); netif_rx_schedule(dev); #else cas_rx_ringN(cp, ring, 0); #endif status &= ~INTR_RX_DONE_ALT; } if (status) cas_handle_irqN(dev, cp, status, ring); spin_unlock_irqrestore(&cp->lock, flags); return IRQ_HANDLED; } #endif #ifdef USE_PCI_INTB /* everything but rx packets */ static inline void cas_handle_irq1(struct cas *cp, const u32 status) { if (status & INTR_RX_BUF_UNAVAIL_1) { /* Frame arrived, no free RX buffers available. * NOTE: we can get this on a link transition. */ cas_post_rxds_ringN(cp, 1, 0); spin_lock(&cp->stat_lock[1]); cp->net_stats[1].rx_dropped++; spin_unlock(&cp->stat_lock[1]); } if (status & INTR_RX_BUF_AE_1) cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - RX_AE_FREEN_VAL(1)); if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) cas_post_rxcs_ringN(cp, 1); } /* ring 2 handles a few more events than 3 and 4 */ static irqreturn_t cas_interrupt1(int irq, void *dev_id) { struct net_device *dev = dev_id; struct cas *cp = netdev_priv(dev); unsigned long flags; u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); /* check for shared interrupt */ if (status == 0) return IRQ_NONE; spin_lock_irqsave(&cp->lock, flags); if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ #ifdef USE_NAPI cas_mask_intr(cp); netif_rx_schedule(dev); #else cas_rx_ringN(cp, 1, 0); #endif status &= ~INTR_RX_DONE_ALT; } if (status) cas_handle_irq1(cp, status); spin_unlock_irqrestore(&cp->lock, flags); return IRQ_HANDLED; } #endif static inline void cas_handle_irq(struct net_device *dev, struct cas *cp, const u32 status) { /* housekeeping interrupts */ if (status & INTR_ERROR_MASK) cas_abnormal_irq(dev, cp, status); if (status & INTR_RX_BUF_UNAVAIL) { /* Frame arrived, no free RX buffers available. * NOTE: we can get this on a link transition. */ cas_post_rxds_ringN(cp, 0, 0); spin_lock(&cp->stat_lock[0]); cp->net_stats[0].rx_dropped++; spin_unlock(&cp->stat_lock[0]); } else if (status & INTR_RX_BUF_AE) { cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - RX_AE_FREEN_VAL(0)); } if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) cas_post_rxcs_ringN(dev, cp, 0); } static irqreturn_t cas_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct cas *cp = netdev_priv(dev); unsigned long flags; u32 status = readl(cp->regs + REG_INTR_STATUS); if (status == 0) return IRQ_NONE; spin_lock_irqsave(&cp->lock, flags); if (status & (INTR_TX_ALL | INTR_TX_INTME)) { cas_tx(dev, cp, status); status &= ~(INTR_TX_ALL | INTR_TX_INTME); } if (status & INTR_RX_DONE) { #ifdef USE_NAPI cas_mask_intr(cp); netif_rx_schedule(dev); #else cas_rx_ringN(cp, 0, 0); #endif status &= ~INTR_RX_DONE; } if (status) cas_handle_irq(dev, cp, status); spin_unlock_irqrestore(&cp->lock, flags); return IRQ_HANDLED; } #ifdef USE_NAPI static int cas_poll(struct net_device *dev, int *budget) { struct cas *cp = netdev_priv(dev); int i, enable_intr, todo, credits; u32 status = readl(cp->regs + REG_INTR_STATUS); unsigned long flags; spin_lock_irqsave(&cp->lock, flags); cas_tx(dev, cp, status); spin_unlock_irqrestore(&cp->lock, flags); /* NAPI rx packets. we spread the credits across all of the * rxc rings */ todo = min(*budget, dev->quota); /* to make sure we're fair with the work we loop through each * ring N_RX_COMP_RING times with a request of * todo / N_RX_COMP_RINGS */ enable_intr = 1; credits = 0; for (i = 0; i < N_RX_COMP_RINGS; i++) { int j; for (j = 0; j < N_RX_COMP_RINGS; j++) { credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS); if (credits >= todo) { enable_intr = 0; goto rx_comp; } } } rx_comp: *budget -= credits; dev->quota -= credits; /* final rx completion */ spin_lock_irqsave(&cp->lock, flags); if (status) cas_handle_irq(dev, cp, status); #ifdef USE_PCI_INTB if (N_RX_COMP_RINGS > 1) { status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); if (status) cas_handle_irq1(dev, cp, status); } #endif #ifdef USE_PCI_INTC if (N_RX_COMP_RINGS > 2) { status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); if (status) cas_handle_irqN(dev, cp, status, 2); } #endif #ifdef USE_PCI_INTD if (N_RX_COMP_RINGS > 3) { status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); if (status) cas_handle_irqN(dev, cp, status, 3); } #endif spin_unlock_irqrestore(&cp->lock, flags); if (enable_intr) { netif_rx_complete(dev); cas_unmask_intr(cp); return 0; } return 1; } #endif #ifdef CONFIG_NET_POLL_CONTROLLER static void cas_netpoll(struct net_device *dev) { struct cas *cp = netdev_priv(dev); cas_disable_irq(cp, 0); cas_interrupt(cp->pdev->irq, dev); cas_enable_irq(cp, 0); #ifdef USE_PCI_INTB if (N_RX_COMP_RINGS > 1) { /* cas_interrupt1(); */ } #endif #ifdef USE_PCI_INTC if (N_RX_COMP_RINGS > 2) { /* cas_interruptN(); */ } #endif #ifdef USE_PCI_INTD if (N_RX_COMP_RINGS > 3) { /* cas_interruptN(); */ } #endif } #endif static void cas_tx_timeout(struct net_device *dev) { struct cas *cp = netdev_priv(dev); printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); if (!cp->hw_running) { printk("%s: hrm.. hw not running!\n", dev->name); return; } printk(KERN_ERR "%s: MIF_STATE[%08x]\n", dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE)); printk(KERN_ERR "%s: MAC_STATE[%08x]\n", dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE)); printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] " "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", dev->name, readl(cp->regs + REG_TX_CFG), readl(cp->regs + REG_MAC_TX_STATUS), readl(cp->regs + REG_MAC_TX_CFG), readl(cp->regs + REG_TX_FIFO_PKT_CNT), readl(cp->regs + REG_TX_FIFO_WRITE_PTR), readl(cp->regs + REG_TX_FIFO_READ_PTR), readl(cp->regs + REG_TX_SM_1), readl(cp->regs + REG_TX_SM_2)); printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n", dev->name, readl(cp->regs + REG_RX_CFG), readl(cp->regs + REG_MAC_RX_STATUS), readl(cp->regs + REG_MAC_RX_CFG)); printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n", dev->name, readl(cp->regs + REG_HP_STATE_MACHINE), readl(cp->regs + REG_HP_STATUS0), readl(cp->regs + REG_HP_STATUS1), readl(cp->regs + REG_HP_STATUS2)); #if 1 atomic_inc(&cp->reset_task_pending); atomic_inc(&cp->reset_task_pending_all); schedule_work(&cp->reset_task); #else atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); schedule_work(&cp->reset_task); #endif } static inline int cas_intme(int ring, int entry) { /* Algorithm: IRQ every 1/2 of descriptors. */ if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) return 1; return 0; } static void cas_write_txd(struct cas *cp, int ring, int entry, dma_addr_t mapping, int len, u64 ctrl, int last) { struct cas_tx_desc *txd = cp->init_txds[ring] + entry; ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); if (cas_intme(ring, entry)) ctrl |= TX_DESC_INTME; if (last) ctrl |= TX_DESC_EOF; txd->control = cpu_to_le64(ctrl); txd->buffer = cpu_to_le64(mapping); } static inline void *tx_tiny_buf(struct cas *cp, const int ring, const int entry) { return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; } static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, const int entry, const int tentry) { cp->tx_tiny_use[ring][tentry].nbufs++; cp->tx_tiny_use[ring][entry].used = 1; return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; } static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, struct sk_buff *skb) { struct net_device *dev = cp->dev; int entry, nr_frags, frag, tabort, tentry; dma_addr_t mapping; unsigned long flags; u64 ctrl; u32 len; spin_lock_irqsave(&cp->tx_lock[ring], flags); /* This is a hard error, log it. */ if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { netif_stop_queue(dev); spin_unlock_irqrestore(&cp->tx_lock[ring], flags); printk(KERN_ERR PFX "%s: BUG! Tx Ring full when " "queue awake!\n", dev->name); return 1; } ctrl = 0; if (skb->ip_summed == CHECKSUM_PARTIAL) { u64 csum_start_off, csum_stuff_off; csum_start_off = (u64) (skb->h.raw - skb->data); csum_stuff_off = csum_start_off + skb->csum_offset; ctrl = TX_DESC_CSUM_EN | CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); } entry = cp->tx_new[ring]; cp->tx_skbs[ring][entry] = skb; nr_frags = skb_shinfo(skb)->nr_frags; len = skb_headlen(skb); mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), offset_in_page(skb->data), len, PCI_DMA_TODEVICE); tentry = entry; tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); if (unlikely(tabort)) { /* NOTE: len is always > tabort */ cas_write_txd(cp, ring, entry, mapping, len - tabort, ctrl | TX_DESC_SOF, 0); entry = TX_DESC_NEXT(ring, entry); memcpy(tx_tiny_buf(cp, ring, entry), skb->data + len - tabort, tabort); mapping = tx_tiny_map(cp, ring, entry, tentry); cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, (nr_frags == 0)); } else { cas_write_txd(cp, ring, entry, mapping, len, ctrl | TX_DESC_SOF, (nr_frags == 0)); } entry = TX_DESC_NEXT(ring, entry); for (frag = 0; frag < nr_frags; frag++) { skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; len = fragp->size; mapping = pci_map_page(cp->pdev, fragp->page, fragp->page_offset, len, PCI_DMA_TODEVICE); tabort = cas_calc_tabort(cp, fragp->page_offset, len); if (unlikely(tabort)) { void *addr; /* NOTE: len is always > tabort */ cas_write_txd(cp, ring, entry, mapping, len - tabort, ctrl, 0); entry = TX_DESC_NEXT(ring, entry); addr = cas_page_map(fragp->page); memcpy(tx_tiny_buf(cp, ring, entry), addr + fragp->page_offset + len - tabort, tabort); cas_page_unmap(addr); mapping = tx_tiny_map(cp, ring, entry, tentry); len = tabort; } cas_write_txd(cp, ring, entry, mapping, len, ctrl, (frag + 1 == nr_frags)); entry = TX_DESC_NEXT(ring, entry); } cp->tx_new[ring] = entry; if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) netif_stop_queue(dev); if (netif_msg_tx_queued(cp)) printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, " "avail %d\n", dev->name, ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); writel(entry, cp->regs + REG_TX_KICKN(ring)); spin_unlock_irqrestore(&cp->tx_lock[ring], flags); return 0; } static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct cas *cp = netdev_priv(dev); /* this is only used as a load-balancing hint, so it doesn't * need to be SMP safe */ static int ring; if (skb_padto(skb, cp->min_frame_size)) return 0; /* XXX: we need some higher-level QoS hooks to steer packets to * individual queues. */ if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) return 1; dev->trans_start = jiffies; return 0; } static void cas_init_tx_dma(struct cas *cp) { u64 desc_dma = cp->block_dvma; unsigned long off; u32 val; int i; /* set up tx completion writeback registers. must be 8-byte aligned */ #ifdef USE_TX_COMPWB off = offsetof(struct cas_init_block, tx_compwb); writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); #endif /* enable completion writebacks, enable paced mode, * disable read pipe, and disable pre-interrupt compwbs */ val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | TX_CFG_INTR_COMPWB_DIS; /* write out tx ring info and tx desc bases */ for (i = 0; i < MAX_TX_RINGS; i++) { off = (unsigned long) cp->init_txds[i] - (unsigned long) cp->init_block; val |= CAS_TX_RINGN_BASE(i); writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_DBN_LOW(i)); /* don't zero out the kick register here as the system * will wedge */ } writel(val, cp->regs + REG_TX_CFG); /* program max burst sizes. these numbers should be different * if doing QoS. */ #ifdef USE_QOS writel(0x800, cp->regs + REG_TX_MAXBURST_0); writel(0x1600, cp->regs + REG_TX_MAXBURST_1); writel(0x2400, cp->regs + REG_TX_MAXBURST_2); writel(0x4800, cp->regs + REG_TX_MAXBURST_3); #else writel(0x800, cp->regs + REG_TX_MAXBURST_0); writel(0x800, cp->regs + REG_TX_MAXBURST_1); writel(0x800, cp->regs + REG_TX_MAXBURST_2); writel(0x800, cp->regs + REG_TX_MAXBURST_3); #endif } /* Must be invoked under cp->lock. */ static inline void cas_init_dma(struct cas *cp) { cas_init_tx_dma(cp); cas_init_rx_dma(cp); } /* Must be invoked under cp->lock. */ static u32 cas_setup_multicast(struct cas *cp) { u32 rxcfg = 0; int i; if (cp->dev->flags & IFF_PROMISC) { rxcfg |= MAC_RX_CFG_PROMISC_EN; } else if (cp->dev->flags & IFF_ALLMULTI) { for (i=0; i < 16; i++) writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; } else { u16 hash_table[16]; u32 crc; struct dev_mc_list *dmi = cp->dev->mc_list; int i; /* use the alternate mac address registers for the * first 15 multicast addresses */ for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) { if (!dmi) { writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0)); writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1)); writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2)); continue; } writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5], cp->regs + REG_MAC_ADDRN(i*3 + 0)); writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3], cp->regs + REG_MAC_ADDRN(i*3 + 1)); writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1], cp->regs + REG_MAC_ADDRN(i*3 + 2)); dmi = dmi->next; } /* use hw hash table for the next series of * multicast addresses */ memset(hash_table, 0, sizeof(hash_table)); while (dmi) { crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr); crc >>= 24; hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); dmi = dmi->next; } for (i=0; i < 16; i++) writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; } return rxcfg; } /* must be invoked under cp->stat_lock[N_TX_RINGS] */ static void cas_clear_mac_err(struct cas *cp) { writel(0, cp->regs + REG_MAC_COLL_NORMAL); writel(0, cp->regs + REG_MAC_COLL_FIRST); writel(0, cp->regs + REG_MAC_COLL_EXCESS); writel(0, cp->regs + REG_MAC_COLL_LATE); writel(0, cp->regs + REG_MAC_TIMER_DEFER); writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); writel(0, cp->regs + REG_MAC_RECV_FRAME); writel(0, cp->regs + REG_MAC_LEN_ERR); writel(0, cp->regs + REG_MAC_ALIGN_ERR); writel(0, cp->regs + REG_MAC_FCS_ERR); writel(0, cp->regs + REG_MAC_RX_CODE_ERR); } static void cas_mac_reset(struct cas *cp) { int i; /* do both TX and RX reset */ writel(0x1, cp->regs + REG_MAC_TX_RESET); writel(0x1, cp->regs + REG_MAC_RX_RESET); /* wait for TX */ i = STOP_TRIES; while (i-- > 0) { if (readl(cp->regs + REG_MAC_TX_RESET) == 0) break; udelay(10); } /* wait for RX */ i = STOP_TRIES; while (i-- > 0) { if (readl(cp->regs + REG_MAC_RX_RESET) == 0) break; udelay(10); } if (readl(cp->regs + REG_MAC_TX_RESET) | readl(cp->regs + REG_MAC_RX_RESET)) printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n", cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET), readl(cp->regs + REG_MAC_RX_RESET), readl(cp->regs + REG_MAC_STATE_MACHINE)); } /* Must be invoked under cp->lock. */ static void cas_init_mac(struct cas *cp) { unsigned char *e = &cp->dev->dev_addr[0]; int i; #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE u32 rxcfg; #endif cas_mac_reset(cp); /* setup core arbitration weight register */ writel(CAWR_RR_DIS, cp->regs + REG_CAWR); /* XXX Use pci_dma_burst_advice() */ #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) /* set the infinite burst register for chips that don't have * pci issues. */ if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) writel(INF_BURST_EN, cp->regs + REG_INF_BURST); #endif writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); writel(0x00, cp->regs + REG_MAC_IPG0); writel(0x08, cp->regs + REG_MAC_IPG1); writel(0x04, cp->regs + REG_MAC_IPG2); /* change later for 802.3z */ writel(0x40, cp->regs + REG_MAC_SLOT_TIME); /* min frame + FCS */ writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we * specify the maximum frame size to prevent RX tag errors on * oversized frames. */ writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), cp->regs + REG_MAC_FRAMESIZE_MAX); /* NOTE: crc_size is used as a surrogate for half-duplex. * workaround saturn half-duplex issue by increasing preamble * size to 65 bytes. */ if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) writel(0x41, cp->regs + REG_MAC_PA_SIZE); else writel(0x07, cp->regs + REG_MAC_PA_SIZE); writel(0x04, cp->regs + REG_MAC_JAM_SIZE); writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); writel(0, cp->regs + REG_MAC_ADDR_FILTER0); writel(0, cp->regs + REG_MAC_ADDR_FILTER1); writel(0, cp->regs + REG_MAC_ADDR_FILTER2); writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); /* setup mac address in perfect filter array */ for (i = 0; i < 45; i++) writel(0x0, cp->regs + REG_MAC_ADDRN(i)); writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE cp->mac_rx_cfg = cas_setup_multicast(cp); #else /* WTZ: Do what Adrian did in cas_set_multicast. Doing * a writel does not seem to be necessary because Cassini * seems to preserve the configuration when we do the reset. * If the chip is in trouble, though, it is not clear if we * can really count on this behavior. cas_set_multicast uses * spin_lock_irqsave, but we are called only in cas_init_hw and * cas_init_hw is protected by cas_lock_all, which calls * spin_lock_irq (so it doesn't need to save the flags, and * we should be OK for the writel, as that is the only * difference). */ cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp); writel(rxcfg, cp->regs + REG_MAC_RX_CFG); #endif spin_lock(&cp->stat_lock[N_TX_RINGS]); cas_clear_mac_err(cp); spin_unlock(&cp->stat_lock[N_TX_RINGS]); /* Setup MAC interrupts. We want to get all of the interesting * counter expiration events, but we do not want to hear about * normal rx/tx as the DMA engine tells us that. */ writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); /* Don't enable even the PAUSE interrupts for now, we * make no use of those events other than to record them. */ writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); } /* Must be invoked under cp->lock. */ static void cas_init_pause_thresholds(struct cas *cp) { /* Calculate pause thresholds. Setting the OFF threshold to the * full RX fifo size effectively disables PAUSE generation */ if (cp->rx_fifo_size <= (2 * 1024)) { cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; } else { int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; if (max_frame * 3 > cp->rx_fifo_size) { cp->rx_pause_off = 7104; cp->rx_pause_on = 960; } else { int off = (cp->rx_fifo_size - (max_frame * 2)); int on = off - max_frame; cp->rx_pause_off = off; cp->rx_pause_on = on; } } } static int cas_vpd_match(const void __iomem *p, const char *str) { int len = strlen(str) + 1; int i; for (i = 0; i < len; i++) { if (readb(p + i) != str[i]) return 0; } return 1; } /* get the mac address by reading the vpd information in the rom. * also get the phy type and determine if there's an entropy generator. * NOTE: this is a bit convoluted for the following reasons: * 1) vpd info has order-dependent mac addresses for multinic cards * 2) the only way to determine the nic order is to use the slot * number. * 3) fiber cards don't have bridges, so their slot numbers don't * mean anything. * 4) we don't actually know we have a fiber card until after * the mac addresses are parsed. */ static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, const int offset) { void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; void __iomem *base, *kstart; int i, len; int found = 0; #define VPD_FOUND_MAC 0x01 #define VPD_FOUND_PHY 0x02 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ int mac_off = 0; /* give us access to the PROM */ writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, cp->regs + REG_BIM_LOCAL_DEV_EN); /* check for an expansion rom */ if (readb(p) != 0x55 || readb(p + 1) != 0xaa) goto use_random_mac_addr; /* search for beginning of vpd */ base = NULL; for (i = 2; i < EXPANSION_ROM_SIZE; i++) { /* check for PCIR */ if ((readb(p + i + 0) == 0x50) && (readb(p + i + 1) == 0x43) && (readb(p + i + 2) == 0x49) && (readb(p + i + 3) == 0x52)) { base = p + (readb(p + i + 8) | (readb(p + i + 9) << 8)); break; } } if (!base || (readb(base) != 0x82)) goto use_random_mac_addr; i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; while (i < EXPANSION_ROM_SIZE) { if (readb(base + i) != 0x90) /* no vpd found */ goto use_random_mac_addr; /* found a vpd field */ len = readb(base + i + 1) | (readb(base + i + 2) << 8); /* extract keywords */ kstart = base + i + 3; p = kstart; while ((p - kstart) < len) { int klen = readb(p + 2); int j; char type; p += 3; /* look for the following things: * -- correct length == 29 * 3 (type) + 2 (size) + * 18 (strlen("local-mac-address") + 1) + * 6 (mac addr) * -- VPD Instance 'I' * -- VPD Type Bytes 'B' * -- VPD data length == 6 * -- property string == local-mac-address * * -- correct length == 24 * 3 (type) + 2 (size) + * 12 (strlen("entropy-dev") + 1) + * 7 (strlen("vms110") + 1) * -- VPD Instance 'I' * -- VPD Type String 'B' * -- VPD data length == 7 * -- property string == entropy-dev * * -- correct length == 18 * 3 (type) + 2 (size) + * 9 (strlen("phy-type") + 1) + * 4 (strlen("pcs") + 1) * -- VPD Instance 'I' * -- VPD Type String 'S' * -- VPD data length == 4 * -- property string == phy-type * * -- correct length == 23 * 3 (type) + 2 (size) + * 14 (strlen("phy-interface") + 1) + * 4 (strlen("pcs") + 1) * -- VPD Instance 'I' * -- VPD Type String 'S' * -- VPD data length == 4 * -- property string == phy-interface */ if (readb(p) != 'I') goto next; /* finally, check string and length */ type = readb(p + 3); if (type == 'B') { if ((klen == 29) && readb(p + 4) == 6 && cas_vpd_match(p + 5, "local-mac-address")) { if (mac_off++ > offset) goto next; /* set mac address */ for (j = 0; j < 6; j++) dev_addr[j] = readb(p + 23 + j); goto found_mac; } } if (type != 'S') goto next; #ifdef USE_ENTROPY_DEV if ((klen == 24) && cas_vpd_match(p + 5, "entropy-dev") && cas_vpd_match(p + 17, "vms110")) { cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; goto next; } #endif if (found & VPD_FOUND_PHY) goto next; if ((klen == 18) && readb(p + 4) == 4 && cas_vpd_match(p + 5, "phy-type")) { if (cas_vpd_match(p + 14, "pcs")) { phy_type = CAS_PHY_SERDES; goto found_phy; } } if ((klen == 23) && readb(p + 4) == 4 && cas_vpd_match(p + 5, "phy-interface")) { if (cas_vpd_match(p + 19, "pcs")) { phy_type = CAS_PHY_SERDES; goto found_phy; } } found_mac: found |= VPD_FOUND_MAC; goto next; found_phy: found |= VPD_FOUND_PHY; next: p += klen; } i += len + 3; } use_random_mac_addr: if (found & VPD_FOUND_MAC) goto done; /* Sun MAC prefix then 3 random bytes. */ printk(PFX "MAC address not found in ROM VPD\n"); dev_addr[0] = 0x08; dev_addr[1] = 0x00; dev_addr[2] = 0x20; get_random_bytes(dev_addr + 3, 3); done: writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); return phy_type; } /* check pci invariants */ static void cas_check_pci_invariants(struct cas *cp) { struct pci_dev *pdev = cp->pdev; u8 rev; cp->cas_flags = 0; pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); if ((pdev->vendor == PCI_VENDOR_ID_SUN) && (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { if (rev >= CAS_ID_REVPLUS) cp->cas_flags |= CAS_FLAG_REG_PLUS; if (rev < CAS_ID_REVPLUS02u) cp->cas_flags |= CAS_FLAG_TARGET_ABORT; /* Original Cassini supports HW CSUM, but it's not * enabled by default as it can trigger TX hangs. */ if (rev < CAS_ID_REV2) cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; } else { /* Only sun has original cassini chips. */ cp->cas_flags |= CAS_FLAG_REG_PLUS; /* We use a flag because the same phy might be externally * connected. */ if ((pdev->vendor == PCI_VENDOR_ID_NS) && (pdev->device == PCI_DEVICE_ID_NS_SATURN)) cp->cas_flags |= CAS_FLAG_SATURN; } } static int cas_check_invariants(struct cas *cp) { struct pci_dev *pdev = cp->pdev; u32 cfg; int i; /* get page size for rx buffers. */ cp->page_order = 0; #ifdef USE_PAGE_ORDER if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { /* see if we can allocate larger pages */ struct page *page = alloc_pages(GFP_ATOMIC, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); if (page) { __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; } else { printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU); } } #endif cp->page_size = (PAGE_SIZE << cp->page_order); /* Fetch the FIFO configurations. */ cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; cp->rx_fifo_size = RX_FIFO_SIZE; /* finish phy determination. MDIO1 takes precedence over MDIO0 if * they're both connected. */ cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, PCI_SLOT(pdev->devfn)); if (cp->phy_type & CAS_PHY_SERDES) { cp->cas_flags |= CAS_FLAG_1000MB_CAP; return 0; /* no more checking needed */ } /* MII */ cfg = readl(cp->regs + REG_MIF_CFG); if (cfg & MIF_CFG_MDIO_1) { cp->phy_type = CAS_PHY_MII_MDIO1; } else if (cfg & MIF_CFG_MDIO_0) { cp->phy_type = CAS_PHY_MII_MDIO0; } cas_mif_poll(cp, 0); writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); for (i = 0; i < 32; i++) { u32 phy_id; int j; for (j = 0; j < 3; j++) { cp->phy_addr = i; phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; phy_id |= cas_phy_read(cp, MII_PHYSID2); if (phy_id && (phy_id != 0xFFFFFFFF)) { cp->phy_id = phy_id; goto done; } } } printk(KERN_ERR PFX "MII phy did not respond [%08x]\n", readl(cp->regs + REG_MIF_STATE_MACHINE)); return -1; done: /* see if we can do gigabit */ cfg = cas_phy_read(cp, MII_BMSR); if ((cfg & CAS_BMSR_1000_EXTEND) && cas_phy_read(cp, CAS_MII_1000_EXTEND)) cp->cas_flags |= CAS_FLAG_1000MB_CAP; return 0; } /* Must be invoked under cp->lock. */ static inline void cas_start_dma(struct cas *cp) { int i; u32 val; int txfailed = 0; /* enable dma */ val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; writel(val, cp->regs + REG_TX_CFG); val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; writel(val, cp->regs + REG_RX_CFG); /* enable the mac */ val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; writel(val, cp->regs + REG_MAC_TX_CFG); val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; writel(val, cp->regs + REG_MAC_RX_CFG); i = STOP_TRIES; while (i-- > 0) { val = readl(cp->regs + REG_MAC_TX_CFG); if ((val & MAC_TX_CFG_EN)) break; udelay(10); } if (i < 0) txfailed = 1; i = STOP_TRIES; while (i-- > 0) { val = readl(cp->regs + REG_MAC_RX_CFG); if ((val & MAC_RX_CFG_EN)) { if (txfailed) { printk(KERN_ERR "%s: enabling mac failed [tx:%08x:%08x].\n", cp->dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE), readl(cp->regs + REG_MAC_STATE_MACHINE)); } goto enable_rx_done; } udelay(10); } printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n", cp->dev->name, (txfailed? "tx,rx":"rx"), readl(cp->regs + REG_MIF_STATE_MACHINE), readl(cp->regs + REG_MAC_STATE_MACHINE)); enable_rx_done: cas_unmask_intr(cp); /* enable interrupts */ writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); writel(0, cp->regs + REG_RX_COMP_TAIL); if (cp->cas_flags & CAS_FLAG_REG_PLUS) { if (N_RX_DESC_RINGS > 1) writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + REG_PLUS_RX_KICK1); for (i = 1; i < N_RX_COMP_RINGS; i++) writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); } } /* Must be invoked under cp->lock. */ static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, int *pause) { u32 val = readl(cp->regs + REG_PCS_MII_LPA); *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; if (val & PCS_MII_LPA_ASYM_PAUSE) *pause |= 0x10; *spd = 1000; } /* Must be invoked under cp->lock. */ static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, int *pause) { u32 val; *fd = 0; *spd = 10; *pause = 0; /* use GMII registers */ val = cas_phy_read(cp, MII_LPA); if (val & CAS_LPA_PAUSE) *pause = 0x01; if (val & CAS_LPA_ASYM_PAUSE) *pause |= 0x10; if (val & LPA_DUPLEX) *fd = 1; if (val & LPA_100) *spd = 100; if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { val = cas_phy_read(cp, CAS_MII_1000_STATUS); if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) *spd = 1000; if (val & CAS_LPA_1000FULL) *fd = 1; } } /* A link-up condition has occurred, initialize and enable the * rest of the chip. * * Must be invoked under cp->lock. */ static void cas_set_link_modes(struct cas *cp) { u32 val; int full_duplex, speed, pause; full_duplex = 0; speed = 10; pause = 0; if (CAS_PHY_MII(cp->phy_type)) { cas_mif_poll(cp, 0); val = cas_phy_read(cp, MII_BMCR); if (val & BMCR_ANENABLE) { cas_read_mii_link_mode(cp, &full_duplex, &speed, &pause); } else { if (val & BMCR_FULLDPLX) full_duplex = 1; if (val & BMCR_SPEED100) speed = 100; else if (val & CAS_BMCR_SPEED1000) speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? 1000 : 100; } cas_mif_poll(cp, 1); } else { val = readl(cp->regs + REG_PCS_MII_CTRL); cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); if ((val & PCS_MII_AUTONEG_EN) == 0) { if (val & PCS_MII_CTRL_DUPLEX) full_duplex = 1; } } if (netif_msg_link(cp)) printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n", cp->dev->name, speed, (full_duplex ? "full" : "half")); val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; if (CAS_PHY_MII(cp->phy_type)) { val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; if (!full_duplex) val |= MAC_XIF_DISABLE_ECHO; } if (full_duplex) val |= MAC_XIF_FDPLX_LED; if (speed == 1000) val |= MAC_XIF_GMII_MODE; writel(val, cp->regs + REG_MAC_XIF_CFG); /* deal with carrier and collision detect. */ val = MAC_TX_CFG_IPG_EN; if (full_duplex) { val |= MAC_TX_CFG_IGNORE_CARRIER; val |= MAC_TX_CFG_IGNORE_COLL; } else { #ifndef USE_CSMA_CD_PROTO val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; #endif } /* val now set up for REG_MAC_TX_CFG */ /* If gigabit and half-duplex, enable carrier extension * mode. increase slot time to 512 bytes as well. * else, disable it and make sure slot time is 64 bytes. * also activate checksum bug workaround */ if ((speed == 1000) && !full_duplex) { writel(val | MAC_TX_CFG_CARRIER_EXTEND, cp->regs + REG_MAC_TX_CFG); val = readl(cp->regs + REG_MAC_RX_CFG); val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ writel(val | MAC_RX_CFG_CARRIER_EXTEND, cp->regs + REG_MAC_RX_CFG); writel(0x200, cp->regs + REG_MAC_SLOT_TIME); cp->crc_size = 4; /* minimum size gigabit frame at half duplex */ cp->min_frame_size = CAS_1000MB_MIN_FRAME; } else { writel(val, cp->regs + REG_MAC_TX_CFG); /* checksum bug workaround. don't strip FCS when in * half-duplex mode */ val = readl(cp->regs + REG_MAC_RX_CFG); if (full_duplex) { val |= MAC_RX_CFG_STRIP_FCS; cp->crc_size = 0; cp->min_frame_size = CAS_MIN_MTU; } else { val &= ~MAC_RX_CFG_STRIP_FCS; cp->crc_size = 4; cp->min_frame_size = CAS_MIN_FRAME; } writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, cp->regs + REG_MAC_RX_CFG); writel(0x40, cp->regs + REG_MAC_SLOT_TIME); } if (netif_msg_link(cp)) { if (pause & 0x01) { printk(KERN_INFO "%s: Pause is enabled " "(rxfifo: %d off: %d on: %d)\n", cp->dev->name, cp->rx_fifo_size, cp->rx_pause_off, cp->rx_pause_on); } else if (pause & 0x10) { printk(KERN_INFO "%s: TX pause enabled\n", cp->dev->name); } else { printk(KERN_INFO "%s: Pause is disabled\n", cp->dev->name); } } val = readl(cp->regs + REG_MAC_CTRL_CFG); val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); if (pause) { /* symmetric or asymmetric pause */ val |= MAC_CTRL_CFG_SEND_PAUSE_EN; if (pause & 0x01) { /* symmetric pause */ val |= MAC_CTRL_CFG_RECV_PAUSE_EN; } } writel(val, cp->regs + REG_MAC_CTRL_CFG); cas_start_dma(cp); } /* Must be invoked under cp->lock. */ static void cas_init_hw(struct cas *cp, int restart_link) { if (restart_link) cas_phy_init(cp); cas_init_pause_thresholds(cp); cas_init_mac(cp); cas_init_dma(cp); if (restart_link) { /* Default aneg parameters */ cp->timer_ticks = 0; cas_begin_auto_negotiation(cp, NULL); } else if (cp->lstate == link_up) { cas_set_link_modes(cp); netif_carrier_on(cp->dev); } } /* Must be invoked under cp->lock. on earlier cassini boards, * SOFT_0 is tied to PCI reset. we use this to force a pci reset, * let it settle out, and then restore pci state. */ static void cas_hard_reset(struct cas *cp) { writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); udelay(20); pci_restore_state(cp->pdev); } static void cas_global_reset(struct cas *cp, int blkflag) { int limit; /* issue a global reset. don't use RSTOUT. */ if (blkflag && !CAS_PHY_MII(cp->phy_type)) { /* For PCS, when the blkflag is set, we should set the * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of * the last autonegotiation from being cleared. We'll * need some special handling if the chip is set into a * loopback mode. */ writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), cp->regs + REG_SW_RESET); } else { writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); } /* need to wait at least 3ms before polling register */ mdelay(3); limit = STOP_TRIES; while (limit-- > 0) { u32 val = readl(cp->regs + REG_SW_RESET); if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) goto done; udelay(10); } printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name); done: /* enable various BIM interrupts */ writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); /* clear out pci error status mask for handled errors. * we don't deal with DMA counter overflows as they happen * all the time. */ writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | PCI_ERR_BIM_DMA_READ), cp->regs + REG_PCI_ERR_STATUS_MASK); /* set up for MII by default to address mac rx reset timeout * issue */ writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); } static void cas_reset(struct cas *cp, int blkflag) { u32 val; cas_mask_intr(cp); cas_global_reset(cp, blkflag); cas_mac_reset(cp); cas_entropy_reset(cp); /* disable dma engines. */ val = readl(cp->regs + REG_TX_CFG); val &= ~TX_CFG_DMA_EN; writel(val, cp->regs + REG_TX_CFG); val = readl(cp->regs + REG_RX_CFG); val &= ~RX_CFG_DMA_EN; writel(val, cp->regs + REG_RX_CFG); /* program header parser */ if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { cas_load_firmware(cp, CAS_HP_FIRMWARE); } else { cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); } /* clear out error registers */ spin_lock(&cp->stat_lock[N_TX_RINGS]); cas_clear_mac_err(cp); spin_unlock(&cp->stat_lock[N_TX_RINGS]); } /* Shut down the chip, must be called with pm_mutex held. */ static void cas_shutdown(struct cas *cp) { unsigned long flags; /* Make us not-running to avoid timers respawning */ cp->hw_running = 0; del_timer_sync(&cp->link_timer); /* Stop the reset task */ #if 0 while (atomic_read(&cp->reset_task_pending_mtu) || atomic_read(&cp->reset_task_pending_spare) || atomic_read(&cp->reset_task_pending_all)) schedule(); #else while (atomic_read(&cp->reset_task_pending)) schedule(); #endif /* Actually stop the chip */ cas_lock_all_save(cp, flags); cas_reset(cp, 0); if (cp->cas_flags & CAS_FLAG_SATURN) cas_phy_powerdown(cp); cas_unlock_all_restore(cp, flags); } static int cas_change_mtu(struct net_device *dev, int new_mtu) { struct cas *cp = netdev_priv(dev); if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU) return -EINVAL; dev->mtu = new_mtu; if (!netif_running(dev) || !netif_device_present(dev)) return 0; /* let the reset task handle it */ #if 1 atomic_inc(&cp->reset_task_pending); if ((cp->phy_type & CAS_PHY_SERDES)) { atomic_inc(&cp->reset_task_pending_all); } else { atomic_inc(&cp->reset_task_pending_mtu); } schedule_work(&cp->reset_task); #else atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? CAS_RESET_ALL : CAS_RESET_MTU); printk(KERN_ERR "reset called in cas_change_mtu\n"); schedule_work(&cp->reset_task); #endif flush_scheduled_work(); return 0; } static void cas_clean_txd(struct cas *cp, int ring) { struct cas_tx_desc *txd = cp->init_txds[ring]; struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; u64 daddr, dlen; int i, size; size = TX_DESC_RINGN_SIZE(ring); for (i = 0; i < size; i++) { int frag; if (skbs[i] == NULL) continue; skb = skbs[i]; skbs[i] = NULL; for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { int ent = i & (size - 1); /* first buffer is never a tiny buffer and so * needs to be unmapped. */ daddr = le64_to_cpu(txd[ent].buffer); dlen = CAS_VAL(TX_DESC_BUFLEN, le64_to_cpu(txd[ent].control)); pci_unmap_page(cp->pdev, daddr, dlen, PCI_DMA_TODEVICE); if (frag != skb_shinfo(skb)->nr_frags) { i++; /* next buffer might by a tiny buffer. * skip past it. */ ent = i & (size - 1); if (cp->tx_tiny_use[ring][ent].used) i++; } } dev_kfree_skb_any(skb); } /* zero out tiny buf usage */ memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); } /* freed on close */ static inline void cas_free_rx_desc(struct cas *cp, int ring) { cas_page_t **page = cp->rx_pages[ring]; int i, size; size = RX_DESC_RINGN_SIZE(ring); for (i = 0; i < size; i++) { if (page[i]) { cas_page_free(cp, page[i]); page[i] = NULL; } } } static void cas_free_rxds(struct cas *cp) { int i; for (i = 0; i < N_RX_DESC_RINGS; i++) cas_free_rx_desc(cp, i); } /* Must be invoked under cp->lock. */ static void cas_clean_rings(struct cas *cp) { int i; /* need to clean all tx rings */ memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); for (i = 0; i < N_TX_RINGS; i++) cas_clean_txd(cp, i); /* zero out init block */ memset(cp->init_block, 0, sizeof(struct cas_init_block)); cas_clean_rxds(cp); cas_clean_rxcs(cp); } /* allocated on open */ static inline int cas_alloc_rx_desc(struct cas *cp, int ring) { cas_page_t **page = cp->rx_pages[ring]; int size, i = 0; size = RX_DESC_RINGN_SIZE(ring); for (i = 0; i < size; i++) { if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) return -1; } return 0; } static int cas_alloc_rxds(struct cas *cp) { int i; for (i = 0; i < N_RX_DESC_RINGS; i++) { if (cas_alloc_rx_desc(cp, i) < 0) { cas_free_rxds(cp); return -1; } } return 0; } static void cas_reset_task(struct work_struct *work) { struct cas *cp = container_of(work, struct cas, reset_task); #if 0 int pending = atomic_read(&cp->reset_task_pending); #else int pending_all = atomic_read(&cp->reset_task_pending_all); int pending_spare = atomic_read(&cp->reset_task_pending_spare); int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { /* We can have more tasks scheduled than actually * needed. */ atomic_dec(&cp->reset_task_pending); return; } #endif /* The link went down, we reset the ring, but keep * DMA stopped. Use this function for reset * on error as well. */ if (cp->hw_running) { unsigned long flags; /* Make sure we don't get interrupts or tx packets */ netif_device_detach(cp->dev); cas_lock_all_save(cp, flags); if (cp->opened) { /* We call cas_spare_recover when we call cas_open. * but we do not initialize the lists cas_spare_recover * uses until cas_open is called. */ cas_spare_recover(cp, GFP_ATOMIC); } #if 1 /* test => only pending_spare set */ if (!pending_all && !pending_mtu) goto done; #else if (pending == CAS_RESET_SPARE) goto done; #endif /* when pending == CAS_RESET_ALL, the following * call to cas_init_hw will restart auto negotiation. * Setting the second argument of cas_reset to * !(pending == CAS_RESET_ALL) will set this argument * to 1 (avoiding reinitializing the PHY for the normal * PCS case) when auto negotiation is not restarted. */ #if 1 cas_reset(cp, !(pending_all > 0)); if (cp->opened) cas_clean_rings(cp); cas_init_hw(cp, (pending_all > 0)); #else cas_reset(cp, !(pending == CAS_RESET_ALL)); if (cp->opened) cas_clean_rings(cp); cas_init_hw(cp, pending == CAS_RESET_ALL); #endif done: cas_unlock_all_restore(cp, flags); netif_device_attach(cp->dev); } #if 1 atomic_sub(pending_all, &cp->reset_task_pending_all); atomic_sub(pending_spare, &cp->reset_task_pending_spare); atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); atomic_dec(&cp->reset_task_pending); #else atomic_set(&cp->reset_task_pending, 0); #endif } static void cas_link_timer(unsigned long data) { struct cas *cp = (struct cas *) data; int mask, pending = 0, reset = 0; unsigned long flags; if (link_transition_timeout != 0 && cp->link_transition_jiffies_valid && ((jiffies - cp->link_transition_jiffies) > (link_transition_timeout))) { /* One-second counter so link-down workaround doesn't * cause resets to occur so fast as to fool the switch * into thinking the link is down. */ cp->link_transition_jiffies_valid = 0; } if (!cp->hw_running) return; spin_lock_irqsave(&cp->lock, flags); cas_lock_tx(cp); cas_entropy_gather(cp); /* If the link task is still pending, we just * reschedule the link timer */ #if 1 if (atomic_read(&cp->reset_task_pending_all) || atomic_read(&cp->reset_task_pending_spare) || atomic_read(&cp->reset_task_pending_mtu)) goto done; #else if (atomic_read(&cp->reset_task_pending)) goto done; #endif /* check for rx cleaning */ if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { int i, rmask; for (i = 0; i < MAX_RX_DESC_RINGS; i++) { rmask = CAS_FLAG_RXD_POST(i); if ((mask & rmask) == 0) continue; /* post_rxds will do a mod_timer */ if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { pending = 1; continue; } cp->cas_flags &= ~rmask; } } if (CAS_PHY_MII(cp->phy_type)) { u16 bmsr; cas_mif_poll(cp, 0); bmsr = cas_phy_read(cp, MII_BMSR); /* WTZ: Solaris driver reads this twice, but that * may be due to the PCS case and the use of a * common implementation. Read it twice here to be * safe. */ bmsr = cas_phy_read(cp, MII_BMSR); cas_mif_poll(cp, 1); readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ reset = cas_mii_link_check(cp, bmsr); } else { reset = cas_pcs_link_check(cp); } if (reset) goto done; /* check for tx state machine confusion */ if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); u32 wptr, rptr; int tlm = CAS_VAL(MAC_SM_TLM, val); if (((tlm == 0x5) || (tlm == 0x3)) && (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { if (netif_msg_tx_err(cp)) printk(KERN_DEBUG "%s: tx err: " "MAC_STATE[%08x]\n", cp->dev->name, val); reset = 1; goto done; } val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); if ((val == 0) && (wptr != rptr)) { if (netif_msg_tx_err(cp)) printk(KERN_DEBUG "%s: tx err: " "TX_FIFO[%08x:%08x:%08x]\n", cp->dev->name, val, wptr, rptr); reset = 1; } if (reset) cas_hard_reset(cp); } done: if (reset) { #if 1 atomic_inc(&cp->reset_task_pending); atomic_inc(&cp->reset_task_pending_all); schedule_work(&cp->reset_task); #else atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); printk(KERN_ERR "reset called in cas_link_timer\n"); schedule_work(&cp->reset_task); #endif } if (!pending) mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); cas_unlock_tx(cp); spin_unlock_irqrestore(&cp->lock, flags); } /* tiny buffers are used to avoid target abort issues with * older cassini's */ static void cas_tx_tiny_free(struct cas *cp) { struct pci_dev *pdev = cp->pdev; int i; for (i = 0; i < N_TX_RINGS; i++) { if (!cp->tx_tiny_bufs[i]) continue; pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]); cp->tx_tiny_bufs[i] = NULL; } } static int cas_tx_tiny_alloc(struct cas *cp) { struct pci_dev *pdev = cp->pdev; int i; for (i = 0; i < N_TX_RINGS; i++) { cp->tx_tiny_bufs[i] = pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, &cp->tx_tiny_dvma[i]); if (!cp->tx_tiny_bufs[i]) { cas_tx_tiny_free(cp); return -1; } } return 0; } static int cas_open(struct net_device *dev) { struct cas *cp = netdev_priv(dev); int hw_was_up, err; unsigned long flags; mutex_lock(&cp->pm_mutex); hw_was_up = cp->hw_running; /* The power-management mutex protects the hw_running * etc. state so it is safe to do this bit without cp->lock */ if (!cp->hw_running) { /* Reset the chip */ cas_lock_all_save(cp, flags); /* We set the second arg to cas_reset to zero * because cas_init_hw below will have its second * argument set to non-zero, which will force * autonegotiation to start. */ cas_reset(cp, 0); cp->hw_running = 1; cas_unlock_all_restore(cp, flags); } if (cas_tx_tiny_alloc(cp) < 0) return -ENOMEM; /* alloc rx descriptors */ err = -ENOMEM; if (cas_alloc_rxds(cp) < 0) goto err_tx_tiny; /* allocate spares */ cas_spare_init(cp); cas_spare_recover(cp, GFP_KERNEL); /* We can now request the interrupt as we know it's masked * on the controller. cassini+ has up to 4 interrupts * that can be used, but you need to do explicit pci interrupt * mapping to expose them */ if (request_irq(cp->pdev->irq, cas_interrupt, IRQF_SHARED, dev->name, (void *) dev)) { printk(KERN_ERR "%s: failed to request irq !\n", cp->dev->name); err = -EAGAIN; goto err_spare; } /* init hw */ cas_lock_all_save(cp, flags); cas_clean_rings(cp); cas_init_hw(cp, !hw_was_up); cp->opened = 1; cas_unlock_all_restore(cp, flags); netif_start_queue(dev); mutex_unlock(&cp->pm_mutex); return 0; err_spare: cas_spare_free(cp); cas_free_rxds(cp); err_tx_tiny: cas_tx_tiny_free(cp); mutex_unlock(&cp->pm_mutex); return err; } static int cas_close(struct net_device *dev) { unsigned long flags; struct cas *cp = netdev_priv(dev); /* Make sure we don't get distracted by suspend/resume */ mutex_lock(&cp->pm_mutex); netif_stop_queue(dev); /* Stop traffic, mark us closed */ cas_lock_all_save(cp, flags); cp->opened = 0; cas_reset(cp, 0); cas_phy_init(cp); cas_begin_auto_negotiation(cp, NULL); cas_clean_rings(cp); cas_unlock_all_restore(cp, flags); free_irq(cp->pdev->irq, (void *) dev); cas_spare_free(cp); cas_free_rxds(cp); cas_tx_tiny_free(cp); mutex_unlock(&cp->pm_mutex); return 0; } static struct { const char name[ETH_GSTRING_LEN]; } ethtool_cassini_statnames[] = { {"collisions"}, {"rx_bytes"}, {"rx_crc_errors"}, {"rx_dropped"}, {"rx_errors"}, {"rx_fifo_errors"}, {"rx_frame_errors"}, {"rx_length_errors"}, {"rx_over_errors"}, {"rx_packets"}, {"tx_aborted_errors"}, {"tx_bytes"}, {"tx_dropped"}, {"tx_errors"}, {"tx_fifo_errors"}, {"tx_packets"} }; #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN) static struct { const int offsets; /* neg. values for 2nd arg to cas_read_phy */ } ethtool_register_table[] = { {-MII_BMSR}, {-MII_BMCR}, {REG_CAWR}, {REG_INF_BURST}, {REG_BIM_CFG}, {REG_RX_CFG}, {REG_HP_CFG}, {REG_MAC_TX_CFG}, {REG_MAC_RX_CFG}, {REG_MAC_CTRL_CFG}, {REG_MAC_XIF_CFG}, {REG_MIF_CFG}, {REG_PCS_CFG}, {REG_SATURN_PCFG}, {REG_PCS_MII_STATUS}, {REG_PCS_STATE_MACHINE}, {REG_MAC_COLL_EXCESS}, {REG_MAC_COLL_LATE} }; #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int)) #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) static void cas_read_regs(struct cas *cp, u8 *ptr, int len) { u8 *p; int i; unsigned long flags; spin_lock_irqsave(&cp->lock, flags); for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { u16 hval; u32 val; if (ethtool_register_table[i].offsets < 0) { hval = cas_phy_read(cp, -ethtool_register_table[i].offsets); val = hval; } else { val= readl(cp->regs+ethtool_register_table[i].offsets); } memcpy(p, (u8 *)&val, sizeof(u32)); } spin_unlock_irqrestore(&cp->lock, flags); } static struct net_device_stats *cas_get_stats(struct net_device *dev) { struct cas *cp = netdev_priv(dev); struct net_device_stats *stats = cp->net_stats; unsigned long flags; int i; unsigned long tmp; /* we collate all of the stats into net_stats[N_TX_RING] */ if (!cp->hw_running) return stats + N_TX_RINGS; /* collect outstanding stats */ /* WTZ: the Cassini spec gives these as 16 bit counters but * stored in 32-bit words. Added a mask of 0xffff to be safe, * in case the chip somehow puts any garbage in the other bits. * Also, counter usage didn't seem to mach what Adrian did * in the parts of the code that set these quantities. Made * that consistent. */ spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); stats[N_TX_RINGS].rx_crc_errors += readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; stats[N_TX_RINGS].rx_frame_errors += readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; stats[N_TX_RINGS].rx_length_errors += readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; #if 1 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); stats[N_TX_RINGS].tx_aborted_errors += tmp; stats[N_TX_RINGS].collisions += tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); #else stats[N_TX_RINGS].tx_aborted_errors += readl(cp->regs + REG_MAC_COLL_EXCESS); stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + readl(cp->regs + REG_MAC_COLL_LATE); #endif cas_clear_mac_err(cp); /* saved bits that are unique to ring 0 */ spin_lock(&cp->stat_lock[0]); stats[N_TX_RINGS].collisions += stats[0].collisions; stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; spin_unlock(&cp->stat_lock[0]); for (i = 0; i < N_TX_RINGS; i++) { spin_lock(&cp->stat_lock[i]); stats[N_TX_RINGS].rx_length_errors += stats[i].rx_length_errors; stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; memset(stats + i, 0, sizeof(struct net_device_stats)); spin_unlock(&cp->stat_lock[i]); } spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); return stats + N_TX_RINGS; } static void cas_set_multicast(struct net_device *dev) { struct cas *cp = netdev_priv(dev); u32 rxcfg, rxcfg_new; unsigned long flags; int limit = STOP_TRIES; if (!cp->hw_running) return; spin_lock_irqsave(&cp->lock, flags); rxcfg = readl(cp->regs + REG_MAC_RX_CFG); /* disable RX MAC and wait for completion */ writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { if (!limit--) break; udelay(10); } /* disable hash filter and wait for completion */ limit = STOP_TRIES; rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { if (!limit--) break; udelay(10); } /* program hash filters */ cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); rxcfg |= rxcfg_new; writel(rxcfg, cp->regs + REG_MAC_RX_CFG); spin_unlock_irqrestore(&cp->lock, flags); } static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct cas *cp = netdev_priv(dev); strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN); strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN); info->fw_version[0] = '\0'; strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN); info->regdump_len = cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len : CAS_MAX_REGS; info->n_stats = CAS_NUM_STAT_KEYS; } static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct cas *cp = netdev_priv(dev); u16 bmcr; int full_duplex, speed, pause; unsigned long flags; enum link_state linkstate = link_up; cmd->advertising = 0; cmd->supported = SUPPORTED_Autoneg; if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { cmd->supported |= SUPPORTED_1000baseT_Full; cmd->advertising |= ADVERTISED_1000baseT_Full; } /* Record PHY settings if HW is on. */ spin_lock_irqsave(&cp->lock, flags); bmcr = 0; linkstate = cp->lstate; if (CAS_PHY_MII(cp->phy_type)) { cmd->port = PORT_MII; cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? XCVR_INTERNAL : XCVR_EXTERNAL; cmd->phy_address = cp->phy_addr; cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII | ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; cmd->supported |= (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_TP | SUPPORTED_MII); if (cp->hw_running) { cas_mif_poll(cp, 0); bmcr = cas_phy_read(cp, MII_BMCR); cas_read_mii_link_mode(cp, &full_duplex, &speed, &pause); cas_mif_poll(cp, 1); } } else { cmd->port = PORT_FIBRE; cmd->transceiver = XCVR_INTERNAL; cmd->phy_address = 0; cmd->supported |= SUPPORTED_FIBRE; cmd->advertising |= ADVERTISED_FIBRE; if (cp->hw_running) { /* pcs uses the same bits as mii */ bmcr = readl(cp->regs + REG_PCS_MII_CTRL); cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); } } spin_unlock_irqrestore(&cp->lock, flags); if (bmcr & BMCR_ANENABLE) { cmd->advertising |= ADVERTISED_Autoneg; cmd->autoneg = AUTONEG_ENABLE; cmd->speed = ((speed == 10) ? SPEED_10 : ((speed == 1000) ? SPEED_1000 : SPEED_100)); cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; } else { cmd->autoneg = AUTONEG_DISABLE; cmd->speed = (bmcr & CAS_BMCR_SPEED1000) ? SPEED_1000 : ((bmcr & BMCR_SPEED100) ? SPEED_100: SPEED_10); cmd->duplex = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF; } if (linkstate != link_up) { /* Force these to "unknown" if the link is not up and * autonogotiation in enabled. We can set the link * speed to 0, but not cmd->duplex, * because its legal values are 0 and 1. Ethtool will * print the value reported in parentheses after the * word "Unknown" for unrecognized values. * * If in forced mode, we report the speed and duplex * settings that we configured. */ if (cp->link_cntl & BMCR_ANENABLE) { cmd->speed = 0; cmd->duplex = 0xff; } else { cmd->speed = SPEED_10; if (cp->link_cntl & BMCR_SPEED100) { cmd->speed = SPEED_100; } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { cmd->speed = SPEED_1000; } cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF; } } return 0; } static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct cas *cp = netdev_priv(dev); unsigned long flags; /* Verify the settings we care about. */ if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) return -EINVAL; if (cmd->autoneg == AUTONEG_DISABLE && ((cmd->speed != SPEED_1000 && cmd->speed != SPEED_100 && cmd->speed != SPEED_10) || (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL))) return -EINVAL; /* Apply settings and restart link process. */ spin_lock_irqsave(&cp->lock, flags); cas_begin_auto_negotiation(cp, cmd); spin_unlock_irqrestore(&cp->lock, flags); return 0; } static int cas_nway_reset(struct net_device *dev) { struct cas *cp = netdev_priv(dev); unsigned long flags; if ((cp->link_cntl & BMCR_ANENABLE) == 0) return -EINVAL; /* Restart link process. */ spin_lock_irqsave(&cp->lock, flags); cas_begin_auto_negotiation(cp, NULL); spin_unlock_irqrestore(&cp->lock, flags); return 0; } static u32 cas_get_link(struct net_device *dev) { struct cas *cp = netdev_priv(dev); return cp->lstate == link_up; } static u32 cas_get_msglevel(struct net_device *dev) { struct cas *cp = netdev_priv(dev); return cp->msg_enable; } static void cas_set_msglevel(struct net_device *dev, u32 value) { struct cas *cp = netdev_priv(dev); cp->msg_enable = value; } static int cas_get_regs_len(struct net_device *dev) { struct cas *cp = netdev_priv(dev); return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; } static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct cas *cp = netdev_priv(dev); regs->version = 0; /* cas_read_regs handles locks (cp->lock). */ cas_read_regs(cp, p, regs->len / sizeof(u32)); } static int cas_get_stats_count(struct net_device *dev) { return CAS_NUM_STAT_KEYS; } static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) { memcpy(data, ðtool_cassini_statnames, CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); } static void cas_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *data) { struct cas *cp = netdev_priv(dev); struct net_device_stats *stats = cas_get_stats(cp->dev); int i = 0; data[i++] = stats->collisions; data[i++] = stats->rx_bytes; data[i++] = stats->rx_crc_errors; data[i++] = stats->rx_dropped; data[i++] = stats->rx_errors; data[i++] = stats->rx_fifo_errors; data[i++] = stats->rx_frame_errors; data[i++] = stats->rx_length_errors; data[i++] = stats->rx_over_errors; data[i++] = stats->rx_packets; data[i++] = stats->tx_aborted_errors; data[i++] = stats->tx_bytes; data[i++] = stats->tx_dropped; data[i++] = stats->tx_errors; data[i++] = stats->tx_fifo_errors; data[i++] = stats->tx_packets; BUG_ON(i != CAS_NUM_STAT_KEYS); } static const struct ethtool_ops cas_ethtool_ops = { .get_drvinfo = cas_get_drvinfo, .get_settings = cas_get_settings, .set_settings = cas_set_settings, .nway_reset = cas_nway_reset, .get_link = cas_get_link, .get_msglevel = cas_get_msglevel, .set_msglevel = cas_set_msglevel, .get_regs_len = cas_get_regs_len, .get_regs = cas_get_regs, .get_stats_count = cas_get_stats_count, .get_strings = cas_get_strings, .get_ethtool_stats = cas_get_ethtool_stats, }; static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct cas *cp = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(ifr); unsigned long flags; int rc = -EOPNOTSUPP; /* Hold the PM mutex while doing ioctl's or we may collide * with open/close and power management and oops. */ mutex_lock(&cp->pm_mutex); switch (cmd) { case SIOCGMIIPHY: /* Get address of MII PHY in use. */ data->phy_id = cp->phy_addr; /* Fallthrough... */ case SIOCGMIIREG: /* Read MII PHY register. */ spin_lock_irqsave(&cp->lock, flags); cas_mif_poll(cp, 0); data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); cas_mif_poll(cp, 1); spin_unlock_irqrestore(&cp->lock, flags); rc = 0; break; case SIOCSMIIREG: /* Write MII PHY register. */ if (!capable(CAP_NET_ADMIN)) { rc = -EPERM; break; } spin_lock_irqsave(&cp->lock, flags); cas_mif_poll(cp, 0); rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); cas_mif_poll(cp, 1); spin_unlock_irqrestore(&cp->lock, flags); break; default: break; }; mutex_unlock(&cp->pm_mutex); return rc; } static int __devinit cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int cas_version_printed = 0; unsigned long casreg_len; struct net_device *dev; struct cas *cp; int i, err, pci_using_dac; u16 pci_cmd; u8 orig_cacheline_size = 0, cas_cacheline_size = 0; if (cas_version_printed++ == 0) printk(KERN_INFO "%s", version); err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n"); return err; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Cannot find proper PCI device " "base address, aborting.\n"); err = -ENODEV; goto err_out_disable_pdev; } dev = alloc_etherdev(sizeof(*cp)); if (!dev) { dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n"); err = -ENOMEM; goto err_out_disable_pdev; } SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); err = pci_request_regions(pdev, dev->name); if (err) { dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n"); goto err_out_free_netdev; } pci_set_master(pdev); /* we must always turn on parity response or else parity * doesn't get generated properly. disable SERR/PERR as well. * in addition, we want to turn MWI on. */ pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_cmd &= ~PCI_COMMAND_SERR; pci_cmd |= PCI_COMMAND_PARITY; pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); pci_set_mwi(pdev); /* * On some architectures, the default cache line size set * by pci_set_mwi reduces perforamnce. We have to increase * it for this case. To start, we'll print some configuration * data. */ #if 1 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &orig_cacheline_size); if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { cas_cacheline_size = (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; if (pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, cas_cacheline_size)) { dev_err(&pdev->dev, "Could not set PCI cache " "line size\n"); goto err_write_cacheline; } } #endif /* Configure DMA attributes. */ if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { pci_using_dac = 1; err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); if (err < 0) { dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " "for consistent allocations\n"); goto err_out_free_res; } } else { err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (err) { dev_err(&pdev->dev, "No usable DMA configuration, " "aborting.\n"); goto err_out_free_res; } pci_using_dac = 0; } casreg_len = pci_resource_len(pdev, 0); cp = netdev_priv(dev); cp->pdev = pdev; #if 1 /* A value of 0 indicates we never explicitly set it */ cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; #endif cp->dev = dev; cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : cassini_debug; cp->link_transition = LINK_TRANSITION_UNKNOWN; cp->link_transition_jiffies_valid = 0; spin_lock_init(&cp->lock); spin_lock_init(&cp->rx_inuse_lock); spin_lock_init(&cp->rx_spare_lock); for (i = 0; i < N_TX_RINGS; i++) { spin_lock_init(&cp->stat_lock[i]); spin_lock_init(&cp->tx_lock[i]); } spin_lock_init(&cp->stat_lock[N_TX_RINGS]); mutex_init(&cp->pm_mutex); init_timer(&cp->link_timer); cp->link_timer.function = cas_link_timer; cp->link_timer.data = (unsigned long) cp; #if 1 /* Just in case the implementation of atomic operations * change so that an explicit initialization is necessary. */ atomic_set(&cp->reset_task_pending, 0); atomic_set(&cp->reset_task_pending_all, 0); atomic_set(&cp->reset_task_pending_spare, 0); atomic_set(&cp->reset_task_pending_mtu, 0); #endif INIT_WORK(&cp->reset_task, cas_reset_task); /* Default link parameters */ if (link_mode >= 0 && link_mode <= 6) cp->link_cntl = link_modes[link_mode]; else cp->link_cntl = BMCR_ANENABLE; cp->lstate = link_down; cp->link_transition = LINK_TRANSITION_LINK_DOWN; netif_carrier_off(cp->dev); cp->timer_ticks = 0; /* give us access to cassini registers */ cp->regs = pci_iomap(pdev, 0, casreg_len); if (cp->regs == 0UL) { dev_err(&pdev->dev, "Cannot map device registers, aborting.\n"); goto err_out_free_res; } cp->casreg_len = casreg_len; pci_save_state(pdev); cas_check_pci_invariants(cp); cas_hard_reset(cp); cas_reset(cp, 0); if (cas_check_invariants(cp)) goto err_out_iounmap; cp->init_block = (struct cas_init_block *) pci_alloc_consistent(pdev, sizeof(struct cas_init_block), &cp->block_dvma); if (!cp->init_block) { dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n"); goto err_out_iounmap; } for (i = 0; i < N_TX_RINGS; i++) cp->init_txds[i] = cp->init_block->txds[i]; for (i = 0; i < N_RX_DESC_RINGS; i++) cp->init_rxds[i] = cp->init_block->rxds[i]; for (i = 0; i < N_RX_COMP_RINGS; i++) cp->init_rxcs[i] = cp->init_block->rxcs[i]; for (i = 0; i < N_RX_FLOWS; i++) skb_queue_head_init(&cp->rx_flows[i]); dev->open = cas_open; dev->stop = cas_close; dev->hard_start_xmit = cas_start_xmit; dev->get_stats = cas_get_stats; dev->set_multicast_list = cas_set_multicast; dev->do_ioctl = cas_ioctl; dev->ethtool_ops = &cas_ethtool_ops; dev->tx_timeout = cas_tx_timeout; dev->watchdog_timeo = CAS_TX_TIMEOUT; dev->change_mtu = cas_change_mtu; #ifdef USE_NAPI dev->poll = cas_poll; dev->weight = 64; #endif #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = cas_netpoll; #endif dev->irq = pdev->irq; dev->dma = 0; /* Cassini features. */ if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; if (pci_using_dac) dev->features |= NETIF_F_HIGHDMA; if (register_netdev(dev)) { dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); goto err_out_free_consistent; } i = readl(cp->regs + REG_BIM_CFG); printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) " "Ethernet[%d] ", dev->name, (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", (i & BIM_CFG_32BIT) ? "32" : "64", (i & BIM_CFG_66MHZ) ? "66" : "33", (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq); for (i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); printk("\n"); pci_set_drvdata(pdev, dev); cp->hw_running = 1; cas_entropy_reset(cp); cas_phy_init(cp); cas_begin_auto_negotiation(cp, NULL); return 0; err_out_free_consistent: pci_free_consistent(pdev, sizeof(struct cas_init_block), cp->init_block, cp->block_dvma); err_out_iounmap: mutex_lock(&cp->pm_mutex); if (cp->hw_running) cas_shutdown(cp); mutex_unlock(&cp->pm_mutex); pci_iounmap(pdev, cp->regs); err_out_free_res: pci_release_regions(pdev); err_write_cacheline: /* Try to restore it in case the error occured after we * set it. */ pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); err_out_free_netdev: free_netdev(dev); err_out_disable_pdev: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return -ENODEV; } static void __devexit cas_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct cas *cp; if (!dev) return; cp = netdev_priv(dev); unregister_netdev(dev); mutex_lock(&cp->pm_mutex); flush_scheduled_work(); if (cp->hw_running) cas_shutdown(cp); mutex_unlock(&cp->pm_mutex); #if 1 if (cp->orig_cacheline_size) { /* Restore the cache line size if we had modified * it. */ pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, cp->orig_cacheline_size); } #endif pci_free_consistent(pdev, sizeof(struct cas_init_block), cp->init_block, cp->block_dvma); pci_iounmap(pdev, cp->regs); free_netdev(dev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } #ifdef CONFIG_PM static int cas_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct cas *cp = netdev_priv(dev); unsigned long flags; mutex_lock(&cp->pm_mutex); /* If the driver is opened, we stop the DMA */ if (cp->opened) { netif_device_detach(dev); cas_lock_all_save(cp, flags); /* We can set the second arg of cas_reset to 0 * because on resume, we'll call cas_init_hw with * its second arg set so that autonegotiation is * restarted. */ cas_reset(cp, 0); cas_clean_rings(cp); cas_unlock_all_restore(cp, flags); } if (cp->hw_running) cas_shutdown(cp); mutex_unlock(&cp->pm_mutex); return 0; } static int cas_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct cas *cp = netdev_priv(dev); printk(KERN_INFO "%s: resuming\n", dev->name); mutex_lock(&cp->pm_mutex); cas_hard_reset(cp); if (cp->opened) { unsigned long flags; cas_lock_all_save(cp, flags); cas_reset(cp, 0); cp->hw_running = 1; cas_clean_rings(cp); cas_init_hw(cp, 1); cas_unlock_all_restore(cp, flags); netif_device_attach(dev); } mutex_unlock(&cp->pm_mutex); return 0; } #endif /* CONFIG_PM */ static struct pci_driver cas_driver = { .name = DRV_MODULE_NAME, .id_table = cas_pci_tbl, .probe = cas_init_one, .remove = __devexit_p(cas_remove_one), #ifdef CONFIG_PM .suspend = cas_suspend, .resume = cas_resume #endif }; static int __init cas_init(void) { if (linkdown_timeout > 0) link_transition_timeout = linkdown_timeout * HZ; else link_transition_timeout = 0; return pci_register_driver(&cas_driver); } static void __exit cas_cleanup(void) { pci_unregister_driver(&cas_driver); } module_init(cas_init); module_exit(cas_cleanup);